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Abstract

In this study, we propose a new data-driven approach to es-
timating dynamical systems with sparse modeling by incor-
porating physical constraints derived from Hamiltonian me-
chanics. In the proposed method, we estimate governing dy-
namics from candidate nonlinear terms by using a sparse
representation of Hamiltonian, rather than that of individ-
ual dynamical equations for coordinate and momentum. Ex-
periments with noisy observed data show that the proposed
method provides accurate parameter estimation and extrac-
tion of the necessary nonlinear terms from the candidates
compared to conventional methods. Furthermore, we show
that the estimation based on the energy conservation law pro-
vides superior accuracy in long-term forecasts.

Introduction
Recent advances in measurement and information technolo-
gies have improved both the quantity and quality of available
data. Due to these developments, data-driven approaches
have attracted attention as a method to extract the structure
and characteristics of the underlying systems from the data.
Notably, the extraction of dynamical systems from time-
series data stands out as a significant challenge in diverse
fields, encompassing natural sciences such as physics and
neuro science, along with engineering disciplines like ther-
mal and fluid engineering (Liu et al. 2023; Chen and Poor
2022; Yin et al. 2021; Ansari et al. 2021).

In this study, we propose a sparse modeling based on
Hamiltonian mechanics. In this method, constraints derived
from physical laws are imposed on the estimation. The
results demonstrate that our proposed approach achieves
highly interpretable and accurate estimates while maintain-
ing physical consistency.

Related Work
Estimation of Dynamical Systems
For a data-driven approach to estimating dynamical systems,
various machine learning techniques are employed including
Bayesian estimation and neural network (Roda 2020; Omori
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Figure 1: Overview of the proposed method.

et al. 2016). Bayesian estimation involves parameter esti-
mation when the model of the dynamical system is known.
Estimation using neural networks allows for estimation even
when the model is unknown, but the predicted system tends
to be treated as a black box.

Against this background, there is a growing emphasis
on methods capable of white-box type estimation when the
model is unknown. One approach involves the utilization of
sparse estimation (Brunton, Proctor, and Kutz 2016). The
method extracts essential bases through sparse estimation in
scenarios involving a set of prepared basis functions. Conse-
quently, it remains applicable even in cases where the model
is unknown. However, in situations with numerous candi-
dates of basis functions or noisy observation, accurate es-
timation of the system behavior may be compromised. To
address these problems, it is important to incorporates con-
straints such as physical property.

Methodology
Hamiltonian Mechanics
Hamiltonian mechanics offers a framework for describing
the time evolution of states of physical system that admit the
energy conservation law. In Hamiltonian mechanics, govern-
ing dynamics is mathematically formulated by two indepen-



dent variables: generalized coordinates q = [q1, ..., qn] and
generalized momentum p = [p1, ..., pn], where n is the de-
gree of freedom of the system. Using these variables, the
system’s dynamical behavior is described by the following
equations:

dqi
dt

=
∂H
∂pi

,
dpi
dt

= −∂H
∂qi

for i = 1, ..., n (1)

Here, H = H(p, q, t) is called the Hamiltonian, which
is a function of q and p that represents the energy of the
entire system. By using the Hamiltonian, the system can
be expressed in a symmetric expression. Furthermore, if
the Hamiltonian does not depend explicitly on time (H =
H(p, q)), the relation dH/dt = 0 holds, i.e., conservation of
energy is guaranteed. In addition, it is known as the Noether
theorem that a symmetry of the system leads to a conserva-
tion law. The Hamilton equations includes the Newton equa-
tion and can describe broader physical phenomena in a man-
ner consistent with the original laws of nature.

Proposed Method
Here, we develop a data driven method for estimating dy-
namical equations from time-series data (Figure 1). Our
method imposes the physical information possessed by
Hamiltonian dynamics as a constraint. By imposing the
physical constraint, dynamical equations (Eq. (1)) can be ex-
pressed for all dimension i as follows:

dqi
dt

≈
m∑
j=1

βj
∂gj(q,p, t)

∂pi
,
dpi
dt

≈−
m∑
j=1

βj
∂gj(q,p, t)

∂qi
(2)

where g1(q,p, t), ..., gm(q,p, t) are nonlinear functions that
can be candidates for the m basis functions prepared in ad-
vance, and β = [β1, ..., βm] is the weight coefficient.

Note that a shared weight coefficient βj are applied to two
equations for dqi/dt and dpi/dt with subscript j, and this
common property is hold for all subscript j. This common-
ality can be achieved by decomposing the Hamiltonian into
m terms as follows:

H ≈
m∑
j=1

βjgj(q,p, t) (3)

Representing the Hamiltonian as Eq. (3), we needs to con-
sider partially differentiated. The partial derivatives of the
basis functions can be easily calculated either analytically
or numerically, assuming the functions are provided.

To extract only essential nonlinear terms we propose a
sparse modeling approach for Hamiltonian dynamics. We
assume that the state values q, p and their time derivatives
dq/dt, dp/dt are given as data. State values are utilized to
create nonlinear basis functions constituting the approxima-
tion of the Hamiltonian, while time derivatives serve as ob-
jective variables. The objective function is as follows:

L(β) =

∥∥∥∥∥∥
[
q̇obs
ṗobs

]
−

m∑
j=1

βj

[
∂gj(qobs,pobs,t)

∂p

−∂gj(qobs,pobs,t)
∂q

]∥∥∥∥∥∥
2

2

+ λ∥β∥1

(4)

where qobs and pobs represent observed values of q and p,
while q̇obs ṗobs represent observed values of dq/dt, dp/dt,
respectively. L1-norm regularization is introduced for the
weight coefficients β for sparse estimation. By assuming
sparse representation in Hamiltonian H(q,p), we realize si-
multaneous estimation of dynamical equations for both q
and p. Furthermore, this sparsity reduces the dimension,
leading to a lightweight simulation. The regularization pa-
rameter λ determines the strength of sparsity. This allows
only terms related to the Hamiltonian to be extracted from a
large number of basis functions, contributing to the identifi-
cation of dynamics and the interpretability of the model.

Finally, we highlight the distinctions among conventional
and proposed methods. The conventional approach necessi-
tates the consideration of the following concerning Eq. (1):

dqi
dt

≈
m∑
j=1

µjgj(q,p, t),
dpi
dt

≈
m∑
j=1

νjgj(q,p, t) (5)

where µj and νj are independent weight coefficients corre-
sponding to q and p, respectively. These mean that the esti-
mation is conducted independently based only on the data,
without considering the relevance of each state value. On
the other hand, concerning Eq. (2), it is possible to relate
the equations according to natural laws. From this, it can be
argued that the proposed approach considering Hamiltonian
mechanics (Eqs. (2)–(4)) can introduce regularization based
on physical laws.

Results
To evaluate the performance of our proposed method, we
present experimental results from two Hamiltonian dynam-
ical systems: Duffing oscillator and Rayleigh-Bénard con-
vection. In these experiments, the observed data was created
by adding Gaussian noise to the true value of each state val-
ues and their time derivatives.

To demonstrate the superiority of the proposed method,
we employed the least-squares method without regulariza-
tion (LSM) and the least-squares method with L1-norm reg-
ularization (LASSO) as comparative methods. These meth-
ods do not consider Hamiltonian mechanics and utilize the
time derivatives of the state variables as the objective vari-
ables. The evaluation criteria consist of assessing the accu-
racy of estimated weight coefficients and comparing the ac-
curacy of the long-term forecasts. In order to achieve opti-
mal sparsity, the regularization parameters were automati-
cally selected to have the best generalization performance in
the proposed method and LASSO.

Duffing Oscillator
In the first experiment, the Duffing oscillator was examined.
We consider the Hamiltonian expressed as follows:

H =
1

2
p2 +

1

2
aq2 +

1

4
bq4 (6)

where we consider the system does not have a dissipative
term and hence conserves energy in this experiment. For the
observed values, the data were prepared at 0.001 time inter-
vals from t = 0 to 20. The first 25% of the data points were
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Figure 2: Estimated coefficients in Duffing oscillator. Common coefficients β estimated by proposed method (left) and coeffi-
cients µ and ν estimated separately for dq/dt by conventional methods (upper figure) and dp/dt (lower figure), respectively.
Horizontal axis denotes basis function type, and vertical axis shows coefficient values. True values (black dots) and predicted
values (blue circles) are shown.
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Figure 3: Comparison of the long-term forecasts in Duffing oscillator. True trajectory (black dashed line) and predicted ones
for the training period (blue dots) and the test period (red crosses) are shown.

used for training, whereas the remaining 75% were used as
the test set. The 10 candidate functions are as follows:

{qu, pu | u ∈ N, 1 ≤ u ≤ 5}

The results of estimated coefficients of the basis functions
for each method are shown in Figure 2. Next, the results of
the long-term forecasts are shown in Figure 3. Mean squared
error for the test portions are also shown in Table 1. Details
of the results will be mentioned in Discussion.

Rayleigh-Bénard Convection

In the second experiment, Rayleigh-Bénard convection was
examined. Here, the following Hamiltonian is considered:

H =
A

k
sin(kp) sin(πq) (7)

where we consider energy-stable system in this experiment.
For the observed values, the data were prepared at 0.001
time intervals from t = 0 to 19.2. The first half of the data
points were used for training and the other as a test set. The

following 54 candidates for basis functions were prepared:

{sin(ωt) sin(ukp) sin(πq), cos(ωt) sin(ukp) sin(πq),
sin(ωt) cos(ukp) sin(πq), cos(ωt) cos(ukp) sin(πq),

sin(ωt) sin(ukp) cos(πq), cos(ωt) sin(ukp) cos(πq),

sin(ωt) cos(ukp) cos(πq), cos(ωt) cos(ukp) cos(πq),

sin(ωt), sin(ωt)p, sin(ωt)q, cos(ωt), cos(ωt)p, cos(ωt)q,

sin(ukp) sin(πq), cos(ukp) sin(πq), sin(ukp) cos(πq),

cos(ukp) cos(πq) | u ∈ N, 1 ≤ u ≤ 4, ω = 2π/T}

The results of estimating the coefficients of the basis func-
tions for each method are shown in Figure 4. Next, the re-
sults of the long-term forecasts comparison are shown in
Figure 5. Mean squared error for the test portions are also
shown in Table 1. Details of the results will be mentioned in
Discussion.

Discussion
As shown in Figures 2 and 4, the proposed method es-
timates both true nonzero and true zero coefficients with
high accuracy. As shown in Figures 3 and 5, we find that
the proposed method accurately estimate the true trajectory,
whereas the exisiting methods show large deviation from
true ones. Quantitive evaluation using mean squared error
for test data (Table 1) also shows high accuracy of the pro-
posed method.
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Figure 4: Estimated coefficients in Rayleigh-Bénard convection: See the caption for Figure 2.
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Figure 5: Comparison of the long-term forecasts in Rayleigh-Bénard convection: See the caption for Figure 3.

Table 1: Comparison of MSE for test data

Duffing oscillator Rayleigh-Bénard convection
Ours 4.99× 10−2 1.17× 10−1

LSM 4.42 2.29
LASSO 2.58 5.00

The results for the Duffing oscillator (Figures 2 and 3)
show that the proposed method excels in both the coef-
ficients’ estimation and the long-term forecasts. The con-
ventional methods have shown a small discrepancy in es-
timated coefficients, but a significant impact on long-term
forecasts. This suggests that the proposed method achieves
stable learning, where the behavior does not change even for
long-term forecasts, i.e., that energy is conserved.

The results for the Rayleigh-Bénard convection (Figures
4 and 5) show that, even when there are many candidates,
the proposed method outperforms the conventional method
in the both aspects. This suggests that the symmetry and the
conservation law of the Hamilton equations prevent the se-
lection of basis functions that differ from the true system,
even when there are many candidates for the terms.

Conclusion
Our proposed method has demonstrated superior accuracy in
long-term forecasts and parameters estimation compared to
conventional methods in experiments on noisy data. Our ap-
proach achieves more physically consistent predictions for
dynamical systems by introducing the energy conservation
law and symmetries based on Hamiltonian mechanics into

sparse modeling.
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