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Abstract

This work presents a physics-informed deep learning-based
super-resolution framework to enhance the spatio-temporal
resolution of the solution of time-dependent partial differ-
ential equations (PDE). Prior works on deep learning-based
super-resolution models have shown promise in accelerating
engineering design by reducing the computational expense of
traditional numerical schemes. However, these models heav-
ily rely on the availability of high-resolution (HR) labeled
data needed during training.
In this work, we propose a physics-informed deep learning-
based framework to enhance the spatial and temporal reso-
lution of coarse-scale (both in space and time) PDE solu-
tions without requiring any HR data. The framework con-
sists of two trainable modules independently super-resolving
the PDE solution, first in spatial and then in temporal direc-
tion. The physics based losses are implemented in a novel
way to ensure tight coupling between the spatio-temporally
refined outputs at different times and improve framework ac-
curacy. We analyze the capability of the developed frame-
work by investigating its performance on an elastodynam-
ics problem. It is observed that the proposed framework can
successfully super-resolve (both in space and time) the low-
resolution PDE solutions while satisfying physics-based con-
straints and yielding high accuracy. Furthermore, the analysis
and obtained speed-up show that the proposed framework is
well-suited for integration with traditional numerical meth-
ods to reduce computational complexity during engineering
design.

1 Introduction
Accurate modeling of the dynamic behavior of nonlinear
systems is crucial for many industrial applications rang-
ing from microscale MEMS sensors to large-scale struc-
tural systems. Therefore, significant research is being done
to understand and resolve the complex physical phenom-
ena occurring within these dynamical systems at extremely
small spatial and temporal scales. This scientific pursuit of
capturing complex physical phenomena occurring at widely
varying spatio-temporal scales has led to the ever-increasing
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sophistication of the physical system’s governing Partial
Differential Equations (PDEs). For example, a PDE-based
model (Arora and Acharya 2020a,b; Joshi et al. 2020; Arora,
Zhang, and Acharya 2020; Arora 2019; Arora, Arora, and
Acharya 2022) capturing defects evolution in materials at
the nanoscale has been shown superior to conventional the-
ories for a wide range of applications. However, the mas-
sive data storage and computational expense requirements
to simulate such multi-physics coupled PDEs with high-
fidelity bring traditional numerical solvers to their limits.
Hence, fast and accurate techniques to perform these multi-
physics simulations at multi-scale are of utmost importance.

On the other hand, the recent advances in Machine Learn-
ing (ML) have led to the development of several data-driven
and Physics Informed ML models to solve PDEs occurring
in fluid (Sun et al. 2020; Rao, Sun, and Liu 2020; Jin et al.
2021) and solid mechanics (Frankel, Tachida, and Jones
2020; Arora et al. 2022; Shrivastava et al. 2022; Zhu, Liu,
and Yan 2021). However, issues ranging from its theoreti-
cal considerations (such as convergence, stability, accuracy,
and generalizability) to issues related to boundary condi-
tions, neural network architecture design, or optimization as-
pects still need to be fully resolved (Markidis 2021; Cuomo
et al. 2022). Therefore, hybrid strategies integrating physics-
informed ML with traditional approaches are emerging as
a promising option to tackle this computational challenge
of solving complex multi-physics PDEs (Arora 2021, 2022;
Gao, Sun, and Wang 2021).

To this end, in this research, we aim to investigate a two-
stage hybrid approach integrating ML and traditional ap-
proaches to obtain (reconstruct) solutions to spatio-temporal
PDEs. 1) In the first stage, low-resolution (LR) PDE so-
lutions are obtained by doing numerical simulations on a
coarse scale both in space and time (using large grid size
and timestep). This low-resolution solution with satisfactory
accuracy can be generated with a huge reduction in compu-
tational expense compared to solving PDE on a fine scale.
2) In the second stage, the spatio-temporal resolution of this
coarse-scale solution is enhanced using a physics-formed
deep learning-based framework. A significant advantage of
such ‘physics-guided resolution enhancement’ approach is
the reduced computational expense and data storage require-
ments during the scientific exploration phase, which will
significantly accelerate the process of scientific investiga-



tion and engineering design. This enhancement in resolution
will also be referred to as the upsampling or super-resolution
(SR) in this work.

The recent works involving spatio-temporal super-
resolution of physical systems (Ren et al. 2022; Es-
maeilzadeh et al. 2020; Fukami, Fukagata, and Taira 2021)
use labeled high-resolution (HR) ground truth data for
model training. Fukami et. al (Fukami, Fukagata, and Taira
2021) presents a purely data-driven SR framework, and
therefore the super-resolved fields may not satisfy the
physics-based constraints accurately. The works of Ren et al.
(Ren et al. 2022) and Jiang et al. (Esmaeilzadeh et al. 2020)
are ’almost data-driven’ in that the scaling coefficient of pre-
diction/data loss is chosen to be 20 times the coefficient of
physics loss in the total loss for optimal accuracy. In fact, the
errors are huge when HR-labeled data is not taken into ac-
count (purely physics-driven) (Esmaeilzadeh et al. 2020, see
Table 1). Moreover, the HR-labeled data is computationally
expensive to obtain. Therefore, its use during training com-
pletely negates the massive benefit of accelerating scientific
computing that ML models aim to achieve. In this research,
we present an end-to-end physics-informed deep learning-
based framework to enhance the spatial and temporal reso-
lution of coarse scale (both in space and time) PDE solu-
tions without requiring any HR-labeled data. In summary,
our main contributions are as follows:

1. We propose a novel and efficient physics-informed deep
learning-based spatio-temporal resolution enhancement
framework.

2. The framework consists of two trainable deep learning
modules independently responsible for spatial and tem-
poral upscaling of the coarse-scale PDE solution.

3. The physics based losses are implemented in a novel way
to ensure tight coupling between the spatio-temporally
refined outputs at different times and improve framework
accuracy.

4. Unlike other works (Esmaeilzadeh et al. 2020; Fukami,
Fukagata, and Taira 2021; Ren et al. 2022), the proposed
framework does not rely on the availability of any high-
resolution labeled data.

5. The effectiveness of the framework is tested by using
the low-resolution coarse grid simulation data as input as
opposed to using downsampled high-resolution labeled
data.

Organization. The remainder of this paper is organized
as follows: Section 2 briefly recalls the governing equations
of a general spatio-temporal PDE. Section 3 present the de-
tails of the framework architecture, data setup, and compos-
ite loss function. Towards the end, Section 4 presents the re-
sults that validate the developed framework and demonstrate
its effectiveness in super-resolving the solution fields for the
test problem discussed. Finally, conclusions and avenues for
further research are briefly discussed in Section 5.

2 Background
2.1 Governing equations
A typical spatio-temporal PDE governing the dynamical
systems can be written in the following form:

ż −F(z,x, t;x ∈ Ω) = 0, (1)

subjected to the initial and boundary conditions

I(z; t = 0,x ∈ Ω) = 0,

B(z; x ∈ ∂Ω) = 0.
(2)

In equations 1, 2, z denotes the system solution comprised
of m state variables, and ż denotes its time derivative. F
is the nonlinear functional of the polynomial and deriva-
tives terms of its arguments. Ω and ∂Ω denotes the phys-
ical domain and its boundary, respectively. Any additional
constraints which are inherently present in the system or re-
quired because of numerical methods, such as mixed finite
element methods, can be assembled into C(z) = 0.

Given a solution zc which is obtained by solving the
system of equations (1)-(2) at a coarse scale (large mesh
size and timestep), our objective is to enhance the spatial
and temporal resolution of the solution by using a physics-
informed deep-learning based method. The schematic of our
proposed framework is shown in Figure 1.

3 Methodology
Section 3.1 briefly outlines the physics-informed composite
loss (objective function) used during the framework’s train-
ing. We then present an overview of the “end-to-end” spatio-
temporal resolution enhancement framework in Section 3.3.

3.1 Objective function
We note that the framework proposed in this work is un-
supervised and therefore the composite loss function is ob-
tained only from the governing equations of the system - Ini-
tial conditions, boundary conditions, and PDEs. Following
(Arora 2022, Sec. IV), we impose the boundary conditions
in the ‘hard’ manner (exactly), thus eliminating the bound-
ary condition loss contribution from the composite loss. The
physics-informed objective function is then written as fol-
lows:

L = λ1

||ż −F(z, x, t)||1︸ ︷︷ ︸
PDE

 +

λ2 ||C(z)||1︸ ︷︷ ︸
Constraints

+ λ3 ||I(z)||1︸ ︷︷ ︸
I.Cs.

,

(3)

where ||A||1 denotes the mean absolute error (MAE) be-
tween each element in the quantity A and target 0.

We use a fourth-order finite difference scheme to evalu-
ate the spatial derivatives of the solution over the grid. For
time discretization, we use the Crank-Nicholson algorithm,
which has the virtues of being unconditionally stable and is
also second-order accurate in both space and time dimen-
sions.
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Figure 1: The figure shows the structure of the proposed framework. The input to the framework is a two-channel image of the
coarse-scale solution, and the final output of the framework is a (k+1) channel image of the spatio-temporally resolved solution.
The framework consists of a spatial and a temporal resolution enhancement module. The former performs super-resolution in
space, whereas the latter super-resolves in the temporal direction. The modules are trained independently.

3.2 Input and output for the framework

The input to the framework consists of tuples of LR coarse-
scale PDE solution It

c = {zt
c, zt+∆t

c } at the consecu-
tive timesteps t and t + ∆t, respectively. The outputs from
the framework consist of the spatially upscaled PDE so-
lution at the same timesteps {ẑt, ẑt+∆t} along with the
synthesis of the HR snapshots at (k − 1) intermediate
timesteps {ẑt+∆t

k , ẑt+2∆t
k , ..., ẑt+(k−1)∆t

k }. Therefore, the
framework produces spatially upscaled PDE solution at
(k + 1) timesteps referred to Ot. We refer to the scalar
k as the temporal upscaling factor and is given as the ra-
tio of the coarse-scale timestep to the fine-scale timestep
i.e. k = ∆tc

∆tf
. Similarly, the upscaling factor in the spatial

direction s is given as the ratio of the coarse to fine grid res-
olution, i.e. s = ∆xc

∆xf
.

3.3 Framework Architecture

The framework is composed of two trainable modules: the
Spatial resolution enhancement module and the Tempo-
ral resolution enhancement module, as shown in Figure
1. These two modules independently perform the super-
resolution in space and time, respectively. We observed
that this dual module approach which first performs super-
resolution in space and subsequently increases temporal res-
olution leads to better convergence and accuracy of the
super-resolved fields as is also observed in the data-driven
approach of Fukami et. al (Fukami, Fukagata, and Taira
2021).

A typical solution z of any dynamical system consists of
m state variables. Therefore, each module in the framework
consists of m deep learning models (with the same architec-
ture) that individually reconstruct each state variable; refer
to figure 2. These models, however, are coupled during the
training through the objective function (loss). Sections 3.3
and 3.3 discuss these spatial and temporal super-resolution
modules in greater detail, respectively.

Spatial resolution enhancement module Given a tuple
of LR snapshots at two consecutive time steps It =
{zt

c, z
t+∆t
c } for the state vector z, the spatial upscaling

module outputs the corresponding HR frames {ẑt, ẑt+∆t}
representing the enhanced spatial resolution of the input
state at the original time steps. Therefore, the input (output)
to this module consists of a two-channel image representing
the values of the LR (HR) state variables at time steps t and
t+∆t.

During training, we observe that for the successful evo-
lution of solution from initial conditions in both the output
channels, the PDE loss in (3) has to be implemented both
within an output and across outputs as highlighted in Figure
3. This coupling in the loss helps in mitigating the propaga-
tion failure mode (Daw et al. 2022) for this module.

Each model in the spatial upscaling module is built upon
the Residual Dense Network (RDN) proposed in (Zhang
et al. 2018), which has unique advantages for image SR over
other networks (Zhang et al. 2018, Sec. 4). We use 4 residual
blocks with 8 layers in each block and a feature channel size
of 32. The kernel size for convolution is set to be 3.

Temporal resolution enhancement module The tempo-
ral module enhances the resolution of the state variables in
time. The output of the spatial module serves as an input to
the temporal module. Therefore, the input is a two-channel
image representing the values of the HR state variables at
time steps, t, and t + ∆t. The module outputs an image
with (k+1) channels, representing the state variables at time
steps {t, t + ∆t

k , . . . , t + ∆t}. We note here that the inputs
to the temporal module still have the temporal discretization
error of the order O(∆t2). Therefore, the temporal module
also reconstructs the solution at the initial and the final times
t and t+∆t, respectively, to reduce this error to O

((
∆t
k

)2)
.

We make the following changes to the composite loss (3) for
the training of this module:
• Similar to the implementation of PDE loss in the spatial

module, the PDE loss for the temporal module is also
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Figure 2: The figure shows the structure of the spatial/temporal module. Each module consists of m deep-learning models
independently super-resolving the state variables {z1, z2, . . . , zm}. The models are, however, trained using a coupled loss
function.
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Figure 3: The figure shows the coupling between the predictions from the spatial resolution enhancement module while cal-
culating the time derivative in the physics-based PDE loss. The two dashed vertical boxes show state variables from different
outputs to calculate the time derivatives. Similarly, the two dashed horizontal boxes show the state variables within the same
outputs that are used to calculate the time derivative.

implemented both within an output and across outputs,
as highlighted in Figure 4.

• Since we reconstruct the outputs at initial and final
timesteps (t and t+∆t), we add a constraint loss between
these inputs and outputs, which helps in faster conver-
gence of the module.

For the sake of simplicity, the model architecture is simi-
lar to the spatial module except for the number of channels
in the output and the elimination of upsampling layer.

4 Experiment
In this section, we briefly discuss the problem setup, dataset
generation, and evaluation metric. We then evaluate the per-
formance of the developed framework by investigating its
effectiveness in enhancing the spatio-temporal resolution of
the coarse-scale solutions to an elastodynamics problem.
The results presented herein demonstrate the remarkable ac-
curacy of the network without requiring any HR-labeled
data, unlike all previous works.

4.1 Setup
We consider a mixed-variable elastodynamics system
widely used in structural engineering and seismologic ap-
plications. The governing equations of the system (in the
absence of inertia) under 2-d antiplane strain conditions are
given as follows:

v = u̇

∂σxz

∂x
+

∂σyz

∂y
=

ρ

µ
v̇

σxz = µ
∂u

∂x
; σyz = µ

∂u

∂y
,

(4)

where ρ is the material density, b is the body force per unit
volume, µ denotes the shear modulus of the material, and u
and v denote the displacement and material velocity (both
in the z direction), respectively. σxz and σyz denote the
nonzero components of the (symmetric) stress tensor σ. The
equations 4, along with the boundary and initial conditions
in the equations 5, define the governing equations of the sys-
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Figure 4: The figure shows the coupling between the predictions from the temporal resolution enhancement module while
calculating the time derivative in the physics-based PDE loss. The (two) dashed inclined boxes show state variables from
different outputs to calculate the time derivatives. Similarly, the four dashed horizontal boxes show the state variables within
the same outputs that are used to calculate the time derivative.

tem.

u(t) = ubc on ∂Ω,

u(t = 0) = u0 and v(t = 0) = v0.
(5)

In the above, u0 and v0 denote the known initial conditions
on u and v, respectively. ubc denote the known displacement
on the domain boundary ∂Ω. Without loss of generality, we
take v0 = ubc = 0 in this work. The initial condition for u
is u0 = sin(πx) sin(πy).

4.2 Generation of low-resolution input data
To evaluate the performance of the framework, we generate
the low-resolution input data for the problem setup presented
above in Section 4.1. We solve the governing system of
equations (4) for the non-dimensional values of stress, dis-
placement, and velocity, which amounts to setting ρ

µ = 1 in
(4). The equations are solved on a coarse mesh of 64 triangu-
lar elements (41 nodes and ∆xc ≈ 0.176) and coarse-scale
timestep ∆tc = 0.005 with finite element method (FEM) for
48 timesteps. The obtained coarse grid solution is then inter-
polated to a structured 32× 32 grid using the FEM interpo-
lation and is used as an input to the super-resolution frame-
work. For comparison, the HR ground truth data is obtained
by solving the same equations on a fine mesh of 64 × 64
nodes and ∆xf = .0158 with ∆tf = ∆tc

2 . This sets the spa-
tial and temporal upscaling factors to be s = 11 and k = 2,
respectively, for the test case discussed.

4.3 Evaluation metric
For any state variable α (one of u, v, σxz, or σyz), we de-
fine a full field error measure e to quantitatively measure the
discrepancy between the HR ground truth data αHR and the
framework predictions α̂ as follows:

e =
||αHR − α̂||L2

||αHR||L2

× 100. (6)

We note here that the HR ground truth data is only used for
comparison with the predicted outputs of the framework.

4.4 Training
The framework is implemented and trained using PyTorch.
The training strategy used in this work consists of two
stages: a) The spatial module is trained in the first stage,
which amounts to enhancing spatial resolution. b) The out-
puts from the trained spatial module are then used as input
to the temporal module during its training. The weights for
the spatial module are frozen during the second stage.

In both stages, we use Adam optimizer with a learning
rate of 4 × 10−4 for around 2000 epochs with a batch size
of 8 samples. As the training progresses, the learning rate
is adjusted using ReduceLROnPlateau scheduler with
patience set to 40. We use a sequential training data sam-
pler to respect the causal structure inherently present in the
spatio-temporal PDEs, which has been shown to improve
the accuracy of the physics-informed neural networks sig-
nificantly, refer (Wang, Sankaran, and Perdikaris 2022). We
use the scaling coefficients λ1 = 5, λ2 = 1, and λ3 = 10 in
this work.

4.5 Performance Evaluation
This section focuses on the performance evaluation of the
proposed framework. The low-resolution coarse-scale PDE
solution generated in Section 4.2 is used as an input to the
framework. In what follows, we compare the error measure
e for t ≥ 0.02 because the initial velocity condition is zero
in this work.

Figure 5a shows the error measure e for all the HR state
variables obtained from the framework. We note that the %
error e is less than 4% for all the state variables at all times
t ≤ 0.24. We also note that the framework exhibits poor
extrapolation capabilities as the errors become quite large
after t > 0.24. Figure 5b shows the error measure e for the
state variables when a simple bi-linear interpolation of the
low-resolution data is performed to upscale the solution. We
can see that the errors are relatively large for all of the state
variables.

Figure 6 shows the super-resolved state variables obtained
from the framework at a particular time t = 0.14. We can
notice that the super-resolved fields are indistinguishable



(a) Proposed framework. (b) Bi-linear interpolation.

Figure 5: The figure shows the error for the solution fields of elastodynamics at different time steps after super-resolution
using the proposed framework, Figure 5a, and using bi-linear interpolation, Figure 5b. The super-resolution framework is
highly accurate as compared to simple bi-linear interpolation. The framework’s accuracy suffers beyond time, t = 0.2438
(extrapolation region), as the framework is trained till t = 0.2438. The high error in the extrapolation region suggests that the
framework is capable of producing high-accuracy results for super-resolution within the convex hull of training set.

from the HR ground truth data. At the same time, the sim-
ple bi-linear upscaling of the LR input data can be seen to
significantly differ from the ground truth reference data.

Therefore, we conclude that the proposed framework suc-
cessfully enhanced the spatial and temporal resolution of the
solution by a factor of 11 and 2, respectively.

4.6 Speed-up

Next, we calculate the speed-up obtained using the proposed
framework to upsample the coarse-scale solution compared
to obtaining the fine-scale solution using FEM. The FEM
calculations are performed on a single-core AMD EPYC
7742 Processor. For the same simulation end time, the
coarse-scale simulation (∆xc ≈ 0.176 and ∆tc = 0.005)
takes 0.033 seconds, whereas it takes 4.27 seconds to run the
fine-scale simulation (∆xf ≈ 0.0158 and ∆tf = 0.0025).
The above numbers are averaged over 10 runs of the en-
tire simulation. They do not include the time taken for mesh
generation, node numbering, memory allocation, data I/O,
or any other bookkeeping required by FEM.

On the other hand, after training, the inference time (aver-
aged over 100 inferences) for the spatial and temporal mod-
ules are 0.015 and 0.017 seconds, respectively. Therefore,
using the proposed framework, it takes around 1.569 sec-
onds (including time taken for the coarse-scale simulation)
to obtain the fine-scale PDE solution for the same simulation
end time. Thus, we obtain a speed-up factor of around 2.72
for the (relatively) simple test case discussed here. These in-
ferences are performed on an NVIDIA Tesla V100-SXM2
GPU with 32 GB RAM.

We emphasize here that the speed-up factor strongly de-
pends on the complexity of the problem (linear vs. nonlin-
ear) and the framework’s spatial and temporal upscaling fac-
tors.

5 Conclusion

In this work, we presented a novel unsupervised physics-
informed machine learning framework, a first in the litera-
ture, that:

• enables spatial and temporal upscaling (resolution
enhancement) of coarse-grained solutions to spatio-
temporal PDEs while ensuring that the (upscaled) out-
puts satisfy the governing laws of the system.

• easily allows imposition of any additional constraints
(PDE or algebraic) in the framework.

• is generalizable to non-rectangular domains by using el-
liptic coordinate transformation as outlined in (Gao, Sun,
and Wang 2020).

• is amenable to scalability to clusters with multi-gpu
nodes using DistributedDataParallel function-
ality in PyTorch (Li et al. 2020) functionality for work-
loads that require substantial computational resources.

We demonstrated the framework’s application to an elas-
todynamics problem under anti-plane strain conditions. The
framework successfully enhanced the spatial and tempo-
ral resolutions of the coarse-scale input fields by a factor
of s = 11 and k = 2 in the space and time directions,
respectively, while satisfying the physics-based constraints
and yielding great accuracy (error ≤ 4%).

In the future, we aim to study the framework’s application
on a wide range of physical applications in fluid mechanics
and compare the performance of the current framework with
other super-resolution works (although supervised) in the lit-
erature (Ren et al. 2022; Esmaeilzadeh et al. 2020). Another
interesting line of research to pursue would be the addition
of ConvLSTM (Shi et al. 2015) in the temporal module to
improve the predicting capabilities of the framework beyond
the convex hull of the traning set.
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Figure 6: The figure shows the snapshot of the elastody-
namics’ solution fields at a time step. The LR input and
HR Ground-truth are the coarse-scale and fine-scale solu-
tion fields obtained using the finite element method. For a
given LR input, the reconstructed solution from the frame-
work is highly accurate compared to the bi-linear interpola-
tion method.

Research Data
The low-resolution simulation data used in this work
has been generated using Fenics (Alnæs et al. 2015).
The source code for the proposed framework and
the dataset used in this research can be found at
https://github.com/sairajat/SuperResolutionDynamics upon
acceptance of this paper.
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