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Abstract

Understanding how the brain learns can be advanced by in-
vestigating biologically plausible learning rules — those that
obey known biological constraints, such as locality, to serve
as valid brain learning models. Yet, many studies overlook
the role of architecture and initial synaptic connectivity in
such models. Building on insights from deep learning, where
initialization profoundly affects learning dynamics, we ask a
key but underexplored neuroscience question: how does initial
synaptic connectivity shape learning in neural circuits? To
investigate this, we train recurrent neural networks (RNNs),
which are widely used for brain modeling, with biologically
plausible learning rules. Our findings reveal that initial weight
magnitude significantly influences the learning performance
of such rules, mirroring effects previously observed in training
with backpropagation through time (BPTT). By examining the
maximum Lyapunov exponent before and after training, we un-
covered the greater demands that certain initialization schemes
place on training to achieve desired information propagation
properties. Consequently, we extended the recently proposed
gradient flossing method, which regularizes the Lyapunov ex-
ponents, to biologically plausible learning and observed an
improvement in learning performance. To our knowledge, we
are the first to examine the impact of initialization on biologi-
cally plausible learning rules for RNNs and to subsequently
propose a biologically plausible remedy. Such an investigation
can lead to neuroscientific predictions about the influence of
initial connectivity on learning dynamics and performance, as
well as guide neuromorphic design.

Introduction
A central question in computational neuroscience is how ini-
tial connectivity influences the dynamics of learning. While
the magnitude of initial weights is known to influence these
dynamics in backpropagation-based gradient descent learn-
ing (Flesch et al. 2021; Chizat, Oyallon, and Bach 2019;
Schuessler et al. 2020; Braun et al. 2022; Woodworth et al.
2020; Paccolat et al. 2021; Schuessler et al. 2023), the neu-
ral implementation challenges of backpropagation (Lillicrap
et al. 2020; Richards et al. 2019; Lillicrap and Santoro 2019;
Hinton 2022) raise important questions about its validity as
a neural learning model and how such influences extend to
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biologically plausible learning. This inquiry is especially rele-
vant for recurrent neural networks (RNNs), which are widely
employed in modeling neural circuits (Yang and Wang 2020;
Molano-Mazon et al. 2022; Vyas et al. 2020).

Understanding how the brain learns can be advanced by
investigating biologically plausible (bio-plausible) learning
rules, which aim to capture the interactions among neural
components that enable learning while adhering to known
biological constraints, such as locality, where all mathemat-
ical terms involved in weight updates can be mapped onto
known biological signals that are physically present at the
synapse (Marschall, Cho, and Savin 2019). These rules have
been a focus of recent computational neuroscience efforts to
model learning (Lillicrap et al. 2020; Richards et al. 2019).

In light of this, we ask: How does the initialization of
weights, particularly their magnitude, affect the performance
of biologically plausible learning in RNNs? We evaluate per-
formance primarily through learning curves, measured by the
reduction in loss over training. Our focus is on biologically
plausible learning rules that approximate gradients by trun-
cating non-biological terms, specifically the two equivalent
rules of e-prop and random feedback local online (RFLO)
learning, which have shown efficacy and versatility in solving
complex tasks (Murray 2019; Bellec et al. 2020).

Our contributions are as follows: (1) We demonstrate that,
much like in BPTT, the initial weight magnitude in e-prop
significantly affects learning performance (Figure 1). (2) To
explain this result, we identified that the maximum Lyapunov
exponent — crucial for the stability of information propaga-
tion — undergoes the most significant changes with small
initial weight magnitudes, suggesting greater demands are
placed on training (Figure 3). (3) Consequently, we extended
the recently proposed gradient flossing method (Engelken
2024) — designed to stability training by regularizing Lya-
punov exponents — to the context of biologically plausible
learning; this improved the performance significantly (Fig-
ure 4), particularly when the initial magnitude was subopti-
mal, which might occur due to pathological conditions.

Results
Network and training setup
We examine recurrent neural networks (RNNs) because they
are commonly adopted for modeling neural circuits (Barak
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Figure 1: Influence of weight initialization on biologically plausible learning. A) RNN Setup for Brain Learning Models. B) Loss curves
throughout training for different initial gains using the standard backpropagation through time (BPTT) algorithm. Here, gain reflects the initial
weight magnitude: recurrent weights are initialized as W (0)

h,ij ∼ N (0, gain2/N). C) Loss curve throughout training for different initial gains
using e-prop, a biologically plausible learning rule for RNNs. Note: the plots in B) and C) begin after 200 training iterations to provide a
more focused view of the results. This figure illustrates the Romo task but similar trends are observed for the 2AF and DMS tasks (Figure 2).
Learning curves for more intermediate gain values are examined in Appendix Figure 5. Solid lines/shaded regions: mean/standard deviation of
loss curves across independent runs with different seeds.

2017; Song, Yang, and Wang 2016). Our RNN model (Fig-
ure 1A) comprises Nin input nodes, N hidden nodes, and
Nout output nodes. The hidden state at time t, denoted as
ht ∈ RN , is updated according to the following equation:

ht+1 = αht + (1− α)(Whf(ht) +Wxxt), (1)

where the leak factor α = 1 − dt
τ ∈ R is determined by

the simulation time step dt and the membrane time constant
τ . The function f(·) : RN → RN is the ReLU activation
function; Wh ∈ RN×N and Wx ∈ RN×Nin represent the
recurrent and input weight matrices, respectively; and xt ∈
RNin is the input at time t. The output, ŷt ∈ RNout, is
derived as a linear combination of the hidden state activation,
f(ht), using the readout weights w ∈ RNout×N .

The goal is to minimize the scalar loss L ∈ R. For loss
minimization, we explored several learning rules, including
BPTT, which calculates the exact gradient, ∇WL(Wh) ∈
RN×(Nin+N+Nout), as well as biologically plausible learn-
ing rules that utilize approximate gradients, ∇̂WL(W ) ∈
RN×(Nin+N+Nout):

∆W = −η∇WL(W ), (2)

∆̂W = −η∇̂WL(W ), (3)

where W = [Wh Wx wT ] ∈ RN×(Nin+N+Nout) repre-
sents all the trainable parameters, and η is the learning rate.

In the realm of biologically plausible learning rules for
RNNs, we focused primarily on e-prop (Bellec et al. 2020)

and RFLO (Murray 2019), which rely on gradient trunca-
tion. Since both are equivalent in our setting, we present only
the results for e-prop. A significant challenge with the neu-
ral implementation of BPTT arises from its weight updates,
which require precise gradients of the loss with respect to the
weights. This process demands that every synapse receive
activity signals from the entire recurrent network (Marschall,
Cho, and Savin 2020), a mechanism that raises serious ques-
tions about its validity for modeling neural circuit learning.
In contrast, e-prop and RFLO truncate this exact gradient,
ensuring that the remaining terms can be associated with
known biological processes; specifically, the weight update
depends on the pre- and postsynaptic activities along with
a third factor that guides the weight update. Although other
biologically plausible learning rules exist, we concentrated
on e-prop and RFLO due to their versatility and being the
focus of recent studies examining RNN learning rules (Liu
et al. 2022; Portes, Schmid, and Murray 2022). For example,
rules like equilibrium propagation depend on the equilibrium
condition (Scellier and Bengio 2017; Meulemans et al. 2022).

We simulated different neuroscience tasks. In the main text,
we displayed results for the Romo task (Romo et al. 1999),
following the implementation in (Schuessler et al. 2020), but
also showed the trend applies to other tasks — including
perceptual decision-making (2AF) and the delayed-match-
to-sample (DMS) tasks — implemented using Neurogym
(Molano-Mazon et al. 2022) (Figure 2). Training details as
well as additional explanations on gradient flossing and the
learning rules can be found in the Appendix.
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Figure 2: Similar trends as Figure 1 observed for the 2AF and DMS tasks. A) Learning curve for the 2AF task across different initial gains
using backpropagation through time (BPTT). B) Similar to A) but for e-prop. C) Similar to A) but for the DMS task. D) Similar to B) but for
the DMS task. Plotting convention follows that of Figure 1.

Simulation results

We examined the effects of different initial weight magni-
tudes, which have been shown to significantly influence the
learning trajectory and final solution in BPTT (Schuessler
et al. 2020). Figure 1 demonstrates that the performance gap,
as indicated by the learning curve, is substantial across dif-
ferent initialization magnitudes for both BPTT and e-prop.
Additional intermediate magnitudes are explored in Appendix
Figure 5, where notable gap is observed for certain initial
weight magnitudes. Similar trends are evident when the ex-
periments are repeated across other tasks, specifically the
2AF and DMS tasks implemented using Neurogym (Fig-
ure 2). These results underscore the critical role of weight
initialization in biologically plausible learning.

Next, we investigate why initialization has such a profound
effect on learning performance in biologically plausible learn-
ing. We turn to Lyapunov exponents, which can reflect the
ability of RNNs to propagate information (Vogt et al. 2022).
Lyapunov exponents help in studying the dynamical prop-
erties of RNNs, as they measure the system’s sensitivity to
initial conditions and quantify the rates of divergence or con-
vergence of trajectories in the system’s state space. We com-
puted the Lyapunov exponent using the method described
in (Vogt et al. 2022) for networks before and after training.
The analysis was done for the Romo task but similar trends
were observed for other tasks as well. As expected, the trained
networks exhibit a maximum Lyapunov exponent around 0,
so that the signals neither explode nor vanish. However, be-
fore training, networks initialized with smaller weight gains

had Lyapunov exponents further from 0, indicating that more
changes are required via training, thus making the process
more challenging for such initializations (Figure 3).

To address this, we applied the recently proposed gradient
flossing method (Engelken 2024), which adjusts Lyapunov
exponents closer to 0 and has been shown to improve BPTT
training performance. We adapted this method for biolog-
ically plausible learning by pretraining the network with
100 iterations using the "flossing loss" while ensuring the
weight updates use local information only (see Appendix).
Our results show that this approach of gradient flossing also
enhances performance in this context of biologically plau-
sible learning, particularly when the initial weight gain is
suboptimal (Figure 4), which might happen due to pathology.

Discussion
This study highlights the role of initial weight magnitude in
shaping the learning dynamics of biologically plausible rules,
predicting its importance in neural circuit learning. While
the influence of initial connectivity on learning has been ex-
tensively explored in the realm of backpropagation-based
learning, our work is novel because it extends this inquiry
to biologically plausible settings. Our findings demonstrate
that, similar to backpropagation through time (BPTT), the
choice of initial weight magnitude in e-prop — a biologically
plausible learning rule — has a profound impact on learning
performance. Notably, we observed that smaller initial gains
can paradoxically hinder learning. This result is explained
by our analysis of the Lyapunov exponent, which is crucial
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Figure 3: The maximum Lyapunov exponent (Max LE) computed before and after training across various weight initialization gains for
training via A) BPTT and B) e-prop. Gain is defined similarly as in Figure 1. Certain initial weight magnitudes result in more significant
changes in the Max LE. Solid lines/shaded regions: mean/standard deviation of Max LE across independent runs with different seeds.

A Bgain=0.2 gain=1.4

Figure 4: Initialization via pretraining with gradient flossing improves e-prop learning performance, particularly for suboptimal initialization
gains. Note: The plot begins after 2000 iterations to provide a more focused view of the results.

for the stability and information propagation within the net-
work. We found that smaller initial gains resulted in larger
deviations of the Lyapunov exponent from zero before train-
ing, indicating a greater challenge in achieving the balanced
dynamical properties necessary for effective learning. To ad-
dress this challenge, we brought the gradient flossing method
into the biologically plausible learning framework, leading
to performance improvement for suboptimal initial weight
magnitudes. Overall, these findings provide insights into how
variations in initial connectivity may influence learning in
neural circuits, offering predictions that can guide future ex-
perimental work. Additionally, these findings have practical
implications for the design of neuromorphic chips, where
optimizing initial weight configurations could enhance the
efficiency and effectiveness of energy-efficient biologically
plausible learning algorithms.

Extending our approach to explore the interaction between
initialization and biologically plausible learning rules across
a broader range of learning rules, architectures, and tasks
is an important direction for future research. In this study,
we focused on existing biologically plausible RNN learn-
ing rules (Murray 2019; Bellec et al. 2020; Liu et al. 2021),

chosen for their demonstrated efficacy in task learning, ver-
satility in settings (e.g., avoiding the equilibrium assump-
tion (Scellier and Bengio 2017; Meulemans et al. 2022)),
and prominence in recent computational neuroscience stud-
ies (Liu et al. 2022; Portes, Schmid, and Murray 2022). An
important future direction would involve exploring a wider
range of learning rules as well as paradigms, including re-
inforcement learning (Sutton 2018), beyond the supervised
learning setup currently examined. Moreover, while we ex-
amined the magnitude of initial connectivity due to its known
influence on BPTT-based learning dynamics (Schuessler et al.
2020), other attributes of initialization may also play criti-
cal roles (Liu et al. 2023). Future work could investigate
these factors along with other aspects, such as the interac-
tion between rich and lazy learning regimes and their impact
on generalization (Chizat, Oyallon, and Bach 2019; Jacot,
Gabriel, and Hongler 2018).
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Simulation details and additional simulations
Our RNN training was conducted using PyTorch us-
ing the Adam optimizer and built on the code in
(Yang and Wang 2020) (see the notebook RNN +
DynamicalSystemAnalysis.ipynb). For the 2AF and
DMS tasks, we used the default Neurogym settings, while
for the Romo task, we followed the implementation
from (Schuessler et al. 2020). E-prop was implemented in Py-
Torch using hidden.detach(), where hidden is the hidden
state tensor, to prevent gradient propagation across the hidden
states, thereby effectively truncating the nonlocal gradient
terms; this was also applied when pretraining via gradient
flossing, ensuring the weight update uses location informa-
tion only. Our performance evaluation utilized the learning
curve, which tracks the reduction in the loss over training iter-
ations. To give each initialization scheme a fair chance at suc-
cess, we used the optimal learning rate for each initialization
scheme selected from a grid of [1e−4, 3e−4, 1e−3, 3e−3].
By default, we used 64 hidden neurons and a batch size of 32,
but similar trends were observed when doubling these. Each
training iteration was replicated over five independent runs.
All simulations were executed using Google Colab (the free
version) with each run taking under 5 minutes to complete.
We currently focus on recurrent weight initialization, em-
ploying standard random initialization for both the input and
readout weights (initialized as in (Yang and Wang 2020)).

Details on gradient flossing and biologically
plausible learning rules

Gradient flossing, originally proposed in (Engelken 2024),
addresses the problem of exploding and vanishing gradients
in recurrent neural networks by regularizing Lyapunov expo-
nents. This method has several variants, including applying
gradient flossing intermittently during training or as a pre-
training step. In this work, we adopt the latter approach,
where the network is pretrained with the flossing loss to push
the Lyapunov exponents λi toward zero:

Lflossing =

k∑
i

λ2
i .

This stabilization of Lyapunov exponents ensures both for-
ward and gradient dynamics remain well-behaved. Addition-
ally, as mentioned earlier, locality constraints were enforced
during the pretraining phase.

We also explain the approximation mechanisms used by
each biologically plausible learning rule. For a detailed ex-
planation, readers are encouraged to consult the referenced
works. We start by expressing the gradient using the real-time
recurrent learning (RTRL) factorization, which is a causal
equivalent to the backpropagation through time (BPTT) gra-
dient factorization:

∂L

∂Wh,ij
=

∑
l,t

∂L

∂hl,t

∂hl,t

∂Wh,ij
, (4)

The key challenge with RTRL, in terms of both biological
plausibility and computational feasibility, lies in the term

∂hl,t

∂Wh,ij
, which tracks the recursive dependencies of hl,t on

Wh,ij through the network’s recurrent connections. This term
is calculated recursively as follows:

∂hl,t

∂Wh,ij
=

∂hj,t

∂Wh,ij
+

∑
m

∂hl,t

∂hm,t−1

∂hm,t−1

∂Wh,ij

=
∂hl,t

∂Wh,ij
+

∂hl,t

∂hl,t−1

∂hl,t−1

∂Wh,ij

+
∑

m̸=l Wh,lmf ′(hm,t−1)
∂hm,t−1

∂Wh,ij︸ ︷︷ ︸
involving all weights Wh,lm

. (5)

This dependency introduces a significant challenge for bi-
ological plausibility since ∂hl,t

∂Wh,ij
includes nonlocal terms.

Specifically, updating each weight Wh,ij would require
knowledge of all other weights in the network, which is
biologically unrealistic. For a learning rule to be biologi-
cally plausible, all the information required to update a
synaptic weight must be locally accessible at the synapse.
However, how neural circuits could make such global
information on the weights and activity of the entire net-
work available to individual synapses remains an open
question.

To address this, learning rules like e-prop (Bellec et al.
2020) and its equivalent, RFLO (Murray 2019), approximate
the gradient by truncating these nonlocal terms in Eq. 5. This
ensures that weight updates follow a biologically plausible
three-factor framework, where updates depend only on lo-
cal pre- and post-synaptic activity along with a top-down
instructive signal (e.g., neuromodulators):

∂̂hl,t

∂Wh,ij
=

{
∂hi,t

∂Wh,ij
+

∂hi,t

∂hi,t−1

∂̂hi,t−1

∂Wh,ij
, if l = i

0, if l ̸= i
(6)

This approximation greatly simplifies the computation
compared to the full tensor in Eq. 5 and preserves the lo-
cality constraints so that synaptic updates use only signals
locally available to that synapse. As mentioned, this trunca-
tion can be implemented in PyTorch using h.detach(), which
prevents gradients from propagating through the recurrent
weights.
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Figure 5: Figure 1 repeated for more intermediate gain values for A) BPTT and B) e-prop. Noticeable gap in the learning curve is observed
between gain = 0.2 with the others before convergence, even with hyperparameter tuning. Plotting convention follows that of Figure 1.


