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Abstract

We describe and evaluate our open-source project, OsiriX-
grpc, for rapid development and prototyping of artificial
intelligence (AI) tools in radiology. Our platform enables
inter-process communication between a highly popular radi-
ological viewing platform, OsiriX, on the network using the
Google Remote Procedure Call (gRPC) infrastructure. Im-
portantly, this provides OsiriX with access to popular AI li-
braries including TensorFlow, Torch, and MONAI via Python
deployed on systems that contain dedicated graphical pro-
cessing units (GPUs) for inference of complex deep-learning
(DL) models. Currently, OsiriXgrpc only supports Python but
it can be easily extended to other programming languages
thanks to the flexibility of gRPC. We provide benchmark tests
on the transfer rate of images between an OsiriX server and
Python client, comparing three different connection meth-
ods: (i) a local Python process on the same machine as the
OsiriX server, (ii) on a remote GPU-enabled Linux kernel di-
rectly connected through a local Ethernet port, and (iii) on a
remote Linux kernel connected using a domestic WiFi net-
work. Our initial results demonstrate the rapid communica-
tion achievable using gRPC, with average transfer speeds of
627 and 152 images/second over wired and wireless networks
respectively. We then demonstrate the utility of OsiriXgrpc
for deploying AI models through two use cases: (i) evalu-
ating two deep learning (DL) models for automatic spleen
and multi-organ segmentation on CT images using UNet and
UNEt TRansformer (UNETR) architectures, and (ii) using
a Siamese Network architecture for whole-body CT-to-MRI
slice matching.

Introduction
Imaging is essential within patient healthcare and medi-
cal research. Due to a surge in the use of positron emis-
sion tomography (PET), X-ray computerised tomography
(CT), and magnetic resonance imaging (MRI) over the last
two decades, there is an urgent need for tools that can
quickly and accurately help radiologists assess large and
very complex imaging datasets (Pichler, Judenhofer, and
Pfannenberg 2008). Artificial intelligence (AI) is demon-
strating ever-increasing importance within medical imag-
ing due to its ability to automate sometimes complex and
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repetitive tasks that would otherwise need intervention by
an expert radiologist. By improving the workflow efficien-
cies within radiology departments there is hope that AI can
reduce the global cost of healthcare and help alleviate the
workflow of busy practitioners whose time could be bet-
ter spent providing specialist care to those patients most at
need and improving overall patient outcome (Tang et al.
2018; European Society of Radiology (ESR) 2019). Due
to improvements in computer hardware and algorithm de-
sign, deep-learning has demonstrated state-of-the-art per-
formance for many radiological tasks including automatic
region-of-interest (ROI) delineation (often referred to as
‘segmentation’), tissue classification, and spatial registration
of different imaging modalities (Jiang et al. 2017; Panch,
Mattie, and Celi 2019; Subbaswamy and Saria 2020; Yu,
Beam, and Kohane 2018). Moreover, with the advent of
techniques including radiomics (Gillies, Kinahan, and Hri-
cak 2016; Kumar et al. 2012), there is hope that these tools
can uncover complex signatures not visible to the human eye
that can be used for tasks such as predicting patient outcome
and/or response to novel treatments.

Unfortunately, the majority of AI tools will never reach
clinical practice despite the great promise they may show
during research trials. This is in part due to the inherent dif-
ficulty in meeting the requirements of medical regulatory
bodies, who stipulate extensive clinical testing and devel-
opment of software to specific standards (Dikici et al. 2020;
Kotter and Ranschaert 2021). Therefore, robust software that
allows rapid prototyping, training, deployment and clinical
testing of AI models, paired with an interface familiar to
clinicians will be highly valuable for this field.

OsiriX is a popular FDA-approved and CE-certified medi-
cal image viewing platform that is built using the Mac-native
Objective-C programming language and libraries. It has
been used by clinicians worldwide and can perform many
of vital medical image viewing tasks including 2D/3D/4D
data visualisation, DICOM (Bidgood Jr. et al. 1997; Gibaud
2008) database management, and provide a query/retrieve
node for Picture Archiving and Communication Systems
(PACS). Importantly, the platform enables development of
bespoke plugins that can assist in performing specific tasks.
However, these plugins must be written in Objective-C,
which does not provide strong support for deployment of



Figure 1: An illustration of OsiriXgrpc server communicating with a Linux kernel run on a machine connected via a secure
wireless link (WiFi) using gRPC messaging. Importantly, the client is able to use any language and available libraries for
processing and pass the results back to OsiriX for display. Importantly, these libraries include TensorFlow, Torch and MONAI.

AI algorithms, nor is it particularly easy to develop.
We originally invented pyOsiriX (Blackledge et al. 2016)

to solve the issues of long and complex plugin design by al-
lowing users to rapidly develop plugins using Python rather
than Objective-C. Unfortunately, this tool suffered from a
number of fundamental drawbacks that limits it’s current
use: (i) only supports Python 2.7, (ii) runs plugins on the
main thread leading to freezing of the main software when
performing long calculations, and (iii) did not provide an ad-
equate development environment.

OsiriXgrpc
In this paper, we present OsiriXgrpc as a major update to our
previous solution; we use the Google remote procedure call
(gRPC) architecture to facilitate inter-process communica-
tion between OsiriX and another Python process, which can
be hosted either on the same machine or on a GPU-enabled
computer/cluster of machines (with potentially different op-
erating systems) connected via a relevant network. Impor-
tantly, the technology enables users to use any version of
Python they choose, along with any relevant 3rd-party re-
search libraries such as Tensorflow (Abadi et al. 2015) and
Torch (Paszke et al. 2019). We anticipate that OsiriXgrpc
will support AI researchers efficiently deploy medical imag-
ing deep-learning models within a radiological workflow,
enabling effective collaboration with expert clinicians and
feedback on model accuracy for iterative model refinement.
This project will be open source and freely available to the
imaging community for research use.

gRPC is an open source, high performance HTTPS re-
mote procedure call framework developed by Google that
can run on any enabled environment (https://grpc.io/). It uses
language-independent protocol buffers to serialize the mes-
sage interchange process, allowing server-client communi-

cation between different systems and software languages.
Figure 1 presents an illustration of the communication path-
way between a Linux client running a set of Python com-
mands, sending requests to the OsiriX server, and waiting
for a response before continuing with operation. Through
this mechanism is possible to query data from OsiriX, pro-
cess those data in any desired way, and subsequently send
a request back to OsiriX to view the result (in this case as
automatically generated regions of interest).

Figure 2: Distributions of image transfer time (in millisec-
onds) between client and the OsiriXgrpc for three differ-
ent experimental setups. Note that running the gRPC service
over a wired network does not reduce performance consid-
erably, whilst the time taken to send data over our private
wireless network was considerably longer.

Experiments
We performed several experiments to demonstrate the capa-
bilities of OsiriXgrpc for enhancing the workflow of clini-
cians via embedded AI within OsiriX.



Benchmark Message Transfer tests

Figure 3: Distributions of image transfer time (in millisec-
onds) between client and the OsiriXgrpc for three differ-
ent experimental setups. Note that running the gRPC service
over a wired network does not reduce performance consid-
erably, whilst the time taken to send data over our private
wireless network was considerably longer.

We tested the gRPC message passing speeds between
server and client using three difference connection types:
(i) local hosted client (no access to GPU architecture), (ii)
over a wired ethernet connected, peer-to-peer network op-
erating at 1000 Mb/s (client housed a NVIDIA RTX6000
GPU card), and (iii) over a domestic wireless WiFi net-
work (2.4GHz channel). In all cases, an insecure network
was used to test peak performance (experiments performed
behind a local firewall). The time taken by the client to (a)
get the currently displayed image within OsiriX (always size
134 × 108), or (b) set the same image to the same pixel val-
ues was recorded (image parsing is currently the most data-
heavy operation available to OsiriXgrpc). The same opera-
tion was performed 105 times for each experiment to acquire
statistics on image transfer times.

Results Figure 3 demonstrates histograms of transfer
times (in ms) for all three use cases, for both receiving and
sending image data. The average transfer rates of image data
retrieval (± standard deviation) were 626.7 ± 77.3, 670.1 ±
86.4, and 151.5 ± 27.5 images/second for experiments (i)-
(iii) respectively, whilst for image data sending they were
656.8 ± 63.4, 462.8 ± 78.1, and 151.6 ± 23.4 images/sec-
ond. The transfer time between local and wired connections
for gRPC message passing shows very little network over-
head and either technique will likely be the method of choice
when using OsiriXgrpc within a clinical research setting.

Healthy Organ Segmentation with UNETR and
UNET in MONAI
To provide an example of the convenient interaction be-
tween OsiriX and a GPU client providing model infer-
ence, we integrated OsiriX with the MONAI medical deep
learning library using OsiriXgrpc to perform automatic
spleen segmentation from abdominal CT scans. We eval-
uated two deep-learning architectures: (i) a standard UNet
model (Ronneberger, Fischer, and Brox 2015) and, (ii) a

variation of the traditional UNet, UNETR, that utilizes a Vi-
sual Transformer (Dosovitskiy et al. 2021) as the backbone
image encoder to learn sequence representations of the in-
put volume (Hatamizadeh et al. 2021). Both models were
previously trained using the MONAI deep-learning plat-
form (Consortium 2020); the UNet model was trained on
the spleen segmentation dataset from the Medical Segmen-
tation Decathlon (Antonelli et al. 2021), whilst the UNETR
model was trained on the multi-organ delineation dataset
from the ”Multi-Atlas Labeling Beyond the Cranial Vault”
challenge (Segmentation 2015). For the latter method, only
the spleen segmentation was used during inference. Both
methods were tested on the same, previously unseen CT
dataset of a patient with soft-tissue sarcoma (Vallières et al.
2015) from The Cancer Imaging Archive (Clark et al. 2013)
(stored within OsiriX). These data had the following image
acquisition parameters: isotropic in-plane spatial resolution:
0.98 mm, slice thickness 3.75 mm, resampled to a resolu-
tion of 1.5 × 1.5 × 2.0 mm3. Inference was performed on a
PC running Ubuntu 18.04, with a NVIDIA RTX6000 GPU
card with 24GB of memory; OsiriXgrpc was run using the
wireless network connection for convenience.

Results Figure 4 shows the resulting spleen segmentations
for both models within OsiriX. Total data transfer time to
GPU client from OsiriX was 24 seconds in both cases, whilst
inference times on the GPU were 4.4 and 8.3 seconds for the
UNet and UNETR models respectively. Using OsiriXgrpc,
integration of these models into OsiriX was trivial. The re-
sultant ROIs within OsiriX could be further refined and cor-
rected by radiologists to (i) improve accuracy of delineation,
(ii) negate the need for radiologists to delineate organs from
scratch, and (iii) potentially improve future model accuracy
through retraining.

Slice Synchronization using Siamese Networks
An increasingly common practice in clinical radiology is to
use multi-modal imaging to assess patient status. For ex-
ample, whole-body MRI can often be combined with other
imaging modalities such as PET/CT for evaluation of on-
cological diseases including Lymphoma (van Ufford et al.
2011). An important aspect of assessing multi-modal images
is slice matching, that is, manually identifying the same pa-
tient position on the available image datasets so that the radi-
ologist can subsequently scroll through axial imaging slices
synchronously. Slice-matching in this way enables the radi-
ologist to combine the strengths and weaknesses of imaging
modalities to improve sensitivity and specificity of disease
assessment. In addition to this, patients may undergo imag-
ing at multiple time-points to measure response to treatment
(Eisenhauer et al. 2009), or as part of the surveillance strat-
egy for their disease (Kang et al. 2021). An automated ap-
proach to slice matching is therefore highly welcomed to ac-
celerate the radiology workflow. For this purpose, we inves-
tigated the use of Similarity Learning (Cheng, Zhang, and
Zheng 2018) by training a Siamese Network model with an
architecture similar to the one described in the original paper
by Koch et. al. (Koch et al. 2015).

We developed a generalised model for both CT to CT



Figure 4: Example segmentation results from both trained architectures on previously unseen data of a patient with soft-tissue
sarcoma. The UNet model tends to over-segment regions outside the spleen (red arrow) and under-segment the spleen (green
arrow) compared to the UNETR model. Visualisation of resulting regions through OsiriX or Horos enables editing of segmen-
tation results.

(longitudinal assessment) and CT to MRI (multi-modal as-
sessment) axial slice matching, using an existing institu-
tional dataset of 31 patients with lymphoma who underwent
whole-body PET/CT and T1-weighted MRI for assessment
of disease before and after chemotherapy. We excluded pa-
tients for whom the cerebellum was not clearly present on
either CT or MRI images, had missing CT or MRI scans
(due to patient withdrawal from the study), where a large
mismatch of the angle/tilt between CT and MR images was
observed, and any patients with metal implants. This re-
sulted in 23/31 patient datasets for use in our study. T1-
weighted MRI was conducted on a 1.5T Magnetom Aera
(Siemens Healthcare, Germany) using the following pro-
tocol: spoiled gradient echo sequence with repetition time
(TR) 386 ms, anterior-posterior phase-encoding direction,
echo time 4.8 ms, 70 flip-angle, 256×256 acquisition ma-
trix size interpolated to 512×512, interpolated resolution
0.74×0.74 - 0.82×0.82 mm2, slice thickness 5mm, and par-
allel imaging acceleration factor R=2 (GRAPPA reconstruc-
tion). PET/CT imaging was performed on a Gemini scanner
(Philips, United States) using the following acquisition pa-
rameters (CT only): acquisition type Helical, slice thickness
3 - 6.5 mm, matrix size 512×512, in-plane pixel spacing
0.74×0.74 - 1.17×1.17 mm2, exposure 26-80 mAs.

The original study was reviewed and approved by the
Committee for Clinical Research at the Royal Marsden Hos-
pital. The patients/participants provided written informed
consent to participate in this study.

Data Preprocessing
To generate ground truth data, we manually annotated three
landmarks in the craniocaudal direction (head to foot) on
sagittal reconstructions of both CT and MRI studies: (i) tip
of the peg of the C2 vertebral body, (ii) top of the sternum
and (iii) center of the L5 vertebral body. To normalize the
slice locations across patients (to allow both inter- and intra-
patient slice matching), we used a linear transformation to
convert the slice location of the C2 vertebral body tip and
top of the sternum to 0 and 1 respectively, and a second lin-
ear transformation such that the center of the L5 vertebral
body had a slice location of 2 (this methodology is illus-
trated in Figure 6). Using these transformations, slice match-
ing became a matter of equating the normalized slice loca-

tion across modalities, time points, or patients. We gener-
ated 3896 training examples using this approach. The posi-
tive pairs consists of 1448 CT-CT and 1448 CT-MRI that are
uniformly sampled across all possible slice locations. The
negative pairs consists of 500 CT-MRI and 500 CT-CT that
are randomly sampled between different slice locations from
the patients. Subsequently, these datasets were resampled to
105×105 pixels. No data augmentation was performed. To
ensure consistency of generated data, we visually verified all
slice matching results generated using this technique.

Model Design, Training and Deployment
An illustration of the model architecture is provided in Fig-
ure 5. The Siamese Network model that was used for the
results in this paper was trained with the following parame-
ters: Contrastive loss, Learning Rate = 0.0005, 5000 Epochs,
Adam optimizer. Due to the variability of the number of
slices between different patients and different modalities, we
considered only slices that lay within the three landmarks
during training. This ensured that the matching slices that
are generated were not outside of the range of the chosen
landmarks.

To synchronise two whole-body imaging datasets during
deployment, we evaluate the pairwise mean-absolute dis-
tance (MAD) generated by the Siamese network between
each slice in one image series (moving series) and all slices
within the second image series (fixed series). The slice
which has the smallest MAD is considered to be the closest
matching slice. Finally, to reduce influence of outlier pre-
dictions, we perform linear Huber regression of the result-
ing predicted matching slice positions in the moving image
series against slice positions of the fixed image series; this
provides a linear mapping of slice location. The trained slice
matching model was deployed into OsiriX using OsiriXgrpc
for testing in the radiologist’s workflow.

Results Figure 7 shows the MAD between the different
slice locations for a T1-weighted MRI data for one patient
(moving series) and a single fixed CT image of a second pa-
tient. It can be seen that the smallest MAD accurately pre-
dicts the matching CT slice in this example.

Figure 8 demonstrates the full estimation of MRI-CT slice
matching for two exemplar cases: (i) where MRI and CT
were preformed on different patients (difficult case), and (ii)



CNN

CNN

…
…

Non-matching CT and MRI 
Slices within Osirix 

Matching MRI slice updated within its 
respective window in Osirix

Feature maps

Shared      Weights
CT Slice to Match

Each of the MRI Slices present 
in the Image Series is passed 

one at a time

Distance

MRI slice with the 
smallest distance out 
of all the MRI slices is 

returned as the 
matching slice

Osirix Environment 
(Server)

Deep Learning model running 
on GPU machine (Client)

Figure 5: Process flow of automated slice synchronization within OsiriX using OsiriXgrpc.

0

1

2

0

1

2

-42.0

-208.9

-586.9

45.9

-113.2

-511.6

Patient 
location (mm)

Normalized 
location

Figure 6: Example of the three annotated landmarks for both
CT and MRI studies: (1) tip of the peg of the C2 vertebral
body, (2) top of the sternum and (3) center of the L5 verte-
bral body. The values in red are the normalized slice loca-
tions and the values in blue are actual slice locations.

Manual 
ground truth 
matching slice

MRI slice location

M
ea

n 
Ab

so
lu

te
 D

iff
er

en
ce

 (M
AD

)

Minimum MAD

Figure 7: Mean absolute distance (MAD) between feature
vectors extracted from the Siamese network for each MRI
slice location in the moving image series with a single CT
slice location in the fixed image series (at slice location
-353mm). The MRI slice with smallest MAD (location -
470mm in this case) should be the MRI slice that is most
similar to that CT slice (manual ground truth represented by
the red vertical line).



where MRI and CT have been acquired in the same patient
(easier case). It can be seen that the fitted Huber regres-
sion model for the predicted MRI slice locations follow the
manual gound truth closely in both cases. The Huber regres-
sion model for different patients generally under-predicts the
ground truth slice location at all slice locations.
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Discussions
A key advantage of OsirixgRPC is that with negligible costs
for the developer, it is possible to implement client messages
in any language supported by gRPC (as of writing this arti-
cle, this includes C#, C++, Dart, Go, Java, Kotlin, Node.js,
Objective-C, PHP, Python and Ruby). In addition, gRPC
also enables secure transfer of messages over a network
via the SSL encryption protocol. Such approaches are vi-
tal when running an OsiriXgrpc client over a network rather
than as a local client on the same machine as the OsiriX
server. This flexibility will allow us and the open source
community to easily add new features to OsirixgRPC in the
future.

We used the sending and retrieval of images for our initial

benchmark tests to provide an approximation of the transfer
times expected when using OsirixgRPC for the deployment
of AI models within OsiriX depending on different network
configurations. The low network overhead in transferring
data through gRPC message passing is important since any
long transfer or processing times can negatively impact the
clinicians’ workflow (Kansagra, Liu, and John-Paul 2016).
More thorough benchmark tests could further elucidate the
impact of OsiriXgrpc processing times on the radiologist
workflow.

The positive segmentation results of the UNETR model
will be valuable in assisting radiologists if it can be easily
deployed into a platform that is familiar to them. We pro-
vided a working example of integrating it into OsiriX to
provide automatic delineation of the spleen using UNETR.
Additionally, the radiologist can easily correct the predicted
segmentations within OsiriX to improve delineation accu-
racy based on their expertise and also annotate the ROIs in
OsiriX. This could provide a feedback mechanism to gen-
erate further training examples and improve future model
accuracy.

We have explored the use of Siamese networks to provide
automatic inter- and intra-modality slice matching in whole-
body medical imaging (focusing on T1-weighted MRI and
CT). We demonstrated excellent results using this technique,
even in the difficult case of different patients and different
modalities. By combining this approach with Huber regres-
sion of the predicted slice locations within OsiriXgrpc al-
lowed us to expose this slice synchronisation functionality
within the OsiriX with ease.

There are several limitations of the current similarity
learning model. Firstly, it only works with slices that lie
between the tip of the peg of C2 and L5 vertebrae as this
was the region that the model was trained on. The land-
mark definition in the training data was performed by a non-
radiologist and thus may be subject to higher variability. The
impact of inter- and intra-reader variability of landmark def-
inition on the performance of the model should be further
investigated.

Image artefacts that are present in the the CT and MRI
images resulting from different patient positions such as pa-
tients having their arms up in the CT scans while having
their arms down in the MRI scans can make it harder to slice
match. Furthermore, our slice-matching model only works
for imaging acquired in the axial plane.

Training a generalised slice-matching model by combin-
ing mixed pairs of CT-CT and CT-MRI either from the same
of different patients increases the required complexity of the
model significantly. Improvement in model accuracy may be
easily gained by training individual networks for the prob-
lem at hand (e.g. within-patient CT-CT pairs, within-patient
CT-MRI, between patient MRI-MRI and so on).

The aforementioned issue and the performance of the
model may be improved by training a more complicated
similarity learning architecture such as triplet (Hoffer and
Ailon 2015) or quadruplet networks (Chen et al. 2017), or
using a different backbone network for the siamese network.



Conclusions
The potential benefits of OsiriXgrpc for agile development
and deployment of AI models using multiple software lan-
guages are substantial ranging from building better pre-
dictive models using domain knowledge from clinicians
through an environment familiar to them, faster adaptive ex-
perimental cycles, and easier acceptance of AI tools into
clinical or research workflows.

We have also provided two case studies using AI with
OsiriXgrpc: (i) deployment of UNet and UNETR models
for segmentation of spleen on CT studies on a GPU-enabled
machine, and (ii) automatic slice matching for whole-body
CT and MRI datasets using Similarity Learning. These case-
studies provide a snippet of the potential for OsiriXgrpc to
bridge the gap between state-of-the-art AI capcabilities and
deployment on radiological workstations. As of the date of
this paper, no NVIDIA graphics cards are available on Mac
computers, yet OsiriXgrpc provides the capability of fast in-
ference via network connection to GPU-enabled client ma-
chines. We have shown the network overhead is small espe-
cially when using a Ethernet peer-to-peer connection when
passing the images from an OsiriX service to a client on the
network. Our future roadmap includes provision of secure
SSL channels for increased data security that will be impor-
tant to ensure data compliance with hospital data, addition
of a Python wrapper for OsiriXgrpc message passing to the
Python Package Index, example scripts of AI models using
OsiriXgRPC and release of the source code to the commu-
nity.
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Appendix
The Unified Modeling Language (UML) diagram of the cur-
rent architecture and software design for OsiriXgrpc can be
seen in Figure 9 in the Appendix. This is still subject to
changes as we are currently working on finalizing the ini-
tial version.



Figure 9: UML diagram for OsiriXgrpc software architecture.


