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Abstract

The advancement of technology, improvement of network
infrastructures, and wide availability of internet open up
the door of new opportunities to perform on-device infer-
ence. Realizing the potential of such advancement, Federated
Learning (FL) was invented that facilitates the formation of a
powerful model without exposing user data. While success-
ful, it does not consider the combinational case, where the
selected FL agents independently craft their local model with
heterogeneous architecture and perform computational tasks
based on their available resources. In the original FL model,
all agents need to agree on a uniform model architecture and
are assigned a uniform computational task. However, in a
real-life resource-constrained FL setting, agents may not be
interested to share their local model architecture details due to
privacy and security concerns. Also, the heterogeneous local
model architectures cannot be aggregated together on the FL
server following the traditional approaches. Moving forward,
we may observe straggler agents due to resource-constrained
environments, such that any FL agent may find a task as com-
putationally challenging that can prolong the model conver-
gence. To address the above-mentioned challenges regarding
agent’s local model and resource heterogeneity, we propose
an FL framework, FedMDP that can effectively handle feder-
ated agents possessing nonidentical local model structure as
well as variant local resources using knowledge distillation
and dynamic local task allocation techniques. We tested our
framework on MNIST and CIFAR100 dataset and observed
significant improvement in accuracy in a highly heteroge-
neous environment. By considering 10 uniquely designed
model of the agents, we achieved 15% gain on average com-
pared to the accuracy of the traditional learning methods and
observed a few percent lower accuracy compared to the case
if the agents’ local datasets were pooled and made available
for all the network agents.

Introduction
Federated Learning (FL) is a privacy preserving distributed
machine learning (ML) scheme that does not require to ob-
tain any user’s data in a centralized location, instead, a global
predictor model is constructed that is learned through the ag-
gregated knowledge of participating users (1). FL is partic-
ularly useful for the applications where the user’s data are
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sensitive and user do not want to share those due to privacy
concerns. The FL applications have become widespread that
are ranges from healthcare, industrial engineering, to user’s
input prediction on mobile keyboard.

The state-of-the-art Federated Averaging (FedAvg) (1) al-
gorithm considers an FL server with a participation of n
users that jointly collaborate to construct a global model
without sharing any potentially privacy sensitive data. Each
user generates a local model based on its data and shares
the model weights with the FL server. The FL server acts
as a central aggregator that aggregates the local model up-
dates of the users and shares the updated global model’s
weights. Each user learns from the global model and tunes
up their local model accordingly. The iterative process be-
tween the FL server and the users continues until conver-
gence. On top of preserving privacy, FL provides several
other benefits such as autonomy (2), security (3) and effi-
ciency (4) because of its on-device training and distributed
decision-making. The authors in (5) discussed the decentral-
ization mechanism of FL and analyzed how it is effective
than gossip learning. Despite the benefits, the FL process
faces many challenges among which heterogeneity is one the
major concerns and appears throughout the learning process.
The participated agents in the FL process may have hetero-
geneous resources in terms of their computational power and
bandwidth that was partially solved by the prior works us-
ing asynchronous FL technique and further refined through
active sampling (6; 7). However, when we have a majority
of the agents as stragglers, then asynchronous FL or active
sampling failed to work effectively (13). Besides, statistical
heterogeneity problem, i.e., nonuniform distribution of data
among the agents can also be observed in an FL environment
(8; 9). As a result, the agent’s local update can be dispersed
that may prolong the model convergence. Moreover, the par-
ticipated FL agents may also possess heterogeneous local
models that may cause issues while performing aggregation
of the FL server following the state-of-the-art FL process.
Some of the FL agents may have simple model while some
agents contain complicated and large model architecture. It
is because a agent may have sufficient resources to gener-
ate a large model while another agent may not be capable
to process its local data and generate such a large model.
The original FL work assume that the FL agents agree on
a particular model architecture and all local models as well



as global model follow that design. However, if we consider
that from real-world setting, then any agent may have desire
to construct their own unique model. Such situations can be
arrived in areas like supply chain, health care, AI services,
and finance. For instance, when several department of a sup-
ply chain company collaborate without sharing private data,
they can craft their own model as per distinct specification.
Such supply-chain company would not like to reveal their
models because of privacy, and security concerns. Besides,
we can consider AI-enabled chat bots that are used for cus-
tomer service and different companies may have dozens of
such service bots. Each service bots may have to deal with
different customers and solves variant tasks. It would be
beneficial if knowledge of one bot can be shared with oth-
ers without compromising independency and privacy. Here
comes the motivation of FL that preserves privacy though
on-device model training and enables each device to learn
global knowledge independently. However, one of the core
challenges that FL faces is statistical heterogeneity and one
unsophisticated way to tackle the statistical heterogeneity is
to allow individual model for each agent. Different frame-
works, e.g., meta-learning (10), transfer learning (11), and
multi-task learning (12) proposed different approaches to
handle statistical heterogeneity for non-IID data with ac-
ceptable performance; however, their approaches need to
perform model customization of the agents up to a certain
level. So, instead of centralizing control over agents’ mod-
els, i.e., customizing agents’ models, a mechanism that can
enable full model independency can completely tackle the
issues of statistical heterogeneity. The authors in (23) pro-
posed an FL model, FedMDR based on a weighted geomet-
ric median, which is resilient to the corrupted model injec-
tion. The authors in (17; 18; 19; 20) also proposed differ-
ent FL knowledge distillation technique to handle hetero-
geneous agent model but none of the approaches are effec-
tive while applying in a resource-constrained environment.
Another challenge of FL method is systems heterogeneity
and it becomes critical when we apply FL in a resource-
constrained IoT environment (13). According to the tradi-
tional FL method, the task publisher assigns a uniform task
to all the selected agents. However, the agents’ resources
may be limited or heterogeneous and all the selected agents
would not be able to perform the assigned task. As a con-
sequence, the FL server may need to wait for a long time
for getting update from the straggler agents and it may pro-
long the overall model convergence. According to the au-
thors of (1; 14), one solution is to drop the straggler agents
or not selecting them during model training. For instance,
the authors in (22) designed a federated edge learning frame-
work that can select a subset of edge devices as participants
by analyzing the downlink channel conditions. However, if
the majority of the selected agents are stragglers, then we
may have only a few active agents that can significantly re-
duce the model performance, or some straggler agents may
have higher volume of data (15). Beyond model and systems
heterogeneity, diverge local model update from the agents
is also an issue of federated networks that can be mainly
occurred due to false model injection (16). The authors in
(21) proposed an FL model, FedMax that can mitigate com-

munication overhead by applying a technique of restricting
activation-divergence of the participated agents. However,
they did not consider the straggler effects due to resource-
constrained agents. The core research question that we try
to address in this paper is how we can carry out FL pro-
cess when the agents have heterogeneous model architec-
tures which is blackbox to others, and the federated net-
works have a large number of resource-constrained agents
that could become stragglers or can infuse false model dur-
ing global model update.

Contributions
In this paper, we presented our developed an FL frame-
work, FedMDP that can be effectively applied in a highly
heterogeneous resource-constrained environment. Our pro-
posed framework can be applied in such a FL setting, where
the network agents possess unknown model architectures
and the participated agents are resource-constrained devices.
We propose to use transfer learning and knowledge distilla-
tion to develop a universal framework that enables feder-
ated learning when each agent owns not only their private
data, but also uniquely designed models and heterogeneous
resources. We develop a module that translates knowledge
between participants. To this end, We enable variable com-
putational tasks for the participated agents that can signif-
icantly mitigate the straggler effects by considering every
little computational tasks performed by the agents.

Proposed Approach
Problem Definition
We assume that there are n number of agents in an FL
environment. Each agent p owns a small labeled dataset
Dp := {(xp

i , yi)}
Np

i=1 and the dataset does not need to be
drawn from the similar type of distribution. We considered a
large public dataset D0 :=

{(
x0
i , y

0
i

)}N0

i=1
that is resided on

the server and all FL agents can access that. We enable each
user to independently design its own model fp that is used
to perform an assigned computational task. Therefore, each
agent may have heterogeneous model architectures. Unlike
traditional FL methods,, we aim to preserve agent privacy
moving one-step forward by not sharing even the hyper-
parameters of the agents. Therefore, a agent model infor-
mation is not be known to anyone and on top of that, the
hyper-parameters of the agent models are not exposed. It
would protect the FL process from leaking sensitive infor-
mation due to void knowledge about agent model architec-
tures. Now, the resource-constrained FL agents may struggle
to carry-out learning process if the assigned computational
task is too overwhelming. That could result in slow learn-
ing process and a majority of such slow learning agents can
prolong the model convergence time. We can eliminate that
issue by assigning computational tasks among the agents
based on their resource-availability. On the whole, the main
goal of this paper is to develop an FL model that improves
the performance of each agent’s model fp using publicly ac-
cessible data D0 as well as on-device data Dp, and remove
the straggler effects by assigning computational tasks based
on the agent resources.



Figure 1: The working process of Federated Averaging and Federated Distillation. In Federated Averaging, training information
are transferred between server and agents via model parameters. In Federated Distillation approach, the similar information is
shared via soft-label predictions Y pub by the agents on a publicly shared data set Xpub.

Proposed Approach
Our proposed FedMDP framework has three phases. In the
first phase, we leverage the federated distillation technique
by translating the local knowledge. In the second phase,
we enable variable local computational tasks based on the
agents’ resources. Finally, on the third phase, we integrate
the distillation technique and dynamic task allocation tech-
nique to handle model and system heterogeneity of the net-
work agents.

Leveraging Federated Distillation Technique The key
to handle model heterogeneity of the FL agents is commu-
nication. In particular, we need to design a translation proto-
col that enables interpreting the knowledge of a local model
that is understandable to the server and to its peers. We con-
sider that each agent has a private dataset with a uniquely
designed local model. To carry-out FL process, each agent’s
local model needs to translate to a standard format. To trans-
late the knowledge of the local models, we propose to em-
ploy knowledge distillation technique, where the smaller lo-
cal models are trained based on the large-sized public dataset
residing on the server. That means the translator will be de-
veloped using knowledge distillation technique. The cen-
tral server is mainly responsible for collecting the trans-
lated knowledge and spreading a consensus across the FL
network. Further, the agents share their output class scores
which is evaluated considering the agent’s performance on
the public dataset.

At first, each participated federated agents generates a
model using its local data. Then each agent computes class
scores on the public dataset and shares with the server. The
server generates an aggregated class scores that are received
from all the agents. That aggregated class score is the lat-
est consensus for the public dataset. For the next iteration
round, each agent downloads the latest consensus and trains
its model based on the public dataset. After that, each agent
retrain its local model utilizing its private data and computes
an updated class score for the public dataset. Each agent

again shares its updated class score and the server generates
a latest consensus. The server-agent interaction continues
until the consensus class score reach to a target. The working
procedure of federated distillation technique is explained be-
low: At the starting of each federated distillation round, the
FL server selects a subset of interested agent for the training
process and each selected agent can synchronize with the
server by downloading the latest soft-labels Y Pub (aggrega-
tion of all previously participated agents soft-labels) on pub-
lic dataset. Each selected agents update their models through
model distillation technique. The publicly available dataset
and downloaded latest soft-labels are used to generate a dis-
tilled model on each agent side. Each agent train the dis-
tilled model by applying its own-device local data and gen-
erate an updated local model, i.e., each agent learns from the
global knowledge. After that, the local model’s class scores
on the public dataset are generated. Each agent shares the
latest soft-label or class score with the FL server. The server
performs aggregation on all the collected soft-labels from
the agents and computes an aggregated soft-labels Y Pub for
the next communication round.

Enabling Partial Computational Tasks In a resource-
constrained FL environment, each agent may not be able
to perform a given computational task. If we consider the
conventional FedAvg (1) algorithm, then an uniform task
is assigned to all the selected agents. However, the selected
agents may not be homogeneous in terms of their resources
(e.g., model architecture, processing power, memory, band-
width). As a consequence, the majority of the agents would
become stragglers during a training process and model con-
vergence would be prolonged. The straggler issue can be
observed in the distillation approach, particularly, when a
agent applies a distilled model on its private data and gen-
erates a new local model (Step 3 in Section ). Therefore, it
is not reasonable to assign a same computational tasks to
all the selected agents. Instead of that, enabling dynamic as-
signment of the local computational tasks by analyzing the



agent’s resources can be effective for a resource-constrained
FL environment. Allowing a flexible amount of work helps
to solve local objectives inexactly and assists to tune up the
number of communication vs. local computations. While too
many local epochs can overfit the model, a smaller number
of local epochs increases communication overhead as well
as convergence time (24). Therefore, it is required to set
local epoch through proper tuning to ensure robust conver-
gence. We incorporate a generalization of FedAvg algorithm
that entitles the straggler agent to perform partial amount
of works instead of the whole task. We can allow partial
works for our federated agents that are selected through
trust and resource-aware strategy and we can define the ϕi

p
-inexactness for federated agent p at training round i:
Definition 2

(
φi
p -inexact solution ). Let us consider

a function Gp (w;wi) = Fp(w) + β
2 ∥w − wi∥2 , and

φ ∈ [0, 1], we call w∗ is a φc
k -inexact solution of

minw Gp (w;wi) if ∥∇Gp (w
∗;wi)∥ ≤ φi

k ∥∇Gp (wi;wi)∥ ,
where ∇Gp (w;wi) =∇Fp(w) + β (w − wi) .

Here, φi
p determines how much local computation is

needed to perform by the device p in communication round
i to solve local problems. That means, φi

p is the representa-
tion of the variable local iterations of the agents. The sys-
tems heterogeneity can be handled by relaxing the φi

p -
inexactness. In Figure 1, we presented a conceptual visual-
ization of allowing partial amounts of work to be performed
by 3 heterogeneous agents. From the figure, we can see that,
agent 1 and n are performing 30% and 48% of the overall
tasks due to resource-limitations while the second agent is
performing the whole task because of its available resources.
If we explain it in more simplified way, then let consider that
the task publisher expects 100 local epochs to be performed
by all the selected FL agents. However, due to resource-
constraint issues, some of the agents may not be able to per-
form 100 local epoch for generating their local models. For
such a case, the weak agents are allowed to perform lower
number of local epochs, e.g., the first and forth agents need
to perform only 30 and 48 local epoch if the overall compu-
tational task is 100 local epochs for that training round.

Figure 2: Handling model heterogeneity and systems hetero-
geneity of federated agents through our proposed approach.

Integrating Federated Distillation and Dynamic Local
Task Allocation After leveraging federated distillation for
translating local knowledge and enabling dynamic local
task allocation to handle straggler agents, we propose an
FL framework by integrating both of them which is capa-
ble to handle model and system heterogeneity. We graphi-
cally represented our proposed FedMDP framework in Fig-
ure 2. From that figure, we can see the agents hold vari-
ant resources in terms of their available memory, proces-
sor, bandwidth and battery life, and possess heterogeneous
model architectures (e.g., CNN 128 256, CNN 64 128 192,
CNN 128 384, etc.). Each agent performs variable compu-
tational task as per their resources (e.g., 0.3, 1.0, 0.48) and
generates a local model, After that, each local model com-
pute a class score on the available dataset and share that
with the FL server. On the server, we have a translator that
aggregates the generated class score that holds the overall
feedback of the participated network agents. To reveal more
technical insight, we presented the details of our FedMDP
framework in Algorithm 1.

Algorithm 1: FedMDP Framework for enabling
FL for heterogeneous systems and heterogeneous
models. Here, P denotes the selected agents for FL
process.

1 Input: Public dataset D0, private datasets DP ,
independently designed model fP , k = 1 . . .m.

2 Output: Trained model fP .
3 Registration: Each interested agent, Ia commits

registration.
4 Initialize set timeout ti, and select a set of agent, P

for training
5 Transfer learning: Each P trains fP to convergence

on the D0 and then on DP .
6 for i = 1, 2 . . . do
7 Communicate: Each P computes the class scores

fP
(
x0
i

)
on the public dataset, and transmits the

result to a central server
8 Aggregate: The server computes an updated

consensus, which is an average
f̃
(
x0
i

)
= 1

m

∑
P fP

(
x0
i

)
9 Distribute: Each P downloads the updated

consensus f̃
(
x0
i

)
10 Each P finds a wi+1

P which is a φi
k -inexact

minimizer of: wi+1
P = FP(w) +

β
2

∥∥w − wi
∥∥2

and determines maximum feasible number of
local epochs, EP

par

11 Digest: Each P trains its model fP to approach
the consensus f̃ on the public dataset D0

12 Revisit: Each P trains fP on DP for the
determined feasible local epochs, EP

par

Here, we consider a public dataset D0 (which is avail-
able to all federated agents), private datasets (which is pos-
sessed by each agent and may vary from agent to agent), and



individual agent’s model architecture as input (line 1). The
output that we expect for each agent is a trained model fP
that learns from the global knowledge and on-device data
(line 2). Initially, each agent needs to register itself to join
in a network (line 3). After that, training time window, and
number of participated agents are initialized (line 4). Each
agent trains its local model fP to convergence on the public
dataset D0 and then on its private dataset DP (line 5). On
each communication round i, each agent generates a score
by classifying all the sample of the public dataset D0 and
shares the class score with the FL server (line 6-7). Upon
receiving class scores from all the participated agents, the
server performs aggregation on the class scores and gener-
ates a consensus that reflects the cumulative knowledge of
all the participated agents (line 8). The latest consensus is
shared with all the participated agents and each agent down-
load that updated consensus f̃

(
x0
i

)
(line 9). After that, each

participated agent exploits its local solver to determine in-
exact minimizer φi

P for solving its objective function, i.e.,
the number of local epochs that is viable to perform locally
in order to evaluate the class score (line 10). Through on-
device model training, each agent approach towards consen-
sus f̃ for public dataset D0 (line 10). Finally, each agent P
train its local model fP on its private dataset DP for the de-
termined feasible local epoch, EP

par.

Experimental Evaluation
We perform the evaluation of our proposed FL framework
in two different settings. In the first test experiment, we con-
sider the MNIST as the public data and a subset of FEM-
NIST as the private data. We prepare i.i.d. simulation set-
ting by randomly selecting samples from FEMNIST as the
private dataset of the agents. For non-i.i.d. case, each par-
ticipated agent is given only the letters written by a writer
(instead of giving handwriting of all writers), and the agent
need to classify letters of all writers during testing period.
In the second test experiment, we consider CIFAR10 as the
public dataset and CIFAR100 as the private dataset, which
possesses 100 subclasses with a 20 superclasses, e.g., leop-
ard, tiger, wolf, bear and lion. The main prediction task for
the second experiment is to classify image samples into cor-
rect subclasses while in the non i.i.d. case, each participated
agent holds image samples of one subclass from every super-
class, and that agent needs to classify the data that are from
other subclassess of every superclass. For instance, an FL
agent who has seen leopard during on-device model train-
ing is assigned task to classify tiger, wolf, bear, or, lion. The
knowledge sharing mechanism of the FL process makes it
possible to predict unforeseen events or objects.

In our FL simulation setting, we consider 10 FL par-
ticipants that has unique convolutional neural networks
(CNNs). The CNNs differ in terms of number of layers and
number of channels. We considered heterogeneous model
architectures (layer, output shape, and number of param-
eters) of the FL agents, i.e., each agent has uniquely de-
signed model architecture. Now, if we want to aggregate
the heterogeneous model architectures, then the traditional
FL methods (which performs weighted average of the lo-

cal model) would fail to generate a global model. To tackle
such issues, initially, the participants are trained based on the
public dataset until they reach a target convergence. Then,
each participant carries-out on-device training on the private
dataset. After that, the participants shares the output class
scores on the public data and the server generates an aggre-
gated consensus on the labels of the publicly available data.
The aggregated consensus is shared with the participants and
they tune-up their model accordingly. We evaluated the pre-
trained accuracy of the agents considering MNIST and CI-
FAR100 dataset. For MNIST dataset,we set up three convo-
lutional layer filters and a dropout rate, and observed an ac-
curacy of above 95% for all 10 participated agents (Table 1).
In turn, For CIFAR100 dataset, we set up four convolutional
layer filters and a dropout rate, that gives us an accuracy
of above 72% for all 10 participated agents (Table 2). We
simulated the model accuracy for MNIST IID dataset by not
considering any partial works and we can observe how some
of the agents’ performance degrades due to straggler effects
(see Figure 3(a)). However, leveraging our proposed Fed-
MDP model (which selects effective agents and also allows
partial works) generates an effective global model that helps
every agent including the stragglers to improve their local
model (see Figure 3(b)). Further, we simulated the model
accuracy for MNIST non-IID dataset by again not consider-
ing any partial works and we can observe how some of the
agents’ performance becomes even worse due to straggler
effects in non-IID setting (see Figure 4(a)). However, such
performance degradation are effectively handled by our Fed-
MDP model which can deal with statistical heterogeneity
and can scale up any diverse local model update (see Figure
4(b)).

Table 1: Agent pre-trained accuracy for MNIST dataset.

Model
Three Conv. Layer Filters
n1 —n2 —n3

Dropout
rate

Pre-trained
Accuracy

1 128—256 — None 0.2 96.4%

2 128 — 384 — None 0.2 96.6%

3 128 — 512 — None 0.2 96.0%

4 256 — 256 — None 0.3 98.2%

5 256 — 512 — None 0.4 95.3%

6 64 — 128 — 256 0.2 98.3%

7 64 — 128 — 192 0.2 98.4%

8 128 — 192 — 256 0.2 97.9%

9 128 — 128 — 128 0.3 98.9%

10 128 — 128 — 192 0.3 97.4%

However, we realize that assigning an uniform computa-
tional task could be overwhelming for any of the participated
agents and thus, we infused our dynamic resource alloca-
tion strategy (i.e., allowing partial works) for assigning local
computational tasks according to the agent’s resource avail-
ability. To measure the effects of enabling partial works of
the agents, we perform a simulation of our federated setting
considering system heterogeneity. We assume that, a global
clock cycle is remained during the FL process which can
specify the time window for executing an assigned compu-
tational task. We also assume that, a task publisher will de-
fine a global epoch E which needs to be executed by all



Table 2: Agent pre-trained accuracy for CIFAR100 dataset.

Model
Four Conv. Layer Filters
n1 —n2 —n3 — n4

Dropout
rate

Pre-trained
Accuracy

1 128 — 256 — None — None 0.2 72.3%

2 128 — 128 — 192 — None 0.2 79.9%

3 64 — 64 — 64 — None 0.2 73.5%

4 128 — 64 — 64 — None 0.3 76.9%

5 64 — 64 — 128 — None 0.4 75.8%

6 64 — 128 — 256 — None 0.2 77.4%

7 64 — 128 — 192 — None 0.2 78.7%

8 128 — 192 — 256 — None 0.2 74.6%

9 128 — 128 — 128 — None 0.3 78.7%

10 64 — 64 — 64 — 64 0.2 75.9%

(a) (b)

Figure 3: Model accuracy (a) without allowing partial works
and (b) enabling partial works (our proposed approach) con-
sidering federated agents including stragglers in presence
of model heterogeneity and systems heterogeneity using
MNIST IID dataset.

(a) (b)

Figure 4: Model accuracy (a) without allowing partial works
and (b) enabling partial works (our proposed approach) con-
sidering federated agents including stragglers in presence
of model heterogeneity and systems heterogeneity using
MNIST Non-IID dataset.

resource-sufficient participants. In case, a selected agent k
has resource-constraints, then that agent can perform fewer
epochs by evaluating the feasible amount of computational
works it can perform on communication round i (φc

k) using
a function consisting of a global cycle and its available re-
sources. We evaluate the learning progress of our considered
10 heterogeneous agents to how those agents collaborate
with each other despite having model and system hetero-
geneity. In Figure 5(a) and Figure 5(b), we present the sim-
ulation results of the accuracy of those 10 agents considering
both IID and non-IID setting for the MNIST dataset, which
depicts that the model quality of each agent is improving as
the communication round increases. We also considered CI-
FAR100 dataset to check the performance of our FedMDP
framework. In Figure 5(c) and Figure 5(d), we show the the
accuracy of the agents considering both CIFAR100 IID and

non-IID dataset, which demonstrate the effectiveness of our
proposed FedMDP framework. From the simulation, we can
observe that the agents achieve higher accuracy in both of
the IID settings as similar type of data are distributed among
the agents in such a case. As a result, if an agent fail to per-
form the whole computational task, other agents that capture
the similar knowledge can cover up the loss. In turn, in non-
IID settings, we achieve a little less accuracy than IID setting
which is obvious, still the agents achieve a notable accuracy
within a very few communication round despite having high
heterogeneity in their local data.

(a) (b)

(c) (d)

Figure 5: Agent’s learning progress in different communi-
cation rounds in spite of systems and model heterogene-
ity through transfer learning-based knowledge distillation
and leveraging partial computational tasks on (a) CIFAR100
IID dataset, (b) CIFAR100 Non-IID dataset, (c) MNIST IID
dataset and (d) MNIST Non-IID dataset.
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Figure 6: Testing accuracy of FedAvg model and our pro-
posed model in presence of different percentages of strag-
glers (i.e., 0%, 50%, and 90%)

To evaluate the performance of our proposed model
in presence of straggler effects, we defined vari-
ous number of agents that could be stragglers, e.g.,
0%, 10%, 20%, 50%, 90%, where 0% straggler indicates
that all the participated agents are able to perform the
assigned computational tasks (i.e., global epoch E), and
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Figure 7: Training loss of FedAvg model and our proposed
model in presence of different percentages of stragglers (i.e.,
0%, 50%, and 90%)

90% agents are stragglers means only 10% agents could
perform the whole task. In such a situation, the state-of-
the-art FedAvg algorithm simply drops the stragglers from
the training round which could prolong the convergence
time, or the global model could never reach to the target
convergence of there is a high number of stragglers. Instead
of that, if we could count every little computational tasks
that are performed by the resource-constrained agents,
then we would mitigate straggler effects and also the
model convergence would be accelerated. In Figure 6, we
demonstrated the validation of our hypothesis by simulating
the training loss considering different number of stragglers
(0%, 50%, 90%) and we achieved higher training loss of
the global model compare to the FedAvg method. We also
simulated the testing accuracy of FedMDP and FedAvg,
and it is clear that the FedMDP outperforms the FedAvg,
particularly when a high number of network agents are
stragglers (see Figure 7). From these simulations, it is
clear that heterogeneity has a negative impact on the
agent’s learning process and dropping the straggler agent
can significantly degrade the model performance. Instead,
leveraging our proposed FedMDP model handles model
heterogeneity through knowledge distillation technique and
also helps to achieve higher model accuracy by considering
every little computational tasks performed by the agents.

We also investigate our proposed FedMDP model by con-
sidering two different settings. In the first inspection, we
limit the agent’s local computational task as exactly 1 epoch,
i.e., each selected agent needs to perform only a single lo-
cal iteration on its local data using its local resources and
learning from global model. In that investigation, we found
that our proposed FedMDP model performs better than the
FedAvg model. In our next investigation, we checked the
performance of FedMDP and FedAvg on a synthetic Inde-
pendent and Identically Distributed Data (IID) dataset that
does not have any statistical heterogeneity across different
network agents. For such a dataset, the FedAvg method per-
forms better because it simply drops the stragglers, and con-
sider the contributions of other agents that already holds the
similar type of knowledge. However, in non-IID dataset, if
we simply drop the stragglers, then we may lose valuable
information that are possessed by that agent. That is why,

in non-IID dataset, our proposed method obtains Superior
performance than the FedAvg method.

We analyze several valuable aspects of our simulation re-
sults:

1. We evaluate the accuracy an agent could have achieved
considering the same simulations settings with the pres-
ence of straggler agents. All local data of the agents are
pooled together and shared with all the agents (see Table
V). Our proposed model accelerates the performance of
all participated agents only a few percent less than the
performance of the pooled data in presence of stragglers.

2. Our proposed model can handle extreme level of model
heterogeneity. We considered several models that have
low prediction performance, i.e., fully connected neu-
ral networks with two layers. If such models contribute
equally as the advanced models, then the overall model
performance is hindered. If we suppress the contribu-
tion of the resource-limited agents that can not perform
the whole computational tasks and possess a low-quality
model, then our model performs better.

Conclusion
In this paper, we proposed an FL framework, FedMDP that
can deal with agents with heterogeneous local model ar-
chitectures as well as heterogeneous locally available re-
sources. Through the generalization of FedAvg algorithm
and knowledge translation of the federated agents, our de-
veloped framework can accelerate the model convergence
and upgrade the knowledge of the uniquely designed models
of the agents. We tested our framework on various datasets
and tasks and we demonstrated the effectiveness of FedMDP
even in a highly resource-constrained environment. Our sim-
ulations results prove that the infusion of knowledge distil-
lation and allowing partial works significantly improve the
model quality of the network agents and also cut-off the
negative impacts due to slow agents towards model conver-
gence. In future, we will investigate more sophisticated pri-
vacy mechanism while sharing class score in the distillation
process and will explore the optimal hyper-parameter tuning
for our proposed framework.
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