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Abstract

Photonic Crystal Surface Emitting Lasers (PCSEL)’s inverse
design demands expert knowledge in physics, materials sci-
ence, and quantum mechanics which is prohibitively labor-
intensive. Advanced AI technologies, especially reinforce-
ment learning (RL), have emerged as a powerful tool to aug-
ment and accelerate this inverse design process. By model-
ing the inverse design of PCSEL as a sequential decision-
making problem, RL approaches can construct a satisfactory
PCSEL structure from scratch. However, the data inefficiency
resulting from online interactions with precise and expensive
simulation environments impedes the broader applicability of
RL approaches. Recently, sequential models, especially the
Transformer architecture, have exhibited compelling perfor-
mance in sequential decision-making problems due to their
simplicity and scalability to large language models. In this pa-
per, we introduce a novel framework named PCSEL Inverse
Design Transformer (PiT) that abstracts the inverse design of
PCSEL as a sequence modeling problem. The central part of
our PiT is a Transformer-based structure that leverages the
past trajectories and current states to predict the current ac-
tions. Compared with the traditional RL approaches, PiT can
output the optimal actions and achieve target PCSEL designs
by leveraging offline data and conditioning on the desired re-
turn. Results demonstrate that PiT achieves superior perfor-
mance and data efficiency compared to baselines.

Introduction
Photonic Crystal Surface Emitting Lasers (PCSELs; Hirose
et al. 2014; Yoshida et al. 2019; Noda et al. 2017) are a type
of nanoscale laser that combines the benefits of photonic
crystals (PhC; Quan, Deotare, and Loncar 2010) and Vertical
Cavity Surface Emitting Lasers (VCSELs; Chang-Hasnain
2000). PhCs are artificial structures that have a periodic re-
fractive index modulation in semiconductor materials. This
periodicity creates a photonic bandgap that inhibits the prop-
agation of light in certain frequency ranges to amplify the
optical resonance effect. VCSELs are lasers that emit light
perpendicular to the surface of the semiconductor structure,
which allows for efficient coupling to optical fibers and other

*These authors contributed equally.
†Corresponding author

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

optical components. PCSELs combine these two technolo-
gies to create advanced lasers that have several advantages
over traditional ones and therefore enjoy the best of both
worlds. PCSELs have great potential for important applica-
tions in sensing, autonomous driving, medicine, machining,
and telecommunication. Fundamentally, when an electrical
pumping current is injected into the active layer (that is, the
core layer of PCSEL), it emits laser light which is then con-
fined and amplified within the PhC resonant cavity (Sze,
Li, and Ng 2021). Additionally, the active layer may con-
tain quantum wells that increase the recombination rate of
spontaneous photon emission (which was first predicted by
Albert Einstein in his quantum mechanics papers (Hilborn
1982)) and thus substantially enhance the lasing effect (Sze,
Li, and Ng 2021). So the bottom line is that the PhC layer
is used to control the amplitude and direction of the emit-
ted light, while the active layer is what actually generates
the light. Therefore, proper design of the PhC layer and the
active layer plays a central role in the overall quality of a
PCSEL, which brings to us the critical yet challenging PC-
SEL inverse design problem. This problem is a combina-
tion of disciplines including physics, materials science, and
quantum mechanics which generally demands prohibitively
high-level domain knowledge.

Recent developments in Transformer (Vaswani et al.
2017) architectures witness the blooming performance from
prediction tasks into decision-making problems (Wen et al.
2023). This advancement, namely, sequential decision-
making as sequence modeling, is notably distinct from
the traditional approaches in reinforcement learning (RL),
which are typically focused on learning a singular policy for
a specific, narrowly defined behavior distribution. Given the
broad range of successful implementations of these models,
this study aims to explore their applicability to the inverse
design of PCSEL.

In this paper, we introduce a novel framework named PC-
SEL Inverse Design Transformer (PiT) that abstracts the in-
verse design of PCSEL as a sequence modeling problem.
The central part of our PiT is a Transformer-based structure
that leverages the past trajectories and current states to pre-
dict the current actions. Compared with the traditional RL
approaches, PiT can output the optimal actions and achieve
target PCSEL designs by leveraging offline data and condi-
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Figure 1: PCSEL structure schematic, with the active layer
and PhC cavity layer shown. Based on the band-edge mode,
a large area lasing resonance mode is formed within the PhC
resonance cavity. Lasing arises from the evanescent coupled
MQW gain medium in the active layer. The inverse design
problem therefore focuses on optimizing the designs of the
active layer and the PhC cavity as a whole. The size of the
device is about 200 microns in side lengths and 400 microns
in height and solely manufactured with semiconductor ma-
terials.

tioning on the desired return. Results demonstrate that PiT
achieves superior performance and data efficiency compared
to baselines.

Related Works
Optimzing the PCSEL through AI Overall, recent ad-
vancements in machine learning (Goodfellow, Bengio, and
Courville 2016) and optimization algorithms (Wiecha et al.
2017) have propelled the progress of inverse designs in sci-
ence. Early in the 90s, heuristic, evolutionary (Hegde 2019),
and gradient-based (Zhang et al. 2020) optimization algo-
rithms began to emerge prolifically. Key algorithms include
simulated annealing (Bertsimas and Tsitsiklis 1993), New-
ton’s method (Milzarek and Ulbrich 2014), Bayesian opti-
mization (Shahriari et al. 2015), Monte Carlo method (Ru-
binstein and Kroese 2016), particle swarm (Ma and Li 2020)
and genetic algorithm (Ren et al. 2021) etc. These algo-
rithms provide a new way of thinking when facing hard non-
convex optimization problems, which act as a solid foun-
dation for scientific problems. However, the issue remains
of heavy human involvement due to sophisticated trial-and-
error iterations. To solve this, in around 2012, researchers
proposed deep learning (DL) (Krizhevsky, Sutskever, and
Hinton 2012; Goodfellow, Bengio, and Courville 2016)
frameworks to construct a mapping relationship between in-
put data and output targets through Deep Neural Networks.
In particular, DL consists of supervised, unsupervised, and
reinforcement learning (RL) (Sutton and Barto 2018). These
DL models greatly bolstered the efficiency of inverse design
in science, pushing the possibility of automated design into a
new era (So et al. 2020; Jiang, Chen, and Fan 2021; Li et al.
2021; Mirhoseini et al. 2021; Li et al. 2022; Degrave et al.
2022; Li et al. 2023a; Kuprikov et al. 2022). Circa 2023,
a novel framework based on RL, called Learning to De-

sign Optical-Resonators (L2DO) (Li et al. 2023b), provides
the solution for autonomous inverse design of nanopho-
tonic chips without human intervention. With two orders of
magnitude higher sample efficiency compared to supervised
learning, L2DO has preliminarily realized RL-driven chip
inverse design on an algorithmic level. However, to the best
of our knowledge, there aren’t any published results on the
inverse design of PCSELs via AI methods to this day. Due
to the strategic significance of PCSELs for a host of key in-
dustries, we believe there is an urgent need to develop an
RL-based approach for PCSEL’s rapid inverse design.

Sequential Models for Sequential Decision-Making Re-
cent research on transformer models for sequential decision-
making has revolutionized the field by pushing bound-
aries and introducing novel capabilities. Transformers (Wen
et al. 2023) excel in capturing long-range dependencies, ef-
ficiently assigning credit, and modeling temporal dynam-
ics. These have significantly advanced the field and hold
promise for applications in reinforcement learning. Founda-
tional works in the application of transformers to sequential
decision-making include Decision Transformer (DT) (Chen
et al. 2021a) and Trajectory Transformer(TT) (Janner, Li,
and Levine 2021). These works have made a significant im-
pact on the field by introducing transformative methodolo-
gies. DT, for instance, revolutionized traditional offline RL
approaches by employing a transformer decoder as the back-
bone model. It uses (return-to-go, state) as input data, and
chooses action as output. This method outperforms the of-
fline RL baseline CQL. TT is another foundational applica-
tion of transformers in sequential decision-making, which
utilizes the GPT model (Radford et al. 2018) as its back-
bone, demonstrating remarkable performance in long-range
planning tasks. Other efforts like UPDeT (Hu et al. 2021) for
multi-agent planning and MGDT (Lee et al. 2022) for multi-
game decision-making highlight the versatility of transform-
ers. Looking ahead, transformer models show great promise
to transform decision-making in the coming years by en-
abling a more nuanced understanding of situational context
and more predictive recommendations.

Background
Modeling Inverse Design of PCSEL as a Sequential
Decision-making problem
Sequential decision-making describes a situation where the
decision-maker makes successive observations of a process
before a final decision is made. In most sequential decision
problems, there is an implicit or explicit cost/regret/reward
associated with each observation or action. The procedure
to decide when to stop taking observations and when to con-
tinue is called the ‘stopping criteria’. The objective of se-
quential decision-making is to find a stopping criterion that
optimizes the decision in terms of minimizing losses or max-
imizing returns, including observation costs. The optimal
stopping criteria are also called optimal strategy and opti-
mal policy, which are commonly adopted in classic RL al-
gorithms.

To the best of our knowledge, Li et al. (2023b) is the
first work on modeling the inverse design of PCSELs as a



Sequential decision-making problem, which offers a struc-
tured and efficient approach to navigating the complex de-
sign space. Sequential Decision-Making involves breaking
down the design process into a series of decisions, each con-
tingent upon the outcomes of preceding ones. This approach
is particularly suited to PCSEL design due to the layered na-
ture of their construction and the interdependence of various
design parameters. There are a few key components of the
sequential decision-making model.
• State Space represents the current status of the PCSEL

design, encompassing all relevant parameters (e.g., layer
thicknesses, refractive indices, geometric patterns).

• Action space is discrete and consists of 16 actions. Each
action represents an increase or decrease in geometric pa-
rameters by one unit according to the scale of the param-
eters. For example, action 0 is to increase parameter 0 by
25, and action 3 is to decrease parameter 1 by 2.5.

• Reward: As to the quality of a PCSEL, there are a few in-
dicators to determine its performance, which we listed in
Table 1. Unify the dimensions between different indica-
tors through weighting, we can calculate the score from
the parameters returned at each step, as in Eqn 6. In PC-
SEL, the reward function is the difference between the
score obtained in the current step and the score obtained
in the previous step. As the first step, we take the score
as a reward. To analyze the composition of the score in
more detail, we can examine the parameters returned by
the environment and the method of calculation.

notations Indicators
Q Q-factor
lam lambda
power power
area area

div angle divergence angle

Table 1: Indicators that determine PCSEL performance.

r1 = 1− (Qgoal −Q)/Qgoal (1)
r2 = 1− |lamgoal − lam|/lamgoal (2)

r3 = 1− (areagoal − area)/areagoal (3)
r4 = 1− (powergoal − power)/powergoal (4)

r5 = 1 + (div anglegoal − div angle)/div anglegoal
(5)

score = γ ∗ r1 + ϵ ∗ r2 + β ∗ r3 + α ∗ r4 + η ∗ r5 (6)

The designer continues to take actions to set/update the
layout until a pre-set stopping criteria is met, which in our
case is the target PCSEL performance characteristics listed
in Table 1. When the target characteristics are met, one can
consider the cumulative return is maximized or an optimal
policy is found. Due to the high-level domain knowledge
and labor intensity required by PCSEL inverse design, the
authors believe modeling it as a sequential decision problem
can largely alleviate human labor and accelerate the R&D of
advanced PCSEL lasers.

Proposed Methods
Inverse Design of PCSEL is a Sequential Modeling
Problem

!𝑹t

𝒔t

𝒂t

!𝑹t+1

𝒔t+1

𝒂t+1

𝒂t

𝒂t+1

PCSEL
Inverse Design Transformer

23

return state action

Figure 2: The architecture of PiT.

The PCSEL inverse design can be conceptualized as a
sequential decision model, where the goal is to maximize
the score within a limited number of steps through strategic
adjustments. This model is characterized by a clear reward
target, a small and discrete action space, and the Markov
property. Given these properties, it is naturally suited for RL
algorithms.

However, unlike games that can be quickly simulated,
data collection for PCSEL inverse design is challenging due
to its complexity. Therefore, considering data efficiency, of-
fline RL is a more suitable choice. Our PiT model is based
on sequence models, for example, DT (Chen et al. 2021a)
or TT (Janner, Li, and Levine 2021). Among the existing se-
quence models for sequential decision-making, we choose
DT for its simplicity and superior performance.

Dataset

Figure 3: The frequency of the total return of the trajectories
used to train PiT.

The dataset of offline trajectories for training our PiT is
extracted from replay buffers that were saved during pre-
vious online RL experiments associated with PCSELs. The



offline dataset contains roughly 16,057 samples (each sam-
ple includes state, action, reward, and next state). Specifi-
cally, the state is defined as a vector of design parameters
of the PCSEL, the action is a change/update in the state,
and the reward is defined as how close we are to the target
PCSEL design. For instance, if we wish to achieve a target
PCSEL design with a Q-factor of 5 million, a wavelength
(lambda) of 1310 nm, a power conversion rate of 80%, a las-
ing area of 3.0e-13 square meters, and a divergence angle of
1.0 degrees, we would train PiT to inverse design a PCSEL
that meets these target characteristics. The actual criteria is
a weighted sum of these five reward of merit according to
Eqn. 1-6 and is referred to as a score in the remaining text.

Experiments
In this section, we performed a comprehensive performance
comparison involving our PiT and behavior cloning. Models
were trained on both the whole dataset and a subset com-
prising exclusively of the rising dataset, where the score at
the last timestep exceeded the initial timestep.

Baseline
We choose behavior cloning as our baseline. Behavior
cloning involves training a network to imitate the behavior
of a demonstrated or an expert dataset. The network is an
MLP with 3 layers and 256 embedding dimensions. It is a
form of supervised learning where the model learns to map
observations to actions directly by mimicking the expert’s
actions.

Figure 4: Training loss curve of both BC and PiT under the
whole and rising dataset.

From Figure 4, it is evident that the PiT exhibits a lower
training loss compared to baseline BC. This lower training
loss indicates that PiT has a greater ability to predict the next
action accurately on the training set.

Results
In Table 2, we compare PiT’s results to the best literature
baselines. The results are quantified by a score which is de-
fined in Eqn. 6. Moreover, thanks to the offline RL frame-
work, PiT obtained better data efficiency than the base-
lines as it doesn’t require online environment interactions or
labor-intensive manual optimizations by human designers.

Therefore, we conclude that PiT has acquired state-of-the-
art capabilities for PCSEL inverse design with consistently
better performance than baselines. Nonetheless, we recog-
nize that PiT’s score is still quite some distance away from
the target, which means there’s room for improvement in fu-
ture research.

Imada et al. (1999) 9.19709
Ohnishi et al. (2004) 19.2290
Sakai et al. (2005) 21.23469
Hirose et al. (2014) 18.95918

Hsu, Lin, and Pan (2017) 10.01160
Chen et al. (2021b) 2.117346
Wang et al. (2021) 41.8554
Itoh et al. (2022) 20.2335

BC 71.28
PiT 73.95

Table 2: PiT’s results compared to baselines in the literature.

Discussion
In this section, we conducted a performance comparison be-
tween PiT and BC trained on both the whole dataset and the
rising dataset. The results are listed in Table 3. According
to the table, we can see that regardless of whether BC or
PiT methods are used, the results based on the rising dataset
are better than the results of the whole dataset. This phe-
nomenon indicates that the offline dataset we choose has a
large impact on performance. More specifically, the better
the data set we use (i.e. the larger the reward), the better the
final performance will be. Therefore, if we can train a bet-
ter RL policy and collect a dataset with higher returns, it is
possible to further improve the performance of PCSEL by a
large margin.

Dataset \Method BC PiT
Whole 68.51 70.54
Rising 71.28 73.95

Table 3: Performance Comparison for PiT and BC under the
whole and rising dataset.

Finally, we discuss the potential limitations of our method
as we as future work. First, the effectiveness of the PiT
model is heavily dependent on the availability and quality
of offline data, which could be a limiting factor in some sce-
narios where data is scarce. Second, while effective in the
specific context of PCSEL inverse design, it’s unclear how
well this approach generalizes to other types of photonic de-
vices or design objectives. In the future, we will expand the
realm of PiT by demonstrating its effectiveness and versa-
tility for different types of devices. We will also generate a
diverse pool of data for photonic inverse design problems
and make it open-source.

Conclusion
In this paper, we investigate the PCSEL inverse design prob-
lem through sequential modeling that facilitates the use of



offline data and eliminates the need for online interactions.
Our simulation experiments show the effectiveness of our
proposed framework. We believe that our work points out
promising future avenues to design advanced PCSEL lasers
and photonics in general. We further analyze the impact of
Transformer structure selection and highlight several poten-
tial solutions to improve the performance in the future.
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