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Abstract

Metal-organic frameworks (MOFs) represent a vast chemi-
cal space of crystalline materials with diverse applications,
yet existing ML-based MOF property prediction methods ei-
ther use computationally intensive 3D models or rely solely
on sequential processing of SMILES notation, failing to fully
exploit the rich chemical and structural information inher-
ent in SMILES text representations. In this paper, we present
M-MOFormer, a novel multi-modal transformer framework
that integrates both SMILES representations and automati-
cally generated 2D structural diagrams through our developed
openchemlib-MMOF package. By incorporating cross-modal
attention mechanisms, M-MOFormer effectively combines
structural information from textual and visual modalities,
achieving superior prediction accuracy compared to existing
structure-agnostic approaches. Our interpretability analysis
reveals M-MOFormer’s ability to identify chemically rele-
vant structural features, particularly metal-ligand coordina-
tion sites and carbonyl groups. Additionally, we open-source
a comprehensive multi-modal MOF prediction dataset, estab-
lishing new benchmarks for structure-agnostic MOF property
prediction while maintaining computational efficiency.

Introduction

Metal-organic frameworks (MOFs) represent a revolution-
ary class of crystalline materials that have transformed ma-
terials science research over the past decades (James 2003;
Zhou, Long, and Yaghi 2012). Their distinctive combina-
tion of metal nodes and organic linkers creates highly porous
three-dimensional structures with unprecedented versatility
in chemical composition and topology (Sharp et al. 2021),
enabling widespread applications across gas absorption, wa-
ter harvesting, and energy storage (Ahmed et al. 2019; Al-
massad et al. 2022; Cao, Liu, and Barati Farimani 2019).
While the vast chemical space of possible MOF struc-
tures—arising from numerous combinations of metal nodes,
organic linkers, and topological arrangements—presents
both opportunities and significant challenges for materials
discovery (Moosavi et al. 2020; Falcaro et al. 2011), the ex-
ponential growth in potential MOF structures has created
an urgent need for efficient property prediction methods.
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Given that traditional experimental characterization, being
both time-intensive and resource-demanding, cannot keep
pace with the rapid expansion of possible MOF candidates
(Wilmer et al. 2012), this limitation has spurred the devel-
opment of computational approaches, with machine learn-
ing (ML) emerging as a promising direction for accelerating
MOF discovery and optimization (Fung et al. 2021).

Current ML-based MOF property prediction methods pri-
marily follow two distinct approaches. The first approach,
exemplified by the Crystal Graph Convolutional Neural Net-
work (CGCNN) (Xie and Grossman 2018), utilizes detailed
three-dimensional (3D) structural models for MOF predic-
tion. While these methods achieve superior prediction ac-
curacy by leveraging comprehensive structural information,
they face significant practical limitations. The requirement
for optimized 3D atomic coordinates introduces substan-
tial computational overhead, particularly for large MOF
structures containing thousands of atoms. Additionally, the
memory-intensive nature of crystal graph operations can
make this approach prohibitive for large-scale screening ap-
plications (Wang et al. 2020).

The second approach prioritizes computational efficiency
by utilizing simplified molecular representations, primarily
SMILES (Simplified Molecular Input Line Entry System)
(Weininger 1988), as demonstrated by the MOFormer model
(Cao et al. 2023). The MOFid representation, combining
SMILES notation with topology and catenation information,
provides a concise yet informative text-based description
of MOFs (Bucior et al. 2019). While these approaches en-
able rapid processing and scalability, they primarily extract
knowledge from SMILES strings in a sequential manner
without fully exploiting their inherent chemical and struc-
tural information, thus typically achieving lower prediction
accuracy compared to 3D structure-based methods.

To bridge this gap, we propose M-MOFormer, a multi-
modal transformer framework, that leverages both SMILES
representations and automatically generated 2D structural
diagrams for accurate MOF property prediction. First, we
introduce openchemlib-MMOF, an automated visualiza-
tion python package that generates chemically accurate 2D
structural representations from SMILES notations, to cre-
ate a comprehensive multimodal MOF dataset. Next, a
novel transformer architecture, M-MOFormer, is proposed
in this work to effectively integrates complementary struc-



tural information from both textual and visual modali-
ties through cross-modal attention mechanisms. Extensive
experiments demonstrate that M-MOFormer significantly
outperforms existing structure-agnostic approaches across
multiple datasets while approaching the accuracy of 3D
structure-based methods. Importantly, our interpretability
analysis reveals that M-MOFormer can successfully identify
chemically relevant structural features, particularly metal-
ligand coordination sites and carbonyl groups, aligning with
theoretical understanding of MOF properties.
The main contributions of this work are as follows:

1. We introduce M-MOFormer, an novel multimodal trans-
former framework, for effective structure-agnostic MOF
prediction.

2. We open-source a comprehensive multimodal MOF pre-
diction dataset that includes both SMILES expressions
and corresponding 2D chemical structures.

3. The extensive experimentation demonstrate the superior
performance of M-MOFormer across multiple tasks, es-
tablishing new benchmarks for structure-agnostic MOF
property prediction.

Related Work

The evolution of MOF property prediction methods reflects
a progressive shift from traditional machine learning ap-
proaches to sophisticated deep learning architectures. Here
we present a structured overview of this development, high-
lighting key methodological advances and implications.

Traditional Machine Learning Approaches

Initial efforts in MOF property prediction relied on conven-
tional machine learning algorithms such as support vector
machines (SVM), random forests, and gradient boosting ma-
chines (Meredig et al. 2014). These methods typically em-
ployed hand-crafted features derived from MOF characteris-
tics, including pore size distribution, surface area, and void
fraction (Moghadam et al. 2019). While these approaches
established foundational methodologies for property predic-
tion, their effectiveness was inherently limited by the qual-
ity and completeness of manually engineered features, often
failing to capture complex structural relationships.

Deep Learning Approaches

Deep learning methods have revolutionized MOF property
prediction by enabling automatic feature extraction, advanc-
ing beyond the limitations of traditional machine learn-
ing approaches. This evolution encompasses several key
paradigms, each with distinct advantages and challenges.
The Crystal Graph Convolutional Neural Network
(CGCNN) (Xie and Grossman 2018) pioneered the use
of graph-based architectures for MOF property prediction.
By modeling atomic structures as graphs, these approaches
effectively capture complex three-dimensional interactions
(Fung et al. 2021). However, their reliance on detailed 3D
structural information introduces significant computational
overhead, limiting their applicability in high-throughput
screening scenarios. To address computational efficiency,

sequence-based approaches emerged utilizing SMILES rep-
resentations (Weininger 1988) and MOFid (Bucior et al.
2019). These methods process MOFs as standardized text
strings, enabling the application of natural language pro-
cessing techniques. The introduction of transformer-based
models like MOFormer (Cao et al. 2023) leveraged self-
attention mechanisms to capture long-range dependencies
while maintaining computational efficiency. However, these
approaches potentially sacrifice structural information cru-
cial for accurate property prediction.

Recent work has begun exploring the integration of mul-
tiple molecular representations to balance accuracy and
efficiency. Our work advances this direction by combin-
ing SMILES representations with 2D structural information
through a novel transformer architecture, achieving both the
accuracy necessary for reliable property prediction and the
efficiency required for large-scale screening.

Method
Overall architecture

The overall framework of M-MOFormer, schematically
illustrated in Fig. 1, comprises two key modules: the
molecular structure visualization module and the M-
MOFormer model. The molecular structure visualization
module transforms the SMILES representation of MOFs
into two-dimensional structural diagrams by visualizing ev-
ery secondary building units (SBUs). Subsequently, the M-
MOFormer model processes both the SMILES representa-
tion and its corresponding 2D structural diagram through
text and image tokenizers, respectively. These tokens are
then passed through SMILES embedding and image em-
bedding layers to generate latent representations. Finally,
a Transformer encoder explores the relationship between
structural expressions and chemical properties to output
chemical property predictions. The detailed structure of the
employed Transformer encoder is illustrated in Fig. 1 c.

The key innovation of M-MOFormer lies in its ability
to leverage both textual and visual representations of MOF
structures, enabling more comprehensive feature extraction
and improved prediction accuracy. This dual-modality ap-
proach allows the model to capture both the precise molecu-
lar composition from SMILES representations and the spa-
tial structural relationships from 2D visualizations.

In the following sections, we will introduce each com-
ponent of M-MOFormer in detail: the molecular structure
visualization module and the M-MOFormer model.

Molecular structure visualization module

We developed the openchemlib-MMOF package as an ex-
tension of the JavaScript-based openchemlib framework, en-
abling robust visualization of complex SMILES strings con-
taining multiple SBUs in a Python environment. !. The visu-
alized complex SMILES are formatted as a 256 x 256 image.

Image € R**%*?5¢ — gpenchemlib-MMOF(SMILES)
(1)

!Code is available at https://github.com/Ike Yang/M-MOFormer
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Figure 1: Overview of M-MOFormer. (a) Molecular structure visualization module to create 2D structural diagrams, (b) M-
MOFormer model for multi-modal feature extraction and MOF property prediction, and (c) Transformer encoder architecture.

where SMILES € R%* and L, is the sequence lengths.

The proposed M-MOFormer model

The M-MOFormer model processes multi-modal inputs of
SMILES and Image through a carefully designed trans-
former architecture that can be mathematically formulated
as follows:

T € REt*d — TextTokenizer(SMILES)
I € RFi*4 = ImageTokenizer(Image)
E; ¢ RE+*4 = SMILESEmbedding(T)
E; ¢ RL*4 = ImageEmbedding(T)
H ¢ RE+LI*d — TransformerEncoder([Ey; E;])
y € R =MLP(H)

@)

where L; is the sequence lengths of image tokens; d; and
d; are the initial token dimensions; d is the model hidden
dimension; and p is the number of predicted properties.

Computational experiments
Experimental Setup

We evaluate our proposed method on two widely-used MOF
benchmark datasets: 1) Quantum MOF (QMOF) (Rosen
et al. 2021): A dataset comprising 20,375 MOFs with DFT-
calculated band gaps (in eV) as property labels. 2) hy-
pothetical MOFs (hMOF) (Wilmer et al. 2012): A col-
lection of 137,652 MOFs with gas adsorption properties.
The dataset provides CO, and CHy uptake capacities (in
mol-kg~!) measured at three pressure points: 0.05, 0.5, and
2.5 bar.Following the standard protocol (Cao et al. 2023), we

randomly partition each dataset into training (70%), valida-
tion (15%), and test (15%) sets.

For comprehensive evaluation, we compare our method
against two categories of baseline approaches: 1) Structure-
dependent methods: These methods leverage detailed 3D
atomic structures of MOFs for property prediction, typically
achieving higher accuracy due to the rich structural infor-
mation. Representative approaches include CGCNN (Xie
and Grossman 2018) and Smooth Overlap of Atomic Posi-
tion (SOAP) (Himanen et al. 2020). 2) Structure-agnostic
methods: These methods operate without requiring explicit
structural information, relying primarily on molecular rep-
resentations such as SMILES. State-of-the-art approaches
in this category include MOFormer (Cao et al. 2023) and
Stoichiometric-120 (Meredig et al. 2014).

To ensure fair comparison, we adopt the same transformer
architecture as (Cao et al. 2023), with the following speci-
fications: vocabulary size of 4021 tokens, d; and d; equals
512 and 50 respectively, 8 attention heads, hidden dimension
of 512, 6 transformer layers, and dropout rate of 0.1.

Main Results

Table 1 presents the performance comparison between our
proposed M-MOFormer and baseline methods across both
QMOF and hMOF datasets. Among structure-dependent
methods, SOAP achieves superior performance on hMOF
dataset with the lowest MAE across all gas adsorption
predictions, while CGCNN shows the best performance
for QMOF band gap prediction with an MAE of 0.275
eV. Within structure-agnostic methods, our M-MOFormer
demonstrates consistent improvements over existing ap-
proaches. Compared to MOFormer, M-MOFormer reduces
MAE by 7.2% (from 0.387 to 0.359) on band gap prediction,
and shows 8.3-11% error reductions for gas uptake predic-



Table 1: Benchmark performance comparison on QMOF and hMOF datasets

QMOF hMOF
Model C02 C02 C02 CH4 CH4 CH4
Band gap | ) ospar  0.5bar  2.5bar  0.05bar 0.5bar 2.5bar

Structure-dependent methods:

CGCNN 0.275 0.126  0.391 0.818 0.028 0.121  0.333
SOAP 0.424 0.115 0339 0.666 0.022 0.106 0.239
Structure-agnostic methods:

M-MOFormer 0.359 0.169 0.504 0.889 0.031 0.158 0.343
MOFormer 0.387 0.178 0.558 1.000 0.034 0.174 0.385

Stoichiometric-120 0.466 0282 0983 1.895 0.050 0.269 0.631

Table 2: Ablation analysis of considered molecular represen-
tations of M-MOFormer for CO4 uptake prediction at 0.05
bar in hMOF.

Components Performance
SMILEs Suuctural MAE
diagrams
v X 0.172
X v 0.280
v v 0.169

tions. The improvements are more substantial when com-
pared to Stoichiometric-120, with 22.9% reduction in band
gap prediction and up to 53.1% reduction in gas adsorp-
tion predictions. While structure-dependent methods main-
tain their advantage in absolute performance, M-MOFormer
significantly narrows this gap while maintaining the effi-
ciency of structure-agnostic approaches.

Ablation Studies

To investigate the effectiveness of different molecular rep-
resentations in M-MOFormer, we conduct ablation experi-
ments on the hMOF dataset for CO5 uptake prediction at
0.05 bar. As shown in Table 2, using SMILES represen-
tation alone achieves an MAE of 0.172 mol-kg—?!, signif-
icantly outperforming the structural diagram-only variant
(MAE = 0.280 mol-kg~"). This indicates that SMILES en-
coding captures more essential molecular information for
property prediction. When combining both representations,
M-MOFormer achieves the best performance with an MAE
of 0.169 mol-kg—!, demonstrating a modest but consistent
improvement over the SMILES-only variant. These results
validate our design choice of incorporating dual molecular
representations, where SMILES serves as the primary fea-
ture extractor while structural diagrams provide complemen-
tary information for enhanced prediction accuracy.

Interpretability analysis

To provide insights into how M-MOFormer makes predic-
tions, we visualize the attention patterns using GradCAM
(Selvaraju et al. 2017) for both SMILES and 2D structural
representations, as shown in Fig. 2.

The attention visualizations reveal that M-MOFormer
primarily focuses on metal-ligand coordination sites and

(=C(C(=0)[0-)) =CC(=0)[0-]
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(=CC=CC(=0)[0-])C(=0)[O-]
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(a) SMILES attention

(b) 2D structure attention

Figure 2: GradCAM visualization of M-MOFormer’s atten-
tion patterns. (a) SMILES representation and (b) 2D molec-
ular structure.

C=0 double bonds. This observation aligns with theoreti-
cal MOF studies - carbonyl groups typically exhibit strong
adsorption energies due to their polar nature and electron-
rich characteristics. The consistent attention patterns across
both modalities demonstrate that M-MOFormer successfully
learns to identify chemically relevant structural features that
determine MOF properties.

Conclusion

This work introduced M-MOFormer, a novel multi-modal
transformer framework for advances MOF property predic-
tion. By integrating automatically generated 2D structural
diagrams through our openchemlib-MMOF package and
employing cross-modal attention mechanisms with trans-
former architecture, our approach could better mine the rich
chemical and structural information inherent in SMILES
representations.

Experimental results demonstrated that M-MOFormer
significantly outperformed existing structure-agnostic meth-
ods across multiple prediction tasks, achieving SOTA pre-
diction accuracy. While structure-dependent methods main-
tained a slight advantage in absolute performance, M-
MOFormer approached their accuracy without requiring
computationally expensive 3D structural information. In-
terpretability analysis revealed that our model successfully
identified chemically relevant structural features, particu-
larly focusing on metal-ligand coordination sites and car-
bonyl groups, which aligned with theoretical understanding
of MOF properties.
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