Cascading Failure Prediction in Power Grid Using Node and Edge Attributed
Graph Neural Networks

Karuna Bhaila', Xintao Wu'

'Department of Electrical Engineering and Computer Science
University of Arkansas
{kbhaila, xintaowu } @uark.edu

Abstract

In recent years, probabilistic data-driven methods have been
gaining popularity for the study of cascading failures in power
systems. These data-driven models are well-suited for analysis
of large exploration spaces, historical event data, and online
cascade prediction compared to computationally expensive
physics-based methods. Motivated by the nature of failure
propagation during cascade events, in this work, we propose
using Graph Neural Networks (GNNs) to study cascading fail-
ures in power grids initiated due to contingencies introduced to
the network’s profile. The goal is to train GNN models using
network profiles modified to simulate contingencies of vary-
ing sizes and predict the vulnerability of buses and branches
after the cascade event has stabilized. We empirically verify
the performance of several GNN models on these tasks. We
also formulate a graph convolution mechanism to perform
message-passing between power grid components and effec-
tively utilize both bus and branch features. Our experimental
evaluation demonstrates the efficiency of GNN-based methods
for end-to-end cascading failure prediction on the IEEE 39-bus
and 118-bus test systems.

Introduction

Graph data representation has been gaining wide traction in
various scopes within natural sciences due to its adaptability
in modeling complex and structured data. Simultaneously,
researchers in these fields have also adopted Graph Neu-
ral Networks for predictive and analytical purposes on such
data (Gilmer et al. 2017; Sanchez-Gonzalez et al. 2020). Like-
wise, graph representation is applicable for data modeling
in power systems as their grid structures can naturally be
formulated as graphs preserving their non-euclidean proper-
ties. This has motivated the use of GNNs in power systems
studies for predictive, diagnostic, and mitigative purposes.
For instance, GNNs have recently been used for power flow
calculations, cascading failure event analysis, outage predic-
tion, time series prediction, fault diagnosis, and so on (Liao
et al. 2021).

Cascading failure refers to the mechanism of failure prop-
agation in physical systems triggered by a set of initial dis-
turbances causing subsequent failures in other system com-
ponents (Dobson et al. 2007). In power systems, cascading

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

failures may be triggered by weather-related events, natu-
ral disasters, personnel errors, overloading, line or generator
outages, or instability (Vaiman et al. 2012). These initial
disturbances may cause small-scale outages or widespread
blackouts due to failure propagation. Grid failures may also
affect operations in other energy networks due to the cou-
pling of such infrastructure networks with power systems. In
any case, many services are interrupted, adversely affecting
society and/or the economy at large. For the prevention, de-
tection, and mitigation of such disastrous events, researchers
have largely emphasized the study of cascading failures in
power systems.

Cascading failure prediction plays a major role in the pre-
vention of cascade events as the mechanisms can be used to
identify and localize high-risk areas and subsequently rein-
force protective measures ahead of time. With the increased
availability of outage data based on cascading failure models,
researchers have focused on developing machine learning-
based algorithms to predict cascading failures. For example,
Shuvro et al. (2019) utilize power grid operating parameters
and cascading failure model features to predict cascading
failure size using various linear classifiers such as logistic
regression, k-nearest neighbors, decision tree, random forest,
support vector machine, and AdaBoost. For further granu-
larity, Zhang et al. (2021) utilize topology and power flow
information to evaluate bus vulnerability using an XGBoost
classifier. Liu et al. (2021) employ Graph Convolutional Net-
work (GCN) (Kipf and Welling 2017) within a physics-based
cascade path search algorithm and predict branch failure prob-
ability using the network state at each iteration of the search
algorithm and guide the path search with GNN predictions.
Varbella, Gjorgiev, and Sansavini (2023) investigate the use
of GNNs s for the task of predicting a graph-level binary value
of whether the network conditioned on a set of single or mul-
tiple component failures will result in the load demand not
being served at the end of the cascade event.

In this work, we investigate a similar use of GNNs for end-
to-end cascading failure prediction. However, in contrast to
the network-level classification tasks studied in earlier works
with GNNs, we aim to predict the effect of initial contingen-
cies on individual components of the power network. This
is a comparatively more fine-grained task that can provide
additional insights regarding failure propagation and identify
critical regions in the power system. This knowledge allows

network operators to implement preventive strategies and
reduce the risk of blackouts (Vaiman et al. 2012). To the best
of our knowledge, this is the first work to explore the use
of GNNs for end-to-end prediction of the effects of cascad-
ing failure for buses and branches simultaneously. Although
Liu et al. (2021) explore the use of the GCN in predicting
line outage, their method uses the GCN as a guide to speed
up the search for cascading failure paths within a physics-
based search model. In our framework, we rely only on the
network profile containing initial contingencies to make the
final predictions rather than iteratively stepping through the
cascade process to find failure paths. This approach reduces
the computational overhead of calculating multiple power
flow solutions in each iteration. We achieve this by model-
ing graph convolutions that mimic failure propagation by
means of message-passing among the network components.
The propagated messages encode information regarding the
operational status of the buses and branches conditioned on
the contingencies. From the graph convolutions, we obtain
vector representations for the components that can be used as
input for downstream classifiers to categorize their status as
fail or operational at the end of the cascade event. We train
the model to simultaneously predict the failure probability of
both buses and branches. The trained model can thus be de-
ployed to detect faults in power systems before catastrophic
events occur.
We summarize our main contributions as follows:

* We formulate Node and Edge Attributed GNN (NEA-
GNN), a graph convolution method that can effectively
utilize bus and branch attributes and map both components
into a latent embedding space simultaneously.

* We propose a general framework to train GNN models us-
ing cascading failure data and predict the vulnerability of
grid components in a data-driven and end-to-end manner.

* We generate a cascading failure dataset using an AC-based
cascade simulation model and empirically evaluate vari-
ous GNN methods and the proposed convolution approach.
The experimental results show that the proposed method
is effective for vulnerability prediction of power grid com-
ponents.

Methods
Data Collection and Modeling

Data-centric approaches in machine learning generally re-
quire a large amount of data for training. However, histori-
cal occurrences of cascading failures are infrequent (Guo
et al. 2017) and far too few to train ML-based methods.
Nonetheless, the development of cascade simulation models
for power grids (Dobson, Carreras, and Newman 2005; Pam-
bour et al. 2017; Song et al. 2016; Noebels, Preece, and Pan-
teli 2022) has made it possible to generate large-scale data for
resilience studies and cascading failure analysis. These simu-
lation methodologies model various physical mechanisms of
real-world cascading failures in power systems. The models
may consider dynamic or steady-state systems and assume
different operating conditions and power flow mechanisms.
In this work, we utilize an AC-based cascading failure simu-
lation model, AC-CFM (Noebels, Preece, and Panteli 2022)

to generate synthetic simulation data. AC-CFM is a Matlab-
based cascading failure model that has been validated using
recommendations of the IEEE PES working group (Vaiman
et al. 2012). The simulation model incorporates dynamic
phenomena and protection mechanisms using static repre-
sentations and handles cascades recursively. AC-CFM also
handles non-convergence in AC power flows by disabling line
constraints, disabling voltage limits, and making all loads
dispatchable. This makes the simulation model stable for
very large contingencies. For more details regarding the sim-
ulation model, we refer readers to the reference (Noebels,
Preece, and Panteli 2022).

For a given power system, we first define a default state of
the network that is fully operational and does not trigger any
cascade events. For a network with IV branches, a scenario is
obtained by simulating k£ < N branch failures as the initial
contingencies;v k is chosen such that cascade scenarios with
small as well as very large contingencies are generated. For
each scenario, we first randomly sample &, the number of
initial failures. Then, the first failure component is randomly
picked from all branches in the network. The subsequent
failures are then sampled such that they are connected to at
least one contingency sampled before them. This allows us
to simulate real-life failure events where component failures
may occur geographically close to each other. The AC-CFM
model incorporates the initial set of contingencies into the
network by disabling their status before the start of the simu-
lation. The model then runs a cascade simulation involving
recursive computations of power flows and applications of
protection mechanisms. Once the cascade halts, AC-CFM out-
puts the status of the entire network and its components. We
utilize these final operational statuses of buses and branches
as the target labels for the corresponding scenario. For bus
and branch features, we utilize the network state parameters
and initial power flow solutions of the scenario.

To model the simulation data for graph-based approaches,
we represent each scenario as a directed and unweighted
graph G = (V, £) where V denotes the node set correspond-
ing to the buses and £ € V x V denotes the edge set cor-
responding to the branches. Additionally, we represent bus
features using a matrix X € RIVI*Pv and branch features
as Z € RI€IxXPe. Dy, and Dg refer to the number of bus
attributes and branch attributes respectively. Echoing the rep-
resentation of contingencies in AC-CFM, we include branch
operational status at the start of the cascade as a binary at-
tribute in Z to denote whether a branch is included in the
contingency set of that scenario. Furthermore, label vector
Y = {0, 1}V represents the post-cascade status of all buses
in the network, where y,, = 0 indicates that bus v was tripped
during the cascade and y,, = 1 denotes that v is operational
after the cascade. We define a similar label vector for all
edges in the network as F' = {0, 1}/€l where f. = 0(1)
denotes the fail (operational) status of branch e. We further
define an incidence set Z € V x £ containing node-edge pairs
to represent the bus and branch incidence relationship of the
network. We use Z(v) to denote the neighborhood of v in Z,
i.e., the edges incident on v and Z(e) to mean the set contain-
ing the source and sink nodes of e. Our goal here is to train a

graph-based model using bus features X and branch features
Z that reflect the initial state of the network conditioned on
the contingency set, along with the grid topology, to compute
bus and branch embeddings and ultimately predict their final

operational states Y and F.

Graph Neural Networks

Motivated by the success of convolutional neural networks
in the image domain, GNNs were developed to extend con-
volutions to the graph domain (Wu et al. 2020). Primarily,
GNNss learn vector representations for a target node in a
graph through iterative information propagation in its neigh-
borhood. The learned representations can be used for various
supervised and unsupervised downstream tasks. Based on the
mechanisms of propagation, GNNs can be broadly catego-
rized into spectral-based and spatial-based methods. Spectral
GNNs define graph convolutions based on spectral graph
theory and use the graph Laplacian for information propaga-
tion. Spatial GNNSs operate in local neighborhoods to update
node representation as an aggregate of its neighbors’ repre-
sentations. Generally, a k-layer GNN consists of k sequential
graph convolutional layers that implement message passing
and neighborhood aggregation to update node representa-
tions. The updating process of the k-th layer in GNN can be
represented as

hﬁ/(v) = AGG*({h*~t vu e N(v)}),

(H
h} = UPDATE (h}(,; W"),

where h” is node v’s representation at the k-th layer, A'(v) is
its neighborhood set obtained from £. AGG*(-) is a differen-

tiable aggregator function and UPDATE" (+) is a non-linear
function with learnable parameters W* of the k-th layer.

GCN (Kipf and Welling 2017) is one of the earliest and
most widely used GNN methods. GCN is a spectral con-
volution approach and uses a first-order approximation of
the graph Laplacian to update node embeddings in each
layer. GraphSAGE (Hamilton, Ying, and Leskovec 2017)
is a spatial-based method that updates node representations
based on aggregates from the node’s sampled neighborhood
in an inductive manner. Both GCN and GraphSAGE do not
incorporate edge features when updating node representa-
tions and assign equal importance to all neighbors of a node
for aggregation. Graph Attention Network (GAT)(Velickovic
et al. 2018) is another spatial-based method and adopts the at-
tention mechanism to learn edge-specific weights using node
and/or edge features during convolution. Graph Isomorphism
Network (GIN) (Xu et al. 2019) is another class of spatial
GNN developed to achieve maximum expressivity in GNNs.
GIN learns to distinguish different graph structures by learn-
ing different embeddings to represent non-isomorphic graphs.
Similar to GCN and GraphSAGE, GIN also uses only node
features in its update function.

Although some of the GNNs above may utilize edge fea-
tures, the models were primarily designed to update node
embeddings. The node embeddings from the final layer can
be used as input for a feed-forward neural network to obtain
the node status predictions as g, for all v € V. Moreover, in

failure propagation, the tripped branches are likely incident
on or at least in the vicinity of the tripped buses. Therefore
we can simply utilize the dot product of embeddings of node
pairs to quantify the probability of failure of the edge between
them as follows:

fo=h,-h, 2

where v and v are the nodes at the endpoint of edge e.

Node and Edge Attributed Graph Convolutions

It is reasonable to assume that incorporating edge features
during training can help the model learn better embeddings
since these features may contain meaningful information cor-
related with target variables. Simply using these features to
compute edge weights as in GAT may be inadequate and
cause loss of information when reducing multi-dimensional
features to a scalar value. This could affect model perfor-
mance, especially for edge-related prediction tasks.

Here, we propose to utilize edge attributes during graph
convolution and implement message-passing between node
pairs as well as node-edge pairs. We refer to this modified
convolutional approach as NEA-GNN. Our formulation of
NEA-GNN incorporates the use of edge representations dur-
ing message-passing similar to the graph convolutions used
in (Kearnes et al. 2016) where information is exchanged be-
tween nodes and edges. In NEA-GNN, node pairs exchange
and aggregate information using their neighbors’ representa-
tions similar to any standard GNN. Additionally, we define
weights in the convolution layer to linearly transform the
edge features. Further, to facilitate information propagation
between nodes and edges, we implement message-passing
between these components using their incidence relations. In
other words, we update node representations as a combination
of the aggregated node neighbors’ representations and the
aggregated edge neighbors’ representations. We also update
edge representations by combining their linear transforma-
tions with aggregated node neighbors’ representations. This
bidirectional flow of information results in implicit message-
passing between the edges of the graph.

However, in small or very sparse graphs, such an approach
might inadvertently result in over-smoothing of the embed-
dings even during short-range propagation. Motivated by the
use of alternating node and edge embeddings update mech-
anism in CensNet (Jiang, Ji, and Li 2019), we propose to
append node-edge and edge-node message-passing mecha-
nisms to the convolution layer in turns. In odd-numbered
layers, we update edge embeddings using only edge features
whereas we update node embeddings using node features as
well as propagated information from edges as shown below:

hf =W} hi !, 3)
h%) = AGG" ({hf,Ve € Z(v)}), 4)
hY = o [Wh- (Bl Ul HI W5 - B, [,)

where || refers to the concat operation, Z(v)is the edge neigh-
borhood of v, and h? and h? correspond to the branch fea-
tures z. and bus features x,, respectively. In even-numbered
layers, node representations are updated using only node

neighbors’ embeddings whereas the edges additionally re-
ceive information propagated from connected nodes. We
formulate this type of convolution as

hy = W5 - {hy ' Uhj,,,}, (6)
h}) = AGG* ({h},vv € Z(e)}), (7
hY =0 [WE- B Whenk [, ®)

where Z(e) denotes the node neighborhood of e. The node
and edge embeddings are updated in each convolutional layer
but the information is propagated between them in an alter-
nating manner. From the final convolution layer, we obtain
embeddings for both nodes and edges that can be utilized
for any downstream task by feeding them into a task-specific
learning model. For cascading failure prediction, we train
separate feed-forward neural network classifiers for each
component to predict their respective failure status. We ob-
tain the predicted probabilities fe and g, from the classifiers
using h, and h,, as inputs respectively. Algorithm 1 shows
this process for obtaining node and edge predictions via al-
ternating convolutions for a single graph.

Algorithm 1: Forward pass using NEA-GNN

Input: Graph G = (V, &), node features X, edge features
Z, node labels Y, edge labels F', number of layers
K, differentiable aggregator functions AGGF, Vk e
{1,..., K}, weight matrices W¥, Wk, W¥ and W}
Vk € {1,..., K}, classifiers MLPy, and MLP¢
Output: Bus predictions g, for all v € V and branch pre-
dictions f, forall e € £
> NEA-GNN for node and edge embeddings

I: h «x, Vv eV

2: hY 2z Vee &

3: fork=1,...,Kdo

4: if k is odd then

5: he « WE . hi-1 vee €

6: h%) < AGG" ({hf,Ve € Z(v)}), Yo €V

7. ht « o [W’g B U bk YW hg(v)} Yo €
1%

8: h* < o(hk), Vec &

9: else

10: hi < W5 - {h{~" Uhf, }, Vo eV

11: h%) AGG® ({hf, Vv € Z(e)}), Ve € €

12: ht « o [W’f-h’g—luwfj-hg(e)} Vee&

13: h* « o(hk), Vv e v

14: end if

15: end for

> Feed-forward networks for node and edge
predictions
16: 9, + MLPy(h¥), Yo €V
17: fo < MLPg(hX), Ve € £

The predicted node and edge probabilities can be used to
train the embedding model and the classifier(s) using a joint

loss approach. This joint loss is defined as

L= "Ufe f)+ D i), ©)

ecf veV

where [(-) refers to the cross-entropy loss. When the target
predictions have a highly skewed distribution, we apply a
weighted cross-entropy loss to give more weight to scenarios
from the minority class. For instance, in cascading failure
scenarios where failures occur less frequently, we weigh the
buses and branches with target status fail higher than the ones
with target status operational.

Empirical Evaluation
Datasets

The IEEE test case systems have been widely used for bench-
marking methods developed for power systems, including
predictive ML tasks (Varbella, Gjorgiev, and Sansavini 2023;
Liu et al. 2021; Zhu et al. 2022). In this work, we evaluate
graph-based approaches using the standard 39-bus and the
118-bus test systems provided in the MATPOWER toolkit in
Matlab (Zimmerman, Murillo-Sanchez, and Thomas 2011).
For 118-bus that does not contain line ratings, we use values
from (Blumsack 2006). We further reduce some line ratings
to induce severe failures in the networks. Using AC-CFM
as described in the earlier section, we generate 5000 scenar-
ios for each of the test case systems. We run all simulations
using the default parameters of AC-CFM and we use the
Newton-Raphson method from MATPOWER as the power
flow solver.

Dataset 39-bus | 118-bus
#Buses 39 118
#Branches 46 186
#Contingencies 1:10 1:40

% Total bus failures 40.5 12.1
% Total branch failures 51.3 244
Bus label homophily 85.2 92.6
Branch label homophily | 79.6 78.5

Table 1: Dataset statistics

Table 1 reports the statistics regarding the scenarios gen-
erated under these settings. We report the target labels’ distri-
butions by calculating an aggregate over the number of failed
buses and branches in each scenario. The label homophily
measure indicates how likely two connected buses (branches)
are to have the same status on average over all scenarios.
Using the power flow solutions of each scenario, we design
meaningful bus and branch features based on the protection
mechanisms triggered in the AC-CFM model when perform-
ing the simulations. For each bus, we obtain 9 computed
using the bus type, real power generation, reactive power
generation, voltage magnitude, voltage angle, voltage limits,
and flow limits. Similarly, for branches, we obtain 9 features
computed using information regarding the operational status,
resistance, reactance, line ratings, active power flow, reactive
power flow, and branch flow ratio.

Table 2: Performance comparison of different GNN models

Branch Bus
Data Model Balanced Balanced
Accuracy (%) accuracy (%) Accuracy (%) accuracy (%)
GCN 68.5£1.2 68.1£1.2 75.9+0.8 73.3£1.2
GraphSAGE 80.8+0.2 80.7+£0.2 82.84-0.6 81.31+0.8
39-bus GIN 81.4+0.4 81.3+0.4 80.1+0.4 78.5+0.6
GAT-A 74.94+1.7 74.74+1.7 78.84+0.8 76.6+1.2
GAT-B 80.5+0.6 80.3+0.6 80.9+0.5 79.040.6
NEA-GNN 82.0+0.9 82.0+0.8 80.6+1.1 79.1£1.3
GCN 59.0+16.4 63.14+6.4 87.8+0.3 50.040.0
GraphSAGE 70.94+ 2.0 73.0+£0.9 89.64+0.3 64.3+1.0
118-bus GIN 60.84+ 1.9 68.3+1.0 88.1+£0.3 59.14+0.6
GAT-A 65.0+ 2.1 70.9£1.1 88.7+0.5 60.240.7
GAT-B 76.24+ 0.8 76.4+0.3 88.940.2 62.0£1.9
NEA-GNN 88.8+ 0.5 79.5+1.7 89.74+0.3 60.7+1.2

Experimental Setup

We describe the model architectures and hyperparameters
used for training and evaluation in this section. For each
dataset, we randomly split the 5000 scenarios into training,
validation, and test sets with a 60-20-20 ratio respectively. To
obtain node and/or edge embeddings we implement GCN,
GraphSAGE, GAT, GIN, and NEA-GNN discussed in prior
sections. For GAT, we train two variations, GAT-A which
uses only node features to compute attention coefficients, and
GAT-B which additionally uses edge features for attention.
Both models, however, output only node embeddings at the
final layer. The embedding models are implemented with 2
layers of convolution and 16 hidden dimensions and mean
aggregation. We use a fully connected feed-forward neural
network with 2 layers and 128 hidden dimensions as the
classification module. Where applicable we define separate
classification modules for the nodes and edges. We use ReLU
as the activation function followed by dropout and train all
models with Adam optimizer. We further fix the learning rate
at 0.001 and the batch size at 64. For class-weighted loss, we
vary the weights in {0.1, 0.5, 1.0}. We use the same parameter
settings for all baseline models as well. We conduct experi-
ments with 10 random seeds and report the performance as an
average along with their standard deviation. Performance is
evaluated in terms of accuracy and balanced accuracy as one
of the datasets has a heavily imbalanced class distribution.
All models are implemented using PyTorch-Geometric (Fey
and Lenssen 2019) and are run on GPU Tesla V100 (32GB
RAM). The datasets and implementation are available at
https://github.com/karuna-bhaila/gnn-cascading-failure.

Results

We report the results of our experiments for all GNN mod-
els in Table 2. For the 39-bus system, we observe that the
proposed method NEA-GNN outperforms all other GNN
models for the branch failure prediction task with a slight
trade-off in the bus failure prediction task. More notably,
compared to GAT-B which uses branch features only in the
attention module, NEA-GNN implements message-passing
using both node and edge features which allows the model to

learn better edge representations and more accurate branch
prediction results. We also observe that GAT-B has a 6% gain
in branch prediction accuracy compared to GAT-A which
further highlights the contribution of edge features in graph
convolutions albeit indirectly. Despite not using edge fea-
tures, GraphSAGE and GIN show good performance. We
conjecture that this is due to the physical proximity of the
tripped buses and branches and the small network size.

For the 118-bus dataset, the proposed model NEA-GNN
outperforms all models for both branch and bus prediction
tasks in terms of accuracy. Specifically, NEA-GNN improves
branch prediction performance by a fairly large margin over
the baselines. Altogether, NEA-GNN has a collective im-
provement of approximately 8% over GAT-B when consid-
ering bus and branch prediction simultaneously. Similar to
the 39-bus dataset, we observe that GAT-B improves over
GAT-A’s performance with an 11% gain in accuracy and addi-
tionally performs better than the other three baselines. These
results demonstrate the effectiveness of utilizing branch fea-
tures for graph convolutions. In particular, using edge features
for message-passing in NEA-GNN allows the model to prop-
agate the failure status of the branches in the contingency
set throughout the network since the initial status is included
as one of the edge features. Furthermore, considering both
datasets, NEA-GNN has the least trade-off between bus and
branch prediction performances. This implies that the pro-
posed convolution approach can scale well between datasets
of different sizes, especially compared to baselines such as
GCN which performs quite poorly for the 118-bus dataset;
the bus prediction balanced accuracy of GCN indicates that
the model outputs are synonymous with majority class voting,
i.e., it predicts the same majority class for all nodes. Thus,
we conclude that the proposed GNN model can effectively
utilize node and edge attributes to learn embeddings simul-
taneously with better collective performances for bus and
branch failure prediction on different network sizes.

Conclusion and Future Work

In this work, we conducted an experimental study on the
use of graph-based convolution approaches for end-to-end

prediction of cascading failures in power grids. First, we
created a large dataset by simulating cascading failures con-
ditioned on branch failures using an AC-based cascading
failure model. We evaluated state-of-the-art GNNs on the
simulated dataset for failure prediction in power grids. We
also formulated and evaluated a convolution method that per-
forms implicit message-passing between graph edges. The
model uses carefully selected grid attributes and power flow
variables as features and predicts the failure status of buses
and branches. Our experimental results demonstrate that at-
tributed graph convolution methods are capable of learning
to predict component failure status just from observing their
starting state potentially helping in identifying high-risk areas
to implement precautionary measures.

There are several possible future works in this direction.
Here, we evaluated our methods on scenarios that were not
observed during training but generated from the same grid
system nonetheless. We will extend this work to study GNN
performance in the transfer learning scenario where the grid
systems used to generate training and testing scenarios are
different. Furthermore, in contrast to the implicit message-
passing explored here, we will study the role of edge features
and develop models that perform direct message-passing
between them to facilitate learning in feature-rich graphs.
Moreover, in this study, we assumed local failure propagation
whereas, non-local and long-range failure propagation may
also have disastrous consequences. We will investigate these
phenomena in subsequent works.

Acknowledgements

This work was supported in part by NSF 2119691. We thank
Dr. Roy McCann and Mojtaba Ahanch for their helpful dis-
cussions regarding data generation.

References

Blumsack, S. 2006. Network topologies and transmission
investment under electric-industry restructuring. Carnegie
Mellon University.

Dobson, I.; Carreras, B. A.; Lynch, V. E.; and Newman, D. E.
2007. Complex systems analysis of series of blackouts: Cas-
cading failure, critical points, and self-organization. Chaos:
An Interdisciplinary Journal of Nonlinear Science.

Dobson, 1.; Carreras, B. A.; and Newman, D. E. 2005. A
loading-dependent model of probabilistic cascading failure.
Probability in the Engineering and Informational Sciences.
Fey, M.; and Lenssen, J. E. 2019. Fast Graph Representation
Learning with PyTorch Geometric. arXiv:1903.02428.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural Message Passing for Quantum
Chemistry. In ICML.

Guo, H.; Zheng, C.; Iu, H. H.-C.; and Fernando, T. 2017. A
critical review of cascading failure analysis and modeling of
power system. Renewable and Sustainable Energy Reviews.
Hamilton, W. L.; Ying, Z.; and Leskovec, J. 2017. Inductive
Representation Learning on Large Graphs. In NeurIPS.
Jiang, X.; Ji, P;; and Li, S. 2019. CensNet: Convolution with
Edge-Node Switching in Graph Neural Networks. In IJCAL

Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V. S.; and
Riley, P. 2016. Molecular graph convolutions: moving beyond
fingerprints. J. Comput. Aided Mol. Des.

Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Classifi-
cation with Graph Convolutional Networks. In /ICLR.

Liao, W.; Bak-Jensen, B.; Pillai, J. R.; Wang, Y.; and Wang,
Y. 2021. A review of graph neural networks and their appli-
cations in power systems. Journal of Modern Power Systems
and Clean Energy.

Liu, Y.; Zhang, N.; Wu, D.; Botterud, A.; Yao, R.; and Kang,
C. 2021. Searching for Critical Power System Cascading
Failures With Graph Convolutional Network. /EEE Trans.
Control. Netw. Syst.

Noebels, M.; Preece, R.; and Panteli, M. 2022. AC Cascading
Failure Model for Resilience Analysis in Power Networks.
IEEE Systems Journal.

Pambour, K. A.; Erdener, B. C.; Bolado-Lavin, R.; and Di-
jkema, G. P. 2017. SAInt—A novel quasi-dynamic model for
assessing security of supply in coupled gas and electricity
transmission networks. Applied energy.

Sanchez-Gonzalez, A.; Godwin, J.; Pfaff, T.; Ying, R.;
Leskovec, J.; and Battaglia, P. 2020. Learning to simulate
complex physics with graph networks. In ICML. PMLR.
Shuvro, R. A.; Das, P.; Hayat, M. M.; and Talukder, M. 2019.
Predicting Cascading Failures in Power Grids using Machine
Learning Algorithms. In 2019 North American Power Sym-
posium (NAPS).

Song, J.; Cotilla-Sanchez, E.; Ghanavati, G.; and Hines, P.
D. H. 2016. Dynamic Modeling of Cascading Failure in
Power Systems. IEEE Transactions on Power Systems.
Vaiman, M.; Bell, K.; Chen, Y.; Chowdhury, B.; Dobson, L;
Hines, P.; Papic, M.; Miller, S.; and Zhang, P. 2012. Risk
Assessment of Cascading Outages: Methodologies and Chal-
lenges. IEEE Transactions on Power Systems.

Varbella, A.; Gjorgiev, B.; and Sansavini, G. 2023. Geometric
deep learning for online prediction of cascading failures in
power grids. Reliability Engineering & System Safety.
Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2018. Graph Attention Networks. In ICLR.
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Philip,
S. Y. 2020. A comprehensive survey on graph neural net-
works. IEEE transactions on neural networks and learning
systems.

Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
Powerful are Graph Neural Networks? In ICLR 2019.
Zhang, M.; Fu, S.; Yan, J.; Zhang, H.; Ling, C.; Shen, C.; and
Shi, P. 2021. An XGBoost-Based Vulnerability Analysis of
Smart Grid Cascading Failures under Topology Attacks. In
2021 IEEE International Conference on Systems, Man, and
Cybernetics.

Zhu, Y.; Zhou, Y.; Wei, W.; and Wang, N. 2022. Cascading
Failure Analysis Based on a Physics-Informed Graph Neural
Network. IEEE Transactions on Power Systems.
Zimmerman, R. D.; Murillo-Sanchez, C. E.; and Thomas, R. J.
2011. MATPOWER: Steady-State Operations, Planning, and
Analysis Tools for Power Systems Research and Education.
IEEE Transactions on Power Systems.

