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Abstract

Learning inverse kinematics of humanoid and collaborative
robots, which have inherent kinematic redundancy, is a chal-
lenging problem due to its multivalued nature. Since these
robots hardly obey Pieper’s recommendation (Pieper and
Roth 1969), solutions to the inverse kinematics problem can-
not always be obtained analytically. Recently, Invertible Neu-
ral Networks (INNs) have found success in solving such ill-
posed inverse problems. In this work, we empirically show
that density constraints on the latent variables while training
INNs could be replaced by an ex-post density estimation step.
The advantage is twofold; the latent variables could have an
arbitrarily complex distribution, and posterior mismatch is no
longer an issue. Through experiments on learning the inverse
kinematics of planar redundant serial robotic manipulators,
we validate the efficacy of our approach.

1 Introduction
Robots, especially humanoid and collaborative robots, with
kinematic redundancy may not have a guaranteed closed-
form inverse kinematics solution if they do not follow
Pieper’s recommendation (Pieper and Roth 1969). Alterna-
tively, data-driven approaches could be used for such robots.
However, inverse kinematics is an ill-posed problem, i.e.,
different joint space configurations might result in the same
pose of the end-effector.

Recently, Invertible Neural Networks (INNs) have found
success in solving inverse problems (including inverse kine-
matics) (Ardizzone et al. 2019). The key idea here is to use
a bijective function to model the forward kinematics process
and then use the inverse of the function to model the inverse
kinematics process. INNs are invertible by construction and
thus, can approximate such functions. The information loss
due to the forward process is prevented by using additional
latent output variables (z). The combination of a supervised
learning loss (to accurately model the forward kinematics
process) and a maximum mean discrepancy loss (to enforce
the additional latent output variables to follow a known prior
p(z)) is used to train these networks.

However, this approach has two significant drawbacks.
First, for the sake of simplicity, p(z) is assumed to be the
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standard normal distribution. As a consequence, latent vari-
ables are not correlated, and thus, we compromise with flex-
ibility. Second, in practical scenarios, z′s distribution never
completely matches the assumed prior, p(z). This situation
is called posterior mismatch. As a consequence, we may
sample invalid latent vectors that could produce incorrect
solutions to the inverse kinematics problem. The work in
(Ghosh et al. 2020) alleviates similar issues in Variational
Autoencoders (VAEs) using ex-post density estimation. Es-
sentially, they make the autoencoder completely determin-
istic and estimate the density of the latent variables post-
training. We hypothesize that a similar modification could
improve an invertible neural network’s performance on in-
verse problems.

Rest of the paper is organized as follows. First, we give
an overview of related work (Sec. 2). Next, we formally de-
fine the inverse kinematics problem and cast it as a learning
problem using INN with ex-post density estimation (Sec. 3).
We then describe the experimental setup (Sec. 4). Thereafter,
we present and analyse the results for planar serial robotic
manipulators (Sec. 5). Finally, we conclude the paper and
highlight future research directions (Sec. 6).

2 Related Work
Analytical and Numerical Methods For non-redundant
robots (e.g., most of the industrial robots), the inverse
kinematics problem has closed-form solutions in terms of
the atan2(.) function. These solutions can be obtained an-
alytically. However, for robots with kinematic redundancy,
numerical methods (e.g., the Newton-Raphson method)
are used in practice, but these methods can have very slow
convergence.

Conventional Data-Driven Approaches (Jordan and
Rumelhart 1992) train two neural networks such that the
composition of the two is an identity function. The first
network tries to approximate forward kinematics, while
the second neural network tries to approximate inverse
kinematics. However, jointly training these networks to-
gether is very unstable. In (Bócsi et al. 2011), the authors
pose inverse kinematics as a structured output prediction
problem. They use One Class SVM (OC-SVM) to build an
inverse kinematics solver by estimating the joint density
of the training data. However, their approach has very
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Figure 1: Overview of the proposed method.

high sample complexity and is local in nature. For a more
comprehensive review, the reader is directed to (Aristidou
et al. 2018).

INN-Based Solver for Inverse Problems The work in
(Ardizzone et al. 2019) analyses several inverse problems
through the lens of INNs. They use a bidirectional training
procedure to train these networks. The forward process is
augmented with additional latent output variables z to make
it bijective. z is enforced to follow the standard normal
distribution by minimizing maximum mean discrepancy
(MMD). At test time, a latent vector is sampled from the
known prior and fed to the INN for solving the inverse
problem.

Ex-Post Density Estimation In (Ghosh et al. 2020), the
authors address posterior mismatch in variational autoen-
coders (VAEs) by replacing the probabilistic component
with an ex-post density estimation step. Their approach
generates samples with improved quality.

3 Methodology
The position of the links of a manipulator can be specified
by an n-dimensional joint vector (θ). The space of all such
joint vectors is known as the joint space. The position and
orientation (x) of the end-effector is measured in the carte-
sian space. Forward kinematics is modelled by a function f
such that x = f(θ). Thus, f−1(.) models inverse kinemat-
ics. For redundant robots, f−1 is not a unique relationship
between the cartesian space and the joint space. Thus, we
call it an ill-posed problem.

To model the kinematics using an INN (gϕ(.)), the for-
ward kinematics function f is augmented with additional la-
tent output variables (z), i.e., [x, z] = f(θ).

We construct the INN using a composition of RealNVP
(Dinh, Sohl-Dickstein, and Bengio 2017) blocks. Given an
input u, a RealNVP block splits it into two halves, u1 and
u2, and modifies these halves as follows:

v1 = u1 ⊙ exp(s2(u2)) + t2(u2)

v2 = u2 ⊙ exp(s1(v1)) + t1(v1)

Each such block is invertible by construction, which makes
the INN invertible as well, since a composition of invertible
functions is itself an invertible function.

Given a training set {(θ(i),x(i))}Ni=1 of N examples
generated using the known forward kinematics process of
the system, we learn the kinematics using the INN in two
steps.

(Step 1: Training) Unlike (Ardizzone et al. 2019), we
train the INN by optimizing a combination of a supervised
learning loss (forward kinematics should be accurately
modelled), Ls, and a regularization loss on z (the val-
ues should not explode), Lr. In particular, we choose

Ls =
∥∥∥f(θ)− gxϕ(θ)

∥∥∥2
2

and Lr =
∥∥∥gzϕ(θ)∥∥∥2

2
. An important

thing to note here is that we do not enforce any constraint on
z’s distribution. As a result, we need not make a trade-off
between the expressivity of the INN (due to the choice of
p(z)) and the computational cost of training it.

(Step 2: Ex-Post Density Estimation) Next, we fit a density
estimator q(z) to {z = gzϕ(θ

(i)) | i = 1 . . . N}. In this
work, we fit a simple density estimator: a full covariance
Gaussian distribution.

4 Experimental Setup
Datasets For a comprehensive evaluation of our approach,
we evaluate it on three planar serial robotic manipulators (4,



5, and 6 degrees-of-freedom, respectively), all having kine-
matic redundancy. The forward kinematics process for such
a manipulator with n degrees-of-freedom (DOF) is given by
the following equations:

y =

n∑
i=1

lisin(

i∑
j=1

θj)

x =

n∑
i=1

licos(

i∑
j=1

θj)

Here, li denotes the length of the ith link. The end-effector’s
position is (x, y). To inject kinematic redundancy, we do
not consider the end-effector’s orientation. For each ma-
nipulator, the dataset is constructed using Gaussian priors
xi ∼ N (0, 0.5). Each link has length 0.5 unit, except the
last link which is 1 unit long. 220 examples are generated
for each manipulator. Out of these, 104 examples are kept
aside for validation and testing each, and the remaining
examples are used for training.

Model Architecture The INN is constructed by stacking 6
RealNVP blocks. Between each consecutive pair of blocks,
the transformed vector is permuted in a deterministic
manner. Each parameter for affine transformations in a
block is determined using a neural network with 2 hidden
layers (512 neurons in each layer) and ReLU activations.

Training Setup We perform all experiments on a Tesla
K80 GPU. To check the impact of using ex-post density
estimation, we train two INNs for each task. INN 1 is
trained using the bidirectional training procedure described
in (Ardizzone et al. 2019). INN 2 is trained by optimizing
Ltotal = Ls + Lr, and uses a full covariance Gaussian
distribution for ex-post density estimation.

Evaluation Metrics For each example in the test set, we
sample 10 latent vectors from p(z) and report the root-
mean-square error (RMSE) on the inverse kinematics task.
p(z) is N (0,1) for INN 1, and q(z) for INN 2.

5 Results and Analysis

DOF RMSE (INN 1) RMSE (INN 2)

4 0.14 0.08
5 0.13 0.09
6 0.16 0.08

Table 1: RMSE scores for INN 1, and INN 2.

It is evident from Table 1 that ex-post density estimation per-
forms better than bidirectional training. These results are in
line with (Ghosh et al. 2020), in which VAEs trained with
ex-post density estimation generate samples with improved
quality.

6 Conclusion and Future Work
We cast the inverse kinematics problem for redundant robots
as a learning problem using invertible neural networks with
ex-post density estimation. We have shown that our ap-
proach performs better than solvers built using a bidirec-
tional training procedure in solving the inverse kinematics
task. As of now, we have implemented our approach for
planar serial robotic manipulators having kinematic redun-
dancy. In future, we aim to extend our approach by consid-
ering the complete spatial kinematics of real robots.
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Peters, J. 2011. Learning inverse kinematics with structured
prediction. In 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 698–703.
Dinh, L.; Sohl-Dickstein, J.; and Bengio, S. 2017. Density
estimation using Real NVP. In International Conference on
Learning Representations.
Ghosh, P.; Sajjadi, M. S. M.; Vergari, A.; Black, M.; and
Scholkopf, B. 2020. From Variational to Deterministic Au-
toencoders. In International Conference on Learning Rep-
resentations.
Jordan, M. I.; and Rumelhart, D. E. 1992. Forward models:
Supervised learning with a distal teacher. Cognitive Science,
16(3): 307–354.
Pieper, D.; and Roth, B. 1969. The Kinematics of Manipula-
tors Under Computer Control. In Proceedings of the Second
International Congress on Theory of Machines and Mecha-
nisms, volume 2, 159–169. Zakopane, Poland.


