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Abstract

Recently, deep reinforcement learning (DRL) has begun to
emerge as a competitive alternative to generative models in
automated molecular design. In this work, we proposed a
DRL approach for designing molecules with desirable prop-
erties. Notably, the DRL agent traverses and explores a con-
tinuous latent space created by a variational autoencoder
(VAE) and learns to exploit the space through experience.
Self-Referencing Embedded Strings (SELFIES) is utilized
for molecular representation to ensure the validity of the gen-
erated molecules and the adoption of the continuous latent
space allows easier molecular string perturbation and naviga-
tion without manually crafting the perturbation rules. Our ini-
tial results show that the DRL agent is able to generate valid
molecules with given property target.

Introduction
Molecule discovery is expensive and time-consuming owing
to the vast, discrete, and unstructured nature of the chem-
ical space. (Kirkpatrick and Ellis 2004) Still, automating
molecular design with deep learning remains an appeal-
ing challenge as advances in such a field would acceler-
ate the discovery of new materials. In the past few years,
generative models (Li, Zhang, and Liu 2018; Gupta et al.
2018; Gómez-Bombarelli et al. 2018; Zhavoronkov et al.
2019) demonstrated promising results on generating new
molecules with desired properties. Nevertheless, one no-
table limitation of these approaches is the lack of a feedback
loop to improve the generated molecules beyond the orig-
inal database. To address this problem, deep reinforcement
learning (DRL), an algorithmic paradigm typically used for
sequential decision-making, has begun to emerge as a com-
petitive alternative (Putin et al. 2018; Zhou et al. 2019;
Schreck, Coley, and Bishop 2019). DRL is often formalized
as a discrete-time stochastic process in which an agent learns
an optimal policy by continuously interacting with the envi-
ronment, where the policy is parameterized by a deep neu-
ral network, a powerful function approximator that allows
the non-linear mapping of a state to optimal decisions. This
way, instead of entirely relying on existing databases, DRL
expanded the capacity to learn from out of database cases
such as the molecules it generates and can still be able to
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learn valid structural motifs based on the feedback of the en-
vironment. In this work, we propose a DRL-based method to
generate molecules with desired properties. The DRL agent
traverses and explores a continuous latent space created by a
variational autoenccoder (VAE) (Kingma and Welling 2013)
by perturbing the latent vectors and learns a policy through
experience. To ensure validity, we adopted Self-Referencing
Embedded Strings (SELFIES) (Krenn et al. 2019), a 100%
robust string-based representation to represent molecules.

Related Works
String-based molecular representation is one of the earli-
est ways to represent molecules and remains very popu-
lar nowadays. In particular, the Simplified molecular-input
line-entry system (SMILES) (Weininger 1988) is widely
adopted among the community. Many works (Olivecrona
et al. 2017; Guimaraes et al. 2017; Neil et al. 2018; Popova,
Isayev, and Tropsha 2018; Putin et al. 2018) adopt the
SMILES representation and use recurrent neural networks
(RNN) to encode the strings of SMILES representations
to properties and are optimized via different approaches
such as RL, Monte-Carlo Search, or Generative Adversar-
ial Networks (GANs). These works successfully generated
molecules with given desirable properties, yet, like other lit-
erature that work with the SMILES representation, struggle
massively with chemical validity. To resolve this problem,
researches came up with a wide variety of approaches, with
one being the Self-Referencing Embedded Strings (SELF-
IES) (Krenn et al. 2019). In their work, the SELFIES rep-
resentation demonstrated 100% validity and is shown that it
can represent all molecules, which opens the door for de-
veloping more robust de novo molecular design machine
learning methods. In addition to SELFIES, researchers also
turned to other forms of representations, such as graph-
based molecule representations, where the atoms and bonds
are represented by nodes and edges (You et al. 2018; Zhou
et al. 2019; SV et al. 2022), and 3D molecule representa-
tions (Simm, Pinsler, and Hernández-Lobato 2020; Flam-
Shepherd, Zhigalin, and Aspuru-Guzik 2022), which typi-
cally provide more structural information than other meth-
ods and allows geometrical constraints. Combined with RL,
these methods (You et al. 2018; Zhou et al. 2019; SV et al.
2022; Simm, Pinsler, and Hernández-Lobato 2020; Flam-
Shepherd, Zhigalin, and Aspuru-Guzik 2022) showcased



close to or even 100% validity.
However, despite with the much improved validity situa-

tion, researchers still face another big challenge: the large,
discrete, and unstructured chemical space. The vast nature
of the chemical space makes it impractical for exhaustive
search, and the discrete and unstructured nature often re-
quires manually crafted perturbation rules for exploration,
as (Gómez-Bombarelli et al. 2018) pointed out in their work.
In the same work, they also also demonstrated that smoothed
continuous latent space exhibits good predictive power as
well as the ability to perform gradient-based optimization
methods in the latent space. Recently, (Thiede et al. 2022)
explores using the concept of curiosity to train better RL
agents to generate molecules based on SELFIES representa-
tion (Krenn et al. 2019) , which has a different focus com-
pared to this work.

Methodology
In this section, we provide a description of the DRL setup.
Our objective is to use DRL to explore a continuous latent
space encoded by a variational autoencoder (VAE) (Kingma
and Welling 2013) and learn a policy that would generate
molecules with desired properties. On a high level, the agent
explores the latent space by perturbing the latent representa-
tion and develops a policy as experience accumulates. Figure
1 shows the main components at each step of exploration,
which are the state st, action at+1, reward rt+1, and policy
πt: At each step, the agent takes takes an action at according
to its current policy πt, and receives an updated sate of the
environment st+1 and reward rt+1. A custom OpenAI Gym
environment (Brockman et al. 2016) using RDKit (Landrum
et al. 2006) integrating a VAE was created to train against
the agent.

Variational Autoencoder (VAE) The VAE is designed to
provide a continuous and entirely valid latent space for the
RL agent, i.e., it converts a discrete molecule representation
into a real-valued continuous vector, which is guaranteed to
be decoded back to a molecule string that represents a valid
molecule. The continuity of the space is ensured by the de-
sign of the decoder, which is a feed-forward neural network
that acts as a classifier which elects the most likely sym-
bols for each character in the molecule string. This way, ev-
ery latent vector is ensured to have a corresponding SELF-
IES representation string. The encoder of the VAE is RNN-
based and takes in a converted one-hot encoding from SELF-
IES and outputs the latent vector. In addition, the validity
of the generated molecule strings is guaranteed with the
adoption of Self Referencing Embedded Strings (SELFIES),
which is a 100% robust string-based representation (Krenn
et al. 2019). We trained the VAE on the Quantum Ma-
chines 9 (QM9) dataset (133k molecules) (Ruddigkeit et al.
2012; Ramakrishnan et al. 2014) and the Organic Crystals
in Electronic and Light-Oriented Technologies (OCELOT)
dataset (Ai et al. 2021), which has around 30k molecules.
Note that owing to the design of the decoder, adjacent latent
vectors might have the same SELFIES representation.

State Space The state space S of the environment is the
set of all possible states st, which is a 500-dimensional vec-

tor defined as the immediate latent representation vector cre-
ated by the agent at time t after action at−1. Since states st
are outputs encoded by the encoder in the VAE, the upper
and lower bounds of each dimension differs. Therefore, st
is normalized such that each dimension is bounded within
[−1, 1].

Action Space The action space A of the environment con-
sists of the set of all possible actions at, which is a 2-
dimensional vector (pt,mt) with the pt indicating the loca-
tion of which the perturbation happens, and mt the amount
of perturbation need to be made to the selected dimension of
representation vector, i.e.,

st+1[pt] = st[pt] +mt

Since the distribution over actions is modeled by Gaussian
distribution, the action space is technically not bounded, yet
still, there are some actual limits by which the agent needs
to abide, such as the length of the vector as well as the upper
and lower bounds of each vector dimension. Therefore, sim-
ilar to other Open AI Gym implementations, clipping hap-
pens if the agent generates actions that exceed these limits.
The resultant clipping state vector would be the closest pos-
sible state in the latent space.

Reward Design and Zindo In order to guide the be-
haviour of the RL agent, we designed both intermediate and
terminal rewards. These rewards are domain specific and
are given to the agent based on evaluations from a evalu-
ator based on Zindo (J.Ridley and Zerner 1973), a semi-
empirical quantum chemistry method: At each step when
action at is executed, the resultant state st+1 is immediately
evaluated by the evaluator, the agent then receives interme-
diate rewards based on the evaluation, and will be given an
extra terminal reward if episode-ending criterion is met, e.g.,
the agent generates a molecule with desired properties. The
domain specific rewards include molecule properties such as
the molecular weight (MW), the highest occupied molecular
orbital (HOMO), and the lowest occupied molecular orbital
(LUMO). Depending on the objective of the training, the re-
ward may be defined purely based on one of the three values
or a weighted sum of any combination of the trio. In this
work, we focus on optimizing the HOMO of molecules; a
staged reward is given to the agent. Let the absolute value
of the difference between the current HOMO value and the
target HOMO value be δ, then the reward function can be
written as:

rt =


0, 2.5 < δ

1, 1.5 < δ < 2.5

5, 0.3 < δ < 1.5

10, δ < 0.3.

RL Agent Given the need for continuous action outputs
as well as considering efficiency and stability, we chose the
Proximal Policy Optimization (PPO) (Schulman et al. 2017)
as the DRL algorithm, and adopted the PPO-Clip implemen-
tation from PFRL (Fujita et al. 2021). The PPO-Clip main-
tains two policy networks, πθ(at|st) and πθk(at|st). The
πθ(at|st) is the current policy in question that needs refine-
ment, whereas πθ(at|st) is the previous policy that was used



to collect samples. The policy is optimized by the following
equation:

θk+1 = argmax
θ

Es,a∼πθk
[L(s, a, θk, θ)]

where

L(s, a, θk, θ) = min(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ϵ, Aπθk ))

g(ϵ, A) =

{
(1 + ϵ)A, A ≥ 0

(1− ϵ)A, A < 0

and A the advantage equation, a measure of the relative
advantage of an action, usually denoted as Aπ(s, a) =
Qπ(s, a) − V π(s). The tunable hyperparmaeter ϵ defines
how far away the gradient ascent can go from the previous
policy. The clipping mechanism works like a regulizer to
prevent the policy to change drastically between steps.

Figure 1: Overview of the framework. The environment con-
sists of a variational autoencoder and the ZINDO property
calculator. The arrows represent the flow of data.

Experiments
Experiment Setup
To test out the effectiveness of our method, we conducted
experiments in the following tasks:

Validity Since many methods adopting string-based
molecular representation struggle with the validity of the
generated molecules, we deem that validity checks are es-
sential as a justification of the usage of SELFIES. The va-
lidity of the molecules are performed with the sanitization
check included in the RDKit (Landrum et al. 2006) as in the
work of (You et al. 2018). A molecule is considered valid
once it passes the sanitization check.

Molecular Design with Desired Properties In this task,
we train the agent to generate molecules that has a spe-
cific molecular property targeted to a given range. Such task
would be beneficial for creating a library of molecule candi-
dates that has properties suitable for certain applications. In
our case, we’ve chosen the highest occupied molecular or-
bital (HOMO) as the targeted property and given a range of
-7±0.3 eV.

All experiments were performed on a machine using
NVIDIA GTX 1060 GPU and Intel(R) Xeon(R) CPU E5-
2620 v2 CPU. The DRL agent was trained against an envi-
ronment that resets to the same initial state (a molecule with
a CC(O)C(N)(CO)C#N SMILES string) at each episode.
The terminal criteria of each episode include: (1) The agent
comes up with a molecule with desired HOMO value, or
(2) the agent exceeded 500 steps. The total number of steps
across episodes during a training run is limited to 500,000.

Results and Discussion
Since as mentioned earlier, due to the nature of the latent
space, some (adjacent) latent vectors may have identical
SELFIES strings (repeated states), we further conducted a
filtering process to the logged data to focus on the unique
molecules. Of all the visited states, 325,118 of them are
unique molecules.

Validity Sanitizing checks in RDKit are then performed
on the 325,118 unique molecules. 325,108 of them passed,
yielding a close to 100% validity. Though further investi-
gation is still required to understand the cause that leads to
the 10 molecules that failed, the high validity rate, to a large
extent, justifies the use of SELFIES representation (Krenn
et al. 2019).

Property Optimization Our initial results show that the
agent is capable of generating molecules that meets the
given criterion (−7 ± 0.3eV HOMO). Among all the vis-
ited states, around a third to a quarter of them are successful
terminal states that generates a molecule with a −7 ± 0.3
eV HOMO. However, many of them are duplicated/repeated
states, after some filtering, we end up with around 40 unique
molecules. Figure 2 presents one of the roll outs of the
DRL agent, showing the path that the agent took to optimize
HOMO. It is also interesting to see that how the molecule
gradually evolves through the episode to become the final
molecule, as the intermediate molecules might be helpful
when it comes to analyzing synthesizability. In addition, the
trained DRL agent also demonstrated capacity to generate
diversified molecules with similar properties, as shown in
Figure 3: Starting from the initial molecule, the agent gener-
ated very different looking molecular structures that still has
similar HOMO values. Note that the the HOMO values are
yet to be verified by more accurate calculation methods such
as DFT.

Figure 2: Schematic of a roll out: The agent begins with the
initial state (leftmost), visits the intermediate states sequen-
tially from left to right, and eventually ending at the terminal
state (rightmost), which has a HOMO value within the tar-
geted −7± 0.3 eV range.



Figure 3: Demonstration of diversity. Different molecule
structures that meets the same criteria from different roll
outs.
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