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Abstract

Atmospheric retrievals (AR) characterize exoplanets by esti-
mating atmospheric parameters from observed light spectra,
typically by framing the task as a Bayesian inference problem.
However, traditional approaches such as nested sampling are
computationally expensive, thus sparking an interest in solu-
tions based on machine learning (ML). In this ongoing work,
we first explore flow matching posterior estimation (FMPE)
as a new ML-based method for AR and find that, in our case,
it is more accurate than neural posterior estimation (NPE),
but less accurate than nested sampling. We then combine both
FMPE and NPE with importance sampling, in which case both
methods outperform nested sampling in terms of accuracy and
simulation efficiency. Going forward, our analysis suggests
that simulation-based inference with likelihood-based impor-
tance sampling provides a framework for accurate and efficient
AR that may become a valuable tool not only for the analysis
of observational data from existing telescopes, but also for the
development of new missions and instruments.

Introduction
“NASA Says Distant Exoplanet Could Have Rare Water
Ocean” (Luscombe 2023) — Headlines like this have re-
cently made it even into the mainstream news. But how do
we know what happens on (and above) the surface of planets
outside our solar system? In many cases, the answer is atmo-
spheric retrievals (AR), that is, “the inference of atmospheric
properties of an exoplanet given an observed spectrum” (Mad-
husudhan 2018). These properties include the abundances
of chemical species (e.g., water or methane), the thermal
structure, or the presence of clouds. In practice, performing
an AR usually means combining a simulator for the forward
direction (i.e., parameters → spectrum) with a Bayesian in-
ference technique such as nested sampling (Skilling 2006;
Ashton et al. 2022) to compute a posterior distribution over
the atmospheric parameters of interest. Depending on the
complexity of the simulator, the number of parameters, the
spectral resolution of the observed data, and other factors,
this can become very computationally expensive: A single
AR can easily require on the order of tens of thousands of
CPU hours, often resulting in wall times of days to weeks.

Reducing this computational burden has already attracted
the attention of the machine learning (ML) community, in-
cluding even a competition at NeurIPS 2022 (Changeat and

Yip 2022). Previously proposed ML approaches to the prob-
lem of AR include the usage of GANs (Zingales and Wald-
mann 2018), random forests (Márquez-Neila et al. 2018;
Fisher et al. 2020), Monte Carlo dropout (Soboczenski et al.
2018), Bayesian neural networks (Cobb et al. 2019), vari-
ous deep learning architectures (Yip et al. 2021; Ardévol
Martı́nez et al. 2022; Giobergia, Koudounas, and Baralis
2023; Unlu et al. 2023), variational inference (Yip et al. 2022),
and neural posterior estimation (NPE) using discrete normal-
izing flows (Vasist et al. 2023). NPE was also used by the
winning entry to the 2023 edition of the ARIEL data chal-
lenge (Aubin et al. 2023). Finally, a related but somewhat or-
thogonal direction are the approaches by Himes et al. (2022)
and Hendrix, Louca, and Miguel (2023), who do not predict a
posterior directly, but instead speed up ARs by replacing the
computationally expensive simulator with a learned emulator.

In this workshop paper, we first introduce another ML
approach to AR: flow matching posterior estimation (FMPE)
using continuous normalizing flows. Focusing on one specific
case study from the literature, we then compare FMPE to
both a nested sampling approach and neural posterior esti-
mation (NPE) as introduced by Vasist et al. (2023). Finally,
we combine both FMPE and NPE with neural importance
sampling and show that this improves the results significantly.

Method
We briefly recapitulate NPE, which will serve as another base-
line besides nested sampling, and then introduce the FMPE
method as well as the idea of neural importance sampling. A
schematic comparison of NPE and FMPE is found in fig. 1.

NPE with normalizing flows NPE (Papamakarios and
Murray 2016) is a technique for simulation-based inference
(SBI; Cranmer, Brehmer, and Louppe 2020) that trains a den-
sity estimator q(θ |x) to approximate the posterior p(θ |x)
by minimizing the following loss:

LNPE = −Eθ∼π(θ) Ex∼p(x | θ) log q(θ |x) . (1)

Here, π(θ) denotes the prior and sampling from the likelihood
corresponds to a call of the forward simulator. Once trained,
q(θ |x) serves as a surrogate for the posterior, enabling cheap
sampling and density evaluation. The density q(θ |x) is of-
ten parameterized with a conditional discrete normalizing
flow (DNF; Tabak and Vanden-Eijnden 2010; Rezende and
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Figure 1: Schematic comparison between neural posterior estimation (NPE) and flow matching posterior estimation (FMPE).

Mohamed 2015). DNFs construct the distribution

q(θ |x) = p0
(
ψ−1
x (θ)

)
· det

∣∣∣∣dψ−1
x (θ)

dθ

∣∣∣∣ (2)

by applying a chain of invertible functions ψx : Rn → Rn,
ψx = fN ◦ · · · ◦ f2 ◦ f1 to a simple base distribution p0
(e.g., an n-dimensional Gaussian). To ensure invertibility and
efficient computation of the Jacobian in eq. (2), most DNFs
impose strong constraints on the architecture.

FMPE Continuous normalizing flows (CNF; Chen et al.
2018) also transform a simple base distribution to a more
complex one, but describe this transformation continuously.
Specifically, the sample trajectories ψt,x are parameterized in
terms of a “time” parameter t ∈ [0, 1], and a vector field v :
[0, 1]× Rm+n → Rn, where m = dim(x) and n = dim(θ),
defined by the ordinary differential equation (ODE):

d

dt
ψt,x(θ) = vt,x (ψt,x(θ)) , ψ0,x(θ) = θ . (3)

Conversion between the base (t = 0) and target (t = 1)
distribution is then achieved by integration,

q1(θ |x) = q0(θ) · exp
{
−
∫ 1

0

div vt,x(θt) dt

}
. (4)

CNFs offer great flexibility, as they are parameterized by un-
constrained vector fields and thus do not impose architectural
constraints. However, likelihood maximization can be pro-
hibitively expensive due to the cost of the ODE integration.

Flow matching (Lipman et al. 2022) provides an alternative
training objective that directly regresses v onto a target vector
field u by minimizing E

[
||v − u||2

]
. It has been shown that

the target can be carefully designed as a sample-conditional
vector field ut(θ | θt=1), resulting in a tractable and efficient
training objective. In the context of SBI, flow matching has
been explored by Dax et al. (2023b), and the resulting method

(flow matching posterior estimation; FMPE) maintains the de-
sirable properties of NPE (expressiveness of the distribution,
tractable density, simulation-based training) without requir-
ing constrained neural architectures. In comparison to NPE,
FMPE training is typically faster (due to simpler architec-
tures) and inference is slower (due to the ODE integration).

Neural importance sampling In practice, both NPE and
FMPE results may deviate from the exact posterior due to
insufficient training data or network capacity, or when con-
fronted with out-of-distribution (OOD) data. Further, it is
typically difficult to assess whether an inferred posterior is
accurate without comparing to results from another (trusted)
inference method, which may not always be available: While
nested sampling has been hailed as the gold standard for AR,
some implementations have already been found to produce
overly confident results (e.g., Ardévol Martı́nez et al. 2022).

One way to address these challenges is to combine SBI
methods with likelihood-based importance sampling (Dax
et al. 2023a). In this case, the inferred estimate q(θ |x) is
used as a proposal distribution for importance sampling (IS;
Kloek and van Dijk 1978) by attaching importance weights

wi = p(θi |x) · p(θi)/q(θi |x) (5)
to each sample θi ∼ q(θ |x). This transforms N samples
from q(θ |x) into weighted samples from the true posterior
p(θ |x). Dax et al. (2023a) showed that this results in asymp-
totic recovery of the exact posterior, and that failures (e.g.,
due to OOD data) are marked by a low sampling efficiency

ϵ =
1

N
·

(
N∑
i=1

wi

)2/ N∑
i=1

w2
i , ϵ ∈ [0, 1] . (6)

The sampling efficiency also provides a direct performance
measure: the better q(θ |x) matches p(θ |x), the higher the
sampling efficiency. In practice, however, ϵ is susceptible to
slight mismatches in even just one dimension of θ, resulting
in a high variance of the wi and thus low ϵ.



Experiments and results
We empirically evaluate both FMPE and NPE on the bench-
mark retrieval case from Vasist et al. (2023), which is based
on a study of the planet HR 8799 e by Mollière et al. (2020).

Simulator We use the simulation code from Vasist et al.
(2023), which itself is based on the petitRADTRANS sim-
ulator (Mollière et al. 2019; we used v2.6.7). This maps a
dim(θ) = 16 dimensional parameter space (see table 3 for
descriptions and priors) to simulated emission spectra for
a gas giant-type planet (cf. fig. 3). We work at a spectral
resolution of R = ∆λ/λ = 1000 (compared to R = 400
in Vasist et al. 2023) with a wavelength range of 0.95 µm–
2.45 µm, corresponding to dim(x) = 947 bins. Following
Vasist et al. (2023), we apply independent Gaussian noise
with µ = 0, σ = 0.1257 for each bin of the spectrum.

Nested sampling baseline We use nautilus (Lange
2023) as a baseline, which implements importance nested
sampling enhanced with deep learning. More conventional
samplers such as PyMultiNest (Buchner et al. 2014) or
dynesty (Speagle 2020) did not converge after several
weeks. Using the Gaussian likelihood implied by our simu-
lator, we run with 10 000 live points, 0.1% remaining live
points as convergence criterion, a target effective sample size
of 50 000, and default values for all other settings.

NPE and FMPE models We train both an NPE and an
FMPE model. The configurations reported here are the re-
spective best ones from our preliminary experiments.

As illustrated in fig. 1, the NPE model consists of two
parts: (1) a context embedding network Ec for the flux values
x in the form of 15 residual blocks of decreasing size (from
4096 to 256) that outputs a representation z ∈ R256, and (2) a
neural spline flow (Durkan et al. 2019) with 20 piecewise
rational quadratic coupling transforms (hidden size 1024, 4
blocks, 16 bins) which are conditioned on z. For FMPE, the
model has three parts: (1) a context embedding network Ec

for the flux x with two residual blocks, (2) a residual network
Et with positional encodings applied to t, mapping t and θt
to a 512-dimensional embedding, and (3) the flow network
with 40 residual blocks of decreasing size (from 8192 to
16) that receives the embedded spectrum and (t, θt)-tuple
and predicts the vector field vt,x(θt). The total number of
trainable parameters is 318 M for NPE and 501 M for FMPE.

We train our models for up to 1000 epochs on a dataset of
16.8 M simulations with batch size 16 384, using the AdamW
optimizer (Loshchilov and Hutter 2017) with a ReduceLR-
OnPlateau scheduler (initial learning rate 10−4, patience 30
epochs, factor 0.5), early stopping (patience 100 epochs), and
gradient clipping (L2 norm ≤ 1.0). Both models use dropout;
for FMPE, batch normalization also proved beneficial. We
use a 98% / 2% split between training and validation, and
only store the models that achieve the lowest validation loss.
Following standard ML practices, the atmospheric parameters
θ are standardized by subtracting the mean and dividing by
the standard deviation. Like in Vasist et al. (2023), the flux
values x are rescaled as x 7→ x/(1+|x/100|). For FMPE, we
train with automatic mixed precision (AMP) as it speeds up
training significantly, while for NPE, we find that AMP has
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Figure 2: Comparison of the posterior estimates for four
parameters; see fig. 4 in the Appendix for the full version.

almost no effect. On a single NVIDIA H100 GPU, training to
convergence takes approximately 54 h for the FMPE model
(747 epochs, 261 s per epoch), and about 148 h (1000 epochs,
533 s per epoch) for NPE.

Reference posterior Thorough quantitative evaluation of
inference results requires comparison to reference posteriors.
Even nested sampling may produce inaccurate results, so we
here combine all three methods to produce a reference pos-
terior with the approach proposed in Dax et al. (2023a). For
our given benchmark spectrum, we first generate a large num-
ber of approximate posterior samples (7 M samples, equally
distributed between nautilus / NPE / FMPE).1 Then, we
train an unconditional DNF q(θ) to estimate the distribution
of these samples using a maximum log-likelihood objective.
Finally, we generate weighted posterior samples with impor-
tance sampling, θi ∼ q(θ), wi = π(θi) ·p(x | θi)/q(θi). With
this method, we generate neff = 616 k samples (ϵ = 6.2%),
which represent our reference posterior. Importance sampling
is asymptotically exact if the proposal covers the entire target.
For us, this is the case if the initial 7 M samples cover the
posterior support because density recovery with the DNF is
performed using a probability mass covering training objec-
tive; see the discussion in Dax et al. (2023a) for details.

Evaluation We now compare all methods: nautilus,
FMPE, FMPE-IS (i.e., FMPE augmented with importance
sampling), NPE and NPE-IS. For each method, we gener-
ate 50 k effective samples. With importance sampling, we
find efficiencies of ϵ = 13.0% for FMPE-IS and ϵ = 2.5%
for NPE-IS. Qualitative results are shown in fig. 2 for se-

1Generation with NPE / FMPE is cheap; for nautilus, we use
the (correlated) intermediate samples to save computational cost.



Table 1: JS divergence (in mnat) between the marginals of our reference posterior and the different methods (lower is better).
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nautilus 1.7 1.5 37.9 53.3 20.3 20.8 56.7 9.6 7.1 10.5 12.5 4.3 5.6 4.3 7.3 9.1 16.4

FMPE 6.6 11.1 20.0 107.1 106.1 69.2 86.0 17.9 34.4 17.1 44.3 21.6 15.4 19.3 51.2 46.8 42.1
FMPE+IS 0.6 0.4 3.2 6.7 4.9 4.3 8.1 4.6 0.7 3.7 1.9 3.7 5.6 3.5 5.4 2.1 3.7

NPE 14.8 29.1 22.9 114.7 110.7 160.0 83.4 13.3 28.6 25.4 65.1 33.2 16.1 11.1 72.5 59.0 53.8
NPE+IS 0.2 0.4 4.1 4.5 8.7 4.4 7.0 8.0 1.6 1.6 1.6 5.6 6.3 5.7 4.8 1.8 4.1

lected and in fig. 4 for all parameters. For a quantitative
evaluation, we compare each result to the reference in terms
of the Jensen-Shannon divergence (JSD) between the 1D
marginal distributions (table 1). As an additional accuracy
measure, we report upper bounds on the linear optimal trans-
port distance in the Appendix (fig. 5), which also captures
high-dimensional distributional differences.

First, we see that nested sampling clearly outperforms stan-
dard FMPE and NPE in terms of accuracy. However, when
FMPE and NPE are augmented with IS, their performance
improves by an order of magnitude and their accuracies even
exceed the nautilus baseline. The deviations between
FMPE-IS, NPE-IS and the reference are negligibly small,
which is expected as all three of these estimates are asymp-
totically exact. In practice, we expect that even the deviation
of nested sampling from the reference will be scientifically
irrelevant, and that the main advantage of FMPE-IS and NPE-
IS is not improved accuracy, but reduced computational cost,
especially in an amortized setting (see below). Further, we
note that FMPE consistently produces slightly more accurate
results than NPE. Future work needs to investigate if this only
holds for our specific case, or if this is a general trend. Lastly,
we observe that both FMPE and NPE struggle with similar
parameters (e.g., log XFe), which could indicate that the main
challenge for the model lies in the extraction of relevant infor-
mation from the spectrum, and not in the density estimation.

Runtime considerations Besides the training time (2 days
for FMPE, 6 days for NPE), the total runtime of our methods
is additionally composed of the time to generate the dataset
and to do inference. On a single core of an AMD EPYC
7662 CPU, simulating one spectrum (with random parameters
drawn from the prior) takes about 3.2± 0.7 s, implying a total
of about 15 000 CPU hours that can be arbitrarily parallelized.
For example, with 16 AMD EPYC 7662 CPUs (with 64 cores
each), simulating our training set would take about 15 h.

At inference, sampling and evaluating the log-probabilities
from the trained model is almost negligible in terms of com-
putational cost compared to the nautilus baseline: On a
single GPU, this takes about 12 s for NPE, and about 12min
for FMPE (using a tolerance of 10−3 for the ODE solver).
However, this is also arbitrarily parallelizable. For IS, we
additionally have to consider the cost for simulating spectra:
Assuming a sampling efficiency of ϵ = 5%, generating 50 k
effective samples requires another 900 single core hours, or
less than one hour when assuming 16 CPUs. This means that
if we can make proper use of the parallelization capabilities

Table 2: Comparison of the computational costs and sampling
efficiencies at inference time. This does not include the time
required for generating data and training models.

# simulations efficiency CPU hours wall time

nautilus 4 462 500 1.12% 13 450 8.5d

FMPE — — —1 12min

FMPE+IS 384 691 13.00% 342 3.5h2

NPE — — —1 12 s

NPE+IS 1 999 354 2.50% 1777 18.5h2

1Sampling standard FMPE / NPE uses a GPU. 2Assuming 96 CPUs (which is what
we used for running nautilus); in practice, this is arbitrarily parallelizable.

of NPE and FMPE, it seems plausible that we can beat the
wall time of nested sampling even in a non-amortized setting
(i.e., when running only a single retrieval), which in our case
was 8.5 days for nautilus, and would be much higher for
traditional samplers. Of course, this computational advantage
becomes much more significant once we consider multiple
retrievals. Table 2 summarizes the expected inference costs
based on our experiments.

Conclusions
We compared flow matching posterior estimation (FMPE),
a new approach to exoplanet atmospheric retrieval based
on CNFs, with both neural posterior estimation (NPE) us-
ing DNFs and (ML-enhanced) nested sampling as imple-
mented by nautilus. Both FMPE and NPE yielded good
agreement with the reference posterior, while reducing in-
ference times by orders of magnitude compared to nested
sampling. Notably, FMPE demonstrated slightly higher accu-
racy and significantly shorter training times than NPE. Com-
bining both approaches with neural importance sampling,
we matched the accuracy of an established nested sampling
algorithm, nautilus, while retaining a runtime advantage,
in particular assuming an amortized setting. One limitation
of this ongoing work is that we have only considered a sin-
gle benchmark retrieval. In future work, we will study the
properties of FMPE (with and without importance sampling)
more systematically. Our results encourage a broader adop-
tion of SBI approaches for AR to combine high accuracy and
diminishing retrieval costs not only in the analysis of real ob-
servational data (e.g., from JWST), but also during the design
phase of new instruments and missions for exoplanet science,
such as HWO (Clery 2023) or LIFE (Quanz et al. 2022).
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Appendix
This appendix contains table 3 and figs. 3 to 5 that were
referenced in the main text.



Table 3: The 16 atmospheric parameters of interest that we consider in this work, including the priors used for the data generation
and the parameter values θ0 of the spectrum used as the benchmark case. See also tables 1 and 2 in Vasist et al. (2023).

Parameter Prior θ0 value Meaning
C/O U(0.1, 1.6) 0.55 Carbon-to-oxygen ratio
[Fe/H] U(−1.5, 1.5) 0.00 Metallicity
logPquench U(−6.0, 3.0) −5.00 Pressure at which CO, CH4 and H2O abundances become vertically constant
logXFe U(−2.3, 1.0) −0.86 Scaling factor for equilibrium cloud abundances (Fe)
logXMgSiO3

U(−2.3, 1.0) −0.65 Scaling factor for equilibrium cloud abundances (MgSiO3)
fsed U(0.0, 10.0) 3.00 Sedimentation parameter
logKzz U(5.0, 13.0) 8.50 Vertical mixing parameter
σg U(1.05, 3.0) 2.00 Width of cloud particle size distribution (log-normal)
log g U(2.0, 5.5) 3.75 (Logarithm of) surface gravity
RP U(0.9, 2.0) 1.00 Planet radius (in Jupiter radii)
T0 U(300, 2300) 1063.60 Interior temperature of the planet (in Kelvin)
T3/Tconnect U(0.0, 1.0) 0.26

Parameters that describe the pressure-temperature profile (i.e., temperature as a
function of pressure). The forward simulator uses a spline-based version of the
parameterization scheme proposed in Guillot (2010).

T2/T3 U(0.0, 1.0) 0.29
T1/T2 U(0.0, 1.0) 0.32
α U(1.0, 2.0) 1.39
log δ/α U(0.0, 1.0) 0.48
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Figure 3: Simulated emission spectrum and pressure-temperature profile corresponding to θ0 (i.e., our benchmark case). The
shaded area marks the 1σ error bars we assumed in the likelihood, both for nested sampling and for the training data generation.
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Figure 4: Results of our benchmark atmospheric retrieval: This corner plot shows a comparison of the 1D and 2D marginal
posterior distributions for the different inference methods (nautilus is our nested sampling baseline). The true value θ0 is
marked by the dashed lines. The axes limits are set to the ranges of the respective priors. This figure is best viewed digitally.
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Figure 5: Upper bounds on the linear optimal transport distance between our reference posterior and the different estimators: We
use the ott-jax package to estimate the linear optimal transport (OT) distance between the reference posterior and the different
estimates (including the reference itself, to establish the general scale) by treating them as point clouds: For each method, we
randomly choose 10 k posterior samples and compare them against an equal-sized random subset of the reference posterior by
computing an upper bound on the OT distance using a Sinkhorn solver. We repeat this 100 times for each method and compute
the median, which we take as an estimate of the distance to the reference. The resulting pattern matches the one from table 1.


