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Abstract

Driven by advancements in sensing and computing, deep
reinforcement learning (DRL)-based methods have demon-
strated significant potential in effectively tackling distribu-
tion system restoration (DSR) challenges under uncertain
operational scenarios. However, DRL’s data-intensive nature
poses obstacles to achieving satisfactory DSR solutions for
large-scale and complex distribution systems. Inspired by the
promising potential of emerging causal transformers, which
widely work as foundation models for large language mod-
els (LLMs) such as GPT-x, this paper explores an innovative
approach harnessing causal transformers’ powerful comput-
ing capabilities to address scalability challenges inherent in
conventional DRL methods for solving DSR. To our knowl-
edge, this study represents the first exploration of foundation
models in revolutionizing conventional DRL applications in
power system operations. Our contributions are twofold: 1)
introducing a novel Physics-Informed Decision Transformer
(PIDT) framework that exploits a GPT-based causal trans-
former to transform conventional DRL methods for DSR op-
erations, and 2) conducting comparative studies to assess the
performance of the proposed PIDT framework at its initial
development stage for solving DSR problems. While our pri-
mary focus in this paper is on DSR operations, the proposed
PIDT framework can be generalized to optimize sequential
decision-making across various power system operations.

Introduction
In recent years, reliance on a stable and continuous power
supply has reached unprecedented levels across all indus-
try and daily life sectors. Consequently, a reliable and re-
silient power supply has become paramount for critical in-
frastructures such as hospitals, transportation systems, com-
munication networks, and manufacturing facilities. At the
same time, the increasing frequency and severity of ex-
treme events, such as extreme weather, natural disasters, and
cyber-attacks, pose critical challenges for maintaining the
resilience and reliability of modern power systems. For in-
stance, in July 2024, Hurricane Beryl caused over 2.7 mil-
lion households and businesses in Houston, Texas, to suf-
fer from prolonged power outages amid high heat and hu-
midity, resulting in at least 42 deaths and over $6 billion
in property damage. These challenges highlight the urgent
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need to enhance the resilience of power grids to ensure they
can withstand and recover from severe disruptions. Given
that the distribution system serves as a crucial link in the
power delivery process from the transmission grid to end-
users, research into resiliency in distribution systems is piv-
otal for enhancing grid resilience and mitigating the impacts
of power outages.

One key indicator of resiliency in distribution systems is
the ability to restore service to critical loads after disruptions
on the main grid (Chen, Wang, and Ton 2017). Following
power outages, DSR aims to rapidly restore affected loads
by leveraging advanced emerging controls once the out-
ages are isolated. Forming microgrids (MGs) with dynamic
boundaries as a service restoration strategy is a promising
solution for enabling effective DSR (Liang et al. 2022; Igder,
Liang, and Mitolo 2022; Zhao and Wang 2022). By incorpo-
rating various energy sources, distributed generators (DGs),
along with remotely controlled switches, a distribution sys-
tem can be partitioned into multiple self-sufficient MGs.
This approach enhances the system’s restoration capabil-
ity and maintains power supply continuity to critical loads,
thereby significantly improving overall grid resilience. In
this paper, we focus on advancing the DSR solution through
the sequential formation of MGs with dynamic boundaries,
for enhancing the resiliency of distribution systems.

The existing methods for solving DSR problems can
be generally grouped into four categories: mathematical
programming methods, heuristic methods, expert systems,
and machine learning methods. Mathematical programming
methods, such as mixed-integer programming (MIP)-based
methods, formulate the DSR problems as mixed-integer lin-
ear or non-linear programming problems and solve them us-
ing off-the-shelf solvers (Wang and Wang 2015; Patsakis
et al. 2019; Yang et al. 2019; Bassey and Butler-Purry 2020;
Chen et al. 2019). While these methods ensure the optimal-
ity of DSR solutions, they typically require accurate phys-
ical models of the distribution systems, which are not al-
ways available in dynamic and uncertain operation scenar-
ios. Additionally, the computational complexity can increase
dramatically with the number of controllable components,
which limits the scalability of the solutions. Heuristic meth-
ods leverage algorithms, such as genetic algorithms, Tabu
search, and greedy algorithms, to search for satisfactory
solutions (Arefifar, Mohamed, and El-Fouly 2012; Sedzro



et al. 2019; Wang et al. 2023). Compared to mathemat-
ical programming, heuristic methods are capable of han-
dling dynamic and uncertain operation environments. How-
ever, these methods also face scalability issues for large-
scale distribution systems. Additionally, the quality of the
solutions can be sensitive to the hyperparameters of heuris-
tic algorithms. Expert systems use knowledge-based tech-
niques, such as rule-based systems and fuzzy logic sys-
tems, to achieve DSR solutions (Chen, Tsai, and Kuo 2005;
Pao-La-Or et al. 2009; Singh, Mehfuz, and Kumar 2016).
These methods are effective in providing consists and quick
decision makings based on encoded knowledge. However,
capturing, encoding, and updating expert knowledge base
can be challenging. Machine learning methods, especially
emerging DRL-based methods, have recently gained atten-
tion for enabling more efficient, adaptive, and robust DSR
solutions in uncertain operation scenarios. These methods
formulate decision making for DSR under uncertainties as
a Markov decision process (MDP) or a partially observ-
able Markov decision process (POMDP) and solved them
iteratively using data-driven DRL techniques such as deep
Q-learning, advantage actor critic (A2C) algorithms, and
proximal policy optimization (PPO) algorithms (Wu et al.
2019; Yao et al. 2020; Gao et al. 2020; Du and Wu 2022).
While DRL-based methods have shown great potential in
efficiently addressing DSR in uncertain operation scenarios,
their data-intensive nature poses challenges in achieving sat-
isfactory DSR solutions for large-scale complex distribution
systems. Various research efforts have been conducted to
tackle the scalability issues, with one main trend being for-
mulating the distribution systems as multi-agent system and
then developing multi-agent DRL methods for DSR (Zhao
and Wang 2022; Yao et al. 2023; Al-Hinai and Alhelou
2021). While these methods have demonstrated efficiency in
addressing DSR in large-scale distribution systems, the co-
ordination between the agents can introduce high communi-
cation overhead and operation complexity. Additionally, as
indicated in Canese et al. and Du and Ding, achieving sta-
ble learning and convergence can be challenging due to the
non-stationary nature of the multi-agent system.

Recently, we have observed the great potential of causal
transformers that widely work as foundation models of
emerging LLMs, revolutionizing various application do-
mains including virtual assistants, healthcare, and educa-
tion (Wei et al. 2024; Thirunavukarasu et al. 2023; Kasneci
et al. 2023). In these applications, causal transformers have
demonstrated their advanced capabilities, such as context
awareness on long-term dependencies, generative sequence
modeling, and large-scale high-dimensional data processing.
Inspired by the immense potential of these models, we pose
a research question (RQ): Can we leverage the powerful
computing capabilities of causal transformers to address the
previously discussed scalability issue of DRLs for solving
DSR? The work presented in Chen et al. 2021 implies poten-
tial direction on addressing this RQ. In Chen et al. 2021, a
causal transformer-powered concept, Decision Transformer,
was proposed to first transform conventional DRL by model-
ing it as a conditional sequence modeling problem, and then
leverage a causally masked transformer originally developed

for LLMs, such as GPT-x model, to generate optimal actions
for the DRL by conditioning on desired returns, past states,
and actions. Given the powerful computing capabilities of
causal transformers in context awareness for long-term de-
pendencies, generative sequence modeling, and large-scale
high-dimensional data processing, it is reasonable to inves-
tigate the concept of a Decision Transformer for address-
ing our RQ and explore a transformative computing solution
for solving the DSR problem. However, to the best of our
knowledge, no existing work has explored the capability of
the Decision Transformer in any power system operations,
including DSR. This gap may be due to the complex inher-
ent physical constraints present in power systems.

To address this gap, in this paper, we aim to develop a
novel Physics-Informed Decision Transformer (PIDT) for
solving the DSR problem. As far as we know, this is the
first paper that explores the capability of foundation mod-
els in revolutionizing conventional DRLs for power system
operations. While our focus is on the DSR problem, the pro-
posed PIDT framework can be generalized to optimize se-
quential decision-making for other power system operations.
The main contributions of our proposed work are twofold:

• A novel PIDT framework is proposed as the first-ever
effort to explore the powerful computing capabilities of
causal transformers, which work as foundation models
for LLMs, in transforming conventional DRL for DSR
operations.

• Comparative studies are conducted to analyze the perfor-
mance of the proposed causal transformer-powered PIDT
framework in its initial development stage for solving the
DSR problem.

The next section illustrates the problem settings for
our work. After this, we describe our proposed causal
transformer-powered PIDT framework for the DSR prob-
lem. The following section shows the case studies and per-
formance evaluations of the proposed PIDT framework.
Conclusions are presented in the last section.

Problem Settings
In our work, we formulate the DSR problem as an MDP
within DRL framework. Table 1 shows the definitions of the
parameters and variables that will be used in this paper.

DSR Problem Modeling
In the initial stage of this research, the proposed DSR
method is modeled as a sequential decision-making process
involving sequences of control actions on switches to restore
loads to their normal operational states. These sequences of
switching actions, referred to as energization paths, are each
associated with a single active distributed generator (DG).
Specifically, each energization path begins at the switch con-
nected to the associated DG and aims to maximize load
restoration by forming multiple microgrids, while ensuring
compliance with all operational and physical constraints.
Additionally, to reduce the space of control actions in the
modeling, we adopt the concept of node cell as introduced in
Chen et al. 2019. A node cell is defined as a set of nodes that



st,S State at time t, the state space
at,A Action at time t, the action space
R Reward
P Transition probability
rt Reward at time t
γ Discount factor
T Time Horizon
L Set of all the loads
N Set of all nodes
C Set of all node cells

xL
i,t, x

N
i,t, x

C
i,t

Energization status of Load i at
time t, energization status of Node
i at time t, energization status of

node cell i at time t

PL
l,t, P

C
l,t, Pl,t

Active power of Load l at time t
when restored, accumulative active
power of all loads in node cell l at

time t when restored, nominal
active power of Load l at time t.

HL
i,t

Squared voltage magnitude of
Load i at time t

Hmin
i , Hmax

i
Minimum and maximum squared

nodal voltage of Load i

V L,p
l,t

Voltage penalty function of Load l
at time t

π Policy function

θ
Learnable parameter for the policy
function (or the proposed PIDT)

Table 1: Definition of variables and parameters

are interconnected directly by non-switchable lines. Conse-
quently, all the lines and loads within a node cell will be
energized simultaneously. Furthermore, in our current work,
the constraints include: 1) the voltage limits, 2) power flow
constraints, 3) DGs’ generation capacities, and 4) topolog-
ical constraints including prevention of loop formation and
ensuring no node cell is visited more than once.

DSR Problem Formulation within a DRL
Framework
We further formulate the sequential decision-making pro-
cess for energization paths in the DSR problem model as an
MDP within the framework of DRL. The formulated MDP
can be described as MDP = {S,A, P,R, γ, T }, where:
• State st ∈ S is defined as the available observation vec-

tor of the overall distribution system at time t. The vec-
tor consists of total loads that are currently restored, the
voltages at the individual load, the status of the operable
switches, and the status of energization trajectories.

• Action at ∈ A is defined as the control actions applied
to the operable switches, specifically selecting which
switch to activate, in order to maximize the load restora-
tion during DSR operations while ensuring operational
and physical constraints.

• Transition probability P : S × A × S → [0, 1]: Given
state st and action at at time t, the distribution system

transits to state st+1 at time step t + 1 according to the
transition probability P (st+1|st, at).

• Time horizon T defines the sequence of decision-making
steps.

• Discount factor γ ∈ [0, 1] is to formulate the importance
of future reward.

• Reward R : S×A → R evaluates the effectiveness of ac-
tion at taken in state st in achieving the objective of our
DSR problem, which is to maximize the load restoration
in the time horizon T while adhering to operational and
physical constraints. Therefore, the reward function will
be formulated as:

rt = Rt(st, at) = RA
t (st, at) + wp ×RV

t (st, at) (1)

where RA
t (st, at) is the reward related to the total active

power restoration at t, which is defined as:

RA
t (st, at) =

(∑
l∈L

xL
l,tP

L
l,t

)
×∆t (2)

By incorporating the concept of node cell, Eq. (2) can be
rewritten as:

RA
t (st, at) =

(∑
l∈C

xC
l,tP

C
l,t

)
×∆t (3)

Additionally, RV
t (st, at) is a penalty term to penalize ac-

tions that violate the voltage constraints. It is defined as:

RV
t (st, at) = −

(∑
l∈L

xL
l,tV

L,p
l,t

)
×∆t (4)

where

V L,p
l,t = max

(
0, HL

l,t −Hmax
l

)
+max

(
0, Hmin

l −HL
l,t

)
(5)

Where V L,p
l,t represents the penalty terms associated with

individual loads to ensure their voltage magnitude do not
violate the constraints. These constraints are formulated
using squared nodal voltage range [Hmin

i , Hmax
i ]. The

weight term wp is set to ensure that the penalty is com-
parable to the active restored power term. Additionally,
in our current initial stage of development, the topolog-
ical constraints are hard-coded with a check function to
automatically filter out violated actions.

Within the DRL framework, the objective of the DSR prob-
lem is to adaptively learn an optimal policy π∗ that maxi-
mizes the expected sum of rewards E[

∑T
t=1 rt] over the tra-

jectory τ = (s1, a1, r1, s2, a2, r2, . . . , sT , aT , rT ).

Proposed PIDT Framework for DSR Decision
Makings

We continue to introduce our proposed innovative PIDT
framework that transforms our formulated DRL framework
by exploring the powerful computing capabilities of causal
transformers. Figure. 1 illustrates the overview structure
our proposed PIDT framework. As shown in Fig. 1, our
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Figure 1: Overview of the architecture of our proposed PIDT
framework.

proposed PIDT framework mainly consists of: 1) an encoder
that consists of linear layers followed by an embedding
layer; 2) a GPT-based causal transformer with a causal self-
attention mask; and 3) a decoder. The encoder is developed
to take a trajectory of rewards, states, and actions as input,
and process the trajectory to generate token embeddings
that will be fed into the GPT-based causal transformer
model for further processing. To achieve this, the trajectory
input τ̂−k:t of length T of the encoder is formulated τ̂−k:t =

{R̂k, sk, ak, R̂k+1, sk+1, ak+1, . . . , R̂t−1, st−1, at−1, R̂t, st}
as illustrated in Fig. 1, which is different from the trajectory
formulated in the original DRL framework that is described
in previous section.

To appropriately formulate the trajectory input, it is es-
sential to define a physics-informed return-to-go reward R̂t

such that 1) the trajectory τ̂−k:t can be effectively processed
by the GPT-based causal transformer, and 2) the objective
and physical/operational constraints for DSR are accurately
characterized. To achieve this, we formulate R̂t by trans-
forming the reward rt for the original DRL framework,
which is defined in Eq. (1), by defining the desired target
return as R̂∗ =

∑T
t=1

(∑
l∈L Pl,t

)
, where Pl,t is nominal

active power of Load l at time t. Based on R̂∗ and rt de-
fined in Eq. (1), we are able to represent R̂∗ in training and
inference procedures as follows:

1) Training Procedure:

R̂t =

T∑
i=t

ri (6)

2) Inference Procedure:{
R̂0 = R̂1 = R̂∗

R̂t = R̂∗ −
∑t−1

i=1 ri, t = 2 . . . T
(7)

After projecting the trajectory τ̂−k:t to the embedding di-
mension, the encoder forwards the token embeddings for
τ̂−k:t to GPT-based casual transformer that is designed to

generate a deterministic action at time t such that at =
π̂(τ̂−k:t), as shown in Fig. 1. The policy π̂ within our PIDT
framework is parameterized by the GPT-based casual trans-
former where the action sequences are generated via autore-
gressive modeling. The policy π̂ is trained by minimizing
the cross-entropy loss between the predicted actions and the
ground-truth actions in a sampled batch of trajectory data.
The output of the GPT-based casual transformer is fed to the
decoder that projects the token embeddings of the predicted
trajectory back to the original action space, resulting in the
final predicted control actions on the operational switches
for DSR.

Model Training. The overall training procedure is de-
scribed as follows:

1) We prepare a dataset D consisting of “offline” trajecto-
ries for DSR operations on the targeted distribution sys-
tem. These trajectories can be collected from experts in
power system domain or can be collected from simple
off-line random walks to generate the sequences of con-
trol actions applied to the operable switches. These tra-
jectories do not need to be optimal.

2) The minibatches of sequence length K from the dataset
D will be fed to the PIDT framework to make decision
on switching actions, and parameters of the PIDT frame-
work will be updated according to the cross-entropy loss.

3) Repeat M episodes for Step 2.

The procedure is shown in Algorithm 1.

Algorithm 1: The PIDT Model Training
Initialize: Dataset D, PIDT model with learnable parame-
ter θ, sample size L, maximum number of episodes M , and
minibatch size b.

1: for episode m = 1 to M do
2: Sample a random minibatch B of b sequences of

length K from D.
3: Obtain predictions using PIDT from the batch B.
4: Calculate the cross-entropy loss between predicted

and ground-truth values of action in sequence.
5: Update θ.
6: end for

Model Inference. The overall inference procedure is
shown in Algorithm 2. It is worth noting that we always keep
only the last K time steps in the trajectory.

Performance Evaluations
In this section, we evaluate the performance of our proposed
PIDT framework in two case studies with the modified IEEE
13-node test feeder (IEEEStd 2014) and the modified IEEE
123-node test feeder (IEEEStd 2014), respectively. To eval-
uate the performance of the PIDT framework, we compare
it with two benchmark DRLs, the PPO algorithm (Schulman
et al. 2017), and the A2C algorithm (Mnih et al. 2016), in the
DSR operation.



Figure 2: The physical topology and the corresponding
graph representation of the modified IEEE 13-node test
feeder.

Modified IEEE 13-Node Test Feeder
In this case study, we use a modified IEEE 13-node test
feeder that is available in the Open Distribution Simulator
Software (OpenDSS). The system topology and its corre-
sponding node-cell graph are shown in Fig. 2. As illustrated
in Fig. 2, in this system, there is a substation located in a
node named “source” that is connected to Node 650, with an
additional node (namely Node 670) that connects between
Node 632 and 670. After reformed into node cells, there will
be a total of 5 node cells to be energized.

Additionally, based on objective and physical/operational
constraints for the DSR operation, the ground-truth ener-
gization path in this case is determined as (Node 0) → (Node
1) → (Node 3) → (Node 4). And the corresponding final re-
stored power should be 3006.509 kW, which is considered
as the objective of the DSR operation and is also the desired
target return in our PIDT method. The learning curves for
the average return of the first 1500 gradient updates by using
our PIDT method as well as the other two benchmark DRL
methods are shown in Fig. 3. We would like to mention that,
as described in the section of our proposed PIDT framework,
return is defined as the accumulated reward. The evaluation
results of the three methods across 50 independent trails in
the inference stage are stated in Table 2. As shown in Ta-
ble 2, we compare the performance of these three methods
from four perspectives, including average return, standard

Algorithm 2: Inference of the Trained PIDT Model
Initialize: PIDT model with trained parameter θ, return-
to-go R̂0, and initial state of the distribution system
s0.

1: Set R̂1 ← R̂0, s1 ← s0, τ ← (s1, R̂1)
2: for time step t = 1 to T − 1 do
3: Obtain at ← PIDT (τ) and rt ← Rt(st, at)
4: Observe the next state st+1 after taking switching ac-

tion at, and obtain R̂t+1 ← R̂t − rt.
5: Append (at, st+1, R̂t+1) to τ , and keep the last K

time steps of τ (i.e., τ ← τ−K:t+1).
6: end for

Figure 3: Learning curves for the average returns of the first
1500 gradient updates using our PIDT method and the two
other benchmark DRL methods, PPO and A2C, for the DSR
operations in the modified 13-node test feeder. The curve is
updated per hundred gradient updates.

Evaluation
Results in

the Inference
Stage

A2C PPO Our
method

Average
return 26659.982 14810.724 20361.480

Standard
deviation of

returns
643.940 8622.008 6130.914

Number of
optimal

solutions
17 18 42

Number of
suboptimal
solutions

33 32 8

Table 2: Further performance comparison between our PIDT
method and other two benchmark DRL methods for the DSR
operation in the modified IEEE 13-node test feeder

deviation of return values, the number of optimal solutions
in the 50 trials, and the number of suboptimal solutions. Ad-
ditionally, a bar char in Fig. 4 shows more insights of the
simulation results, which presents the distribution of power
restoration levels in the 50 independent trials using the three
methods, respectively.

From Figs. 3 and 4 and Table 2, we can observe that,
during the learning process, the A2C method demonstrates
the quickest convergence and achieves the highest training
return. However, it typically settles for a suboptimal so-
lution, maintaining power restoration within the range of
[1000, 3006] kW for the majority of trials. In contrast, our
method, while not showing the fastest convergence or the
highest training return, achieves optimal solutions in 42 out
of 50 independent trials. This is reasonable since the return-



Figure 4: Distribution of power restoration levels in the 50
independent trials using the three methods, respectively, in
the modified 13-node test feeder.

to-go reward defined in our proposed PIDT method is dif-
ferent from the rewards in conventional DRL. Additionally,
from the simulation results, we can also see that the perfor-
mance of the PPO method falls between that of A2C and our
PIDT methods.

Modified IEEE 123-Node Test Feeder
In this case study, we evaluate the performance of our PIDT
method by comparing with the PPO- and A2C-based bench-
mark DRL methods in DSR operations for a modified 123-
node test feeder. The system topology and its corresponding
node cell graph are shown in Fig. 5. As shown in Fig. 5,
in the modified 123-node test feeder, there are five energy
sources in the system, two of which are substations located
in Nodes 150 and 350, and the three other sources are dis-
tributed generators (DGs) located in Nodes 95, 250 and 450.
Additionally, the system has a total of 15 node cells to be
energized. We also incorporate the modification on the en-
ergization ability to the DG in Node 250, such that this DG
can only fully energize loads in Node Cell 3 and Node Cell
2. The DG will be automatically shut down if it tries to en-
ergize more loads other than those in Node Cell 3 and Node
Cell 2.

The actual total power of the system, if all the loads are
energized properly, would be 3350.757 kW, which is consid-
ered as the objective of the DSR operation and is also the de-
sired target return in our PIDT method. An expected optimal
solution would power all the loads properly. However, due to
the large-scale and complex topology of the modified IEEE
123-node test feeder, a simple optimal solution to power all
the loads is very challenging. The learning curve of the first
6000 gradient updates using our PIDT method and the two
benchmark DRL methods are shown in Fig. 6. As shown
in Fig. 6, for the modified IEEE 123-node test feeder that
has large-scale and complex topology, our method outper-
forms the other two methods in convergence rate and con-
vergence reward in general. The evaluation results of these
three methods across 50 independent trials in the inference

Figure 5: The physical topology and the corresponding
graph representation of the modified IEEE 123-node test
feeder.

Figure 6: Learning curve for the average return of the first
6000 gradient updates using our PIDT method and the two
other benchmark DRL methods, PPO and A2C, for the DSR
operations in the modified 123-node test feeder. The curve
is updated per hundred gradient updates.

stage are presented in Table 3. As shown in Table 3, our pro-
posed PIDT method can achieve near-optimal solutions in
30 of the 50 independent trials, which outperforms both the
PPO and A2C methods (in this case study, the near-optimal



Figure 7: Distribution of power restoration levels in the 50
independent trials using the three methods, respectively, in
the modified 123-node test feeder.

solutions are defined as the solutions whose final restored
power is more than 3000 kW).

Furthermore, Fig. 7 provides deeper insights into the sim-
ulation results shown in Table 3 by illustrating the distri-
bution of power restoration levels across 50 independent
trials using the three methods. It shows that our method
achieves near-optimal power restoration in 30 trials and be-
tween 2000 kW to 3000 kW in the remaining 20 trials. In
contrast, the solutions generated by the A2C-based method
predominantly fall within the range of 0 kW to 1000 kW.
The PPO-based method shows a more varied distribution
across all three ranges, with 12 trials achieving near-optimal
results. These findings underscore the superior performance
of our method over the other two conventional DRL meth-
ods.

Conclusions
While different DRL-based approaches have been developed
for effectively addressing DSR challenges amidst uncertain
operational conditions, the data-intensive nature of DRL
presents barriers to achieving robust solutions for large-
scale, complex distribution systems. This paper explores an
innovative strategy inspired by the transformative impact
of emerging causal transformers that widely work as foun-
dation models for LLMs. Specifically, we present a first-
ever effort to explore the powerful computing capabilities
of a GPT-based causal transformer to tackle scalability chal-
lenges inherent in traditional DRL methods for DSR opera-
tions. This study marks the pioneering application of emerg-
ing causal transformers to revolutionize conventional DRL
practices in power system operations. Our contributions are
twofold: 1) introducing a novel PIDT framework that ex-
plores a GPT-based causal transformer to transform conven-
tional DRL methods for DSR operations, and 2) conducting
comparative studies to analyze the performance of the pro-
posed PIDT framework in its initial development stage for
solving DSR problem. Simulation results underscore the ef-
fectiveness of our proposed PIDT method in resolving DSR

Evaluation
Results in

the Inference
Stage

A2C PPO Our
method

Average
return 47414.036 -4659896.17 100915.721

Standard
deviation of

returns
1675.582 5724583.67 19100.489

Average
power

restoration
(kW)

988.044 2452.702 2910.923

Standard
deviation of

power
restorations

(kW)

29.400 662.671 369.444

Number of
near-optimal

solutions
0 12 30

Table 3: Further performance comparison between our PIDT
method and other two benchmark DRL methods for the DSR
operation in the modified IEEE 123-node test feeder

problems within large-scale distribution systems. In our on-
going work, we are leveraging the insights gained from our
current initial-stage development to further enhance the scal-
ability and resilience of our proposed PIDT method. While
our primary focus in this paper lies in DSR, the proposed
PIDT framework demonstrates potential applicability in op-
timizing sequential decision-making across a spectrum of
power system operations.
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