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Abstract

Synthetic random heteropolymers (RHPs), consisting of a
predefined set of monomers, offer an approach toward the de-
sign of protein-like materials. These RHPs, if designed appro-
priately, can mimic protein behavior and function. As such,
there is a need for computational tools to efficiently guide
RHP design. We bridge this gap by developing DeepRHP, a
modified variational autoencoder (VAE) model under a semi-
supervised framework. By equipping a classical VAE with
an additional feature-based VAE, DeepRHP forces the latent
space to capture structures of critical chemical features as
well as individual RHP sequence patterns. In this sense, our
method is versatile by allowing any relevant features to be
incorporated in a hybrid manner. We demonstrate the effec-
tiveness of DeepRHP by suggesting potential monomer com-
positions that stabilize membrane proteins (e.g. Aquaporin
Z) in non-native environments and cross-validating our pre-
diction with published results. The concordance between our
model and true RHP function suggests strong potential in uti-
lizing hybrid autoencoder architectures to guide RHP design
for proteins and other biological compounds.

1 Introduction
There is a significant interest in engineering synthetic mate-
rials capable of replicating protein functions while satisfy-
ing stability and compatibility with device fabrication and
integration. However, it remains an insurmountable chal-
lenge to synthesize sequence-specific polymers. This has led
to a recent surge of research in designing protein-like ran-
dom heteropolymers. Random heteropolymers (RHPs) are
an ensemble of many polymer chains with each being com-
posed of monomers arranged in random order (Hilburg et al.
2020). Recent developments have demonstrated that RHPs
can act as chaperone proteins for protein stabilization in non-
biological environments (Panganiban et al. 2018), a critical
bottleneck to fabricate protein-embedded plastics for end-
of-life plastic degradation (DelRe et al. 2021). In addition,
RHPs can be designed to act as channel proteins for rapid
and selective proton transportation (Jiang et al. 2020), im-
portant for fuel cells and energy storage.

Despite the fact that RHPs can serve as great biofunc-
tional materials, designing RHPs with desired function is
challenging because both the exact monomeric sequences
and conformations of synthetic RHP chains are not deter-
ministic. Traditional protein design methods rely heavily on

high-throughput sequencing data and 3D structures. For ex-
ample, directed evolution methods evolve protein function
by iteratively mutating a selected protein sequence (Arnold
2018), while de novo methods build novel proteins that fold
into a certain structure (Huang, Boyken, and Baker 2016).
Without exact sequences and structures, there are no ratio-
nal design principles for creating suitably functional RHP
chains. Current RHP designs are largely empirical and de-
pend on time-intensive lab screenings over various monomer
compositions and chain lengths. For each RHP made in the
lab, ensembles of thousands of sequences are simulated un-
der the same monomer composition in order to understand
why certain compositions perform better than others. In this
process, scientists face two practical design questions that
can potentially accelerate progress if answered:

• How many monomers should be included in a RHP sys-
tem? Recent results show that RHPs can mimic protein
function with only four monomers (Panganiban et al.
2018; Jiang et al. 2020), but it remains unclear how many
monomers are enough to include in the alphabet.

• How can one find monomer compositions corresponding
to specific protein functions?

Answering these questions requires new methods to
model and analyze RHP sequences as an ensemble instead
of as individual chains. To our knowledge, there is very lim-
ited literature on computational methods of modeling RHPs.
As the only two examples, Zhou et al. (2022) used Hidden
Markov Models to characterize the functionality of proton-
transporting RHPs and Tamasi et al. (2022) utilized Gaus-
sian process regression coupled with Bayesian optimization
for optimal copolymer identification.

Here we propose DeepRHP, a modified variational au-
toencoder trained in a semi-supervised manner, for model-
ing general RHP sequence data and discovering RHP com-
positions for protein function. This tool serves as a first
step that can guide RHP design by examining their protein-
mimicking behavior. The key contributions of this study are:

• We are the first to answer RHP design questions with
deep learning. DeepRHP learns interpretable latent rep-
resentations for RHP sequences and provides a platform
to perform similarity analysis between target proteins
and RHP sequences in an ensemble.



• DeepRHP provides insights into the two important de-
sign parameters: monomer alphabet size and monomer
composition. We show that the best monomer composi-
tion suggested by DeepRHP matches published experi-
mental results.

• DeepRHP is flexible enough to incorporate any function-
related chemical features for a wide variety of protein
functions.

VAE-based architectures are some of the first model
classes used to identify latent representations for biological
sequences, and are useful in downstream tasks like identi-
fying mutation effects (Sinai et al. 2017; Riesselman, Ingra-
ham, and Marks 2018) and designing novel functional pro-
teins (Greener, Moffat, and Jones 2018; Costello and Martin
2019). Therefore, we should expect to leverage the same ma-
chine learning theory in macromolecular cheminformatics,
specifically in this instance of using RHPs to mimic natural
biopolymers.

2 Data
Our work utilizes the RHP system developed in both Pan-
ganiban et al. (2018) and Jiang et al. (2020). This sys-
tem consists of four methacrylate-based monomers: methyl
methacrylate (MMA), 2-ethylhexyl methacrylate (EHMA),
oligo (ethylene glycol) methacrylate (OEGMA), and 3-
sulfopropyl methacrylate potassium salt (SPMA). MMA and
EHMA are the hydrophobic monomers used to tailor over-
all hydrophobicity, while OEGMA and SPMA are the hy-
drophilic monomers used to reduce the aggregation propen-
sity of RHPs.

We used Compositional Drift, a software developed by
Smith et al. (2019) to simulate 10,000 sequences per
monomer composition listed in Table 1. This software uses
established mathematical copolymer models in tandem with
Monte-Carlo simulation to calculate RHP sequences based
on experimental conditions. The authors showed that, while
each chain simulated is random at the sequence level, it con-
tains characteristic segments that have a well-defined statis-
tical distribution (Smith et al. 2019). The reasoning behind
the monomeric compositions for each specific RHP is fur-
ther discussed in Section 4.

We also collected 30,000 membrane protein sequences
and 30,000 globular protein sequences with 50% identity
threshold from the UniProt database (UniProt Consortium
2020). Some common pre-processing procedures were per-
formed, including discarding sequences with uncommon
amino acids and lengths. Each protein was then reduced into
its monomer-equivalent form according to the assignment in
Table 2. Note that the reduction of protein alphabet is not un-
common in protein sequence analysis, see Liang et al. (2022)
for a comprehensive review. Here our reduction rule is based
on monomer hydrophobicity and charge.

3 DeepRHP Methodology
In order to address the domain questions raised in Section
1, we developed DeepRHP, a modified variational autoen-
coder under semi-supervised framework for learning low-
dimensional RHP sequence representations. The model ar-

RHP MMA OEGMA EHMA SPMA

2 Mon.

A 0 10 90 0
B 0 30 70 0
C 0 50 50 0
D 0 70 30 0
E 0 90 10 0

4 Mon.

1 70 25 0 5
2 65 25 5 5
3 60 25 10 5
4 50 25 20 5
5 40 25 30 5
6 20 25 50 5
7 0 25 70 5

Table 1: Two and four-monomer composition of RHPs used
for training

Amino acid Monomer equiv. Property
C, Y, A, T, G MMA Hydrophobic
S, Q, H, N, P OEGMA Hydrophilic
L, I, F, W, V, M EHMA Very Hydrophobic
E, D, R, K SPMA Charged

Table 2: Amino acid (protein) to monomer (RHP) conver-
sion

chitecture is illustrated in Figure 1. We assume the sequence
family X follows a probability distribution p(x) and there
exists an underlying latent variable z ∼ N(µz,Σz) that
captures intrinsic unobserved sequence properties. For each
sequence x, there also exists a function-related feature y,
which can be considered as a deterministic transformation
of x. In the application case presented in Section 4, y is the
average hydrophilic–lipophilic balance (HLB) value of slid-
ing windows along each sequence (Kyte and Doolittle 1982).
HLB measures local hydrophobicity and solubility distribu-
tions and is closely related to RHP functions (Panganiban
et al. 2018; Jiang et al. 2020). The motivation for introduc-
ing other function-related chemical features (e.g. HLB) is
for them to guide the formation of the latent space.

To incorporate a chemical feature y into our VAE model,
we add a feature-driven VAE in parallel with the classical
VAE. y and x share the common latent variable z. This is
equivalent to simultaneously training two VAEs with shared
latent embeddings, and the encoder relies only on x since y
is a direct transformation of x, as indicated by the dashed
lines in Figure 1.

The objective is still to maximize the log-likelihood
log p(x) given sequence data X as shown in equation:

log p(x) = log

∫
p(x | z) p(z) dz. (1)

Under the regular VAE setting, Equation 1 can be bound by
the well-known evidence lower bound (ELBO) (Kingma and
Welling 2013; Rezende, Mohamed, and Wierstra 2014):

log p(x) ≥ Eq [log p(x | z)]−DKL (q(z | x) ‖ p(z)) , (2)

where q is the learned posterior of the normal distribution
family. In practice, p and q are learned by the encoder and



Figure 1: DeepRHP model architecture consisting of a classical VAE equipped with an additional feature-based VAE.

decoder and their weights are optimized through gradient
descent.

Traditionally, the reconstruction loss term is approxi-
mated by mean-squared error for continuous input, or cross-
entropy loss for discrete input. By imposing this hybrid
architecture, we can approximate the reconstruction loss
through both the classical VAE on x, the feature-driven VAE
on y, or a weighted sum of both. Our modified ELBO that
considers both sequence structures and chemical features is
then formulated as

log p(x) ≥ αEq [log p(x | z)] + (1− α)Eq [log p(y | z)]−
DKL (q(z | x) ‖ p(z)) , (3)

where α is a hyperparameter that dictates how much weight
is placed on each approximation term. In our case, the first
two terms of Equation 3 are approximated as follows:

Eq [log p(x | z)] ≈
∑
x

∑
l

p(xl) ∗ log(p(xl | z) (4)

Eq [log p(y | z)]) ≈ −
∑
y

||y − y′||22, (5)

where y′ is the output of feature-based decoder denoted by
the blue shading in Figure 1.

By optimizing the reconstruction loss in this hybrid man-
ner, we obtain a meaningful low-dimensional latent space
that captures the sequence structure relevant to the desired
protein function. Additionally, our method comes with inter-
pretability benefits that classical VAEs often lack. Existing
works usually concatenate all features together into a sin-
gle vector for the encoder. The resulting latent space is then
obscured, as no physical meanings can be derived for the
principal directions. In contrast, our hybrid training leads to
meaningful visualizations of the data because the latent vari-
ables are directly linked to the chemical features.

Both the encoder and the decoder were implemented with
multilayer perceptrons using PyTorch. Each has three fully
connected layers with 256, 128, and 64 hidden units, respec-
tively. The feature decoder has two fully connected layers

with 32 hidden units. ReLU activation functions were used
as non-linearities throughout the network, except in the out-
put layer of the decoder where Sigmoid activation was used
instead. The model was trained using the ADAM optimizer
with a learning rate of 0.0001. A learning rate scheduler was
used when validation loss stopped improving.

4 Results and Discussion
Aquaporins (Aqp) are membrane channel proteins that fa-
cilitate water transport between cells. Membrane proteins
are unstable and prone to aggregation even under mild ex-
perimental conditions. Panganiban et al. successfully stabi-
lized Aquaporin Z (AqpZ) and preserved its function in non-
native environments with the presence of RHPs. We demon-
strate how DeepRHP can be used to accelerate RHP design
by identifying promising monomer compositions.

Panganiban et al. (2018) chose to use 70% hydropho-
bic monomers and 30% hydrophilic monomers in their
RHP system based on a crude protein surface analysis on
four protein sequences. We first validate this distribution of
monomer hydrophobicities using our model. The latent fac-
tors of the two-monomer RHPs and natural proteins are pro-
jected onto a two-dimensional space using Principal Com-
ponent Analysis (PCA), as shown in Figure 2(a). All two-
monomer RHPs are composed of one hydrophobic monomer
(EHMA) and one hydrophilic monomer (OEGMA). The
compositions of RHP A through RHP E listed in Table 1 are
selected to sufficiently reflect this hydrophobicity range. We
observe that PC1 correlates with hydrophobicity as RHPs
span left to right, with left being least hydrophobic to right
being most hydrophobic. The majority of membrane and
globular proteins overlap with RHP B and RHP C, suggest-
ing these two RHP compositions are most similar to natural
proteins. On the other hand, most hydrophobic membrane
proteins overlap with RHP B (30% hydrophilic, 70% hy-
drophobic), confirming that 30:70 is a good balance for the
two-monomer system.

We then fine-tune the performance of the 30:70 distri-



Figure 2: PCA projections of RHP and protein latent factors. Panels (a) and (b) project membrane and globular proteins onto
two and four-monomer RHP space, respectively. Panels (c) and (d) project AqpZ onto the same two RHP spaces.

bution of hydrophilic and hydrophobic monomers by in-
creasing the number of monomers from two to four as
shown in Figure 2(b). A library of four-monomer-based
RHPs was designed by varying the MMA:EHMA ratio.
The specific monomer composition is shown in Table 1.
Each of RHP 1 through RHP 7 is still composed of 30%
hydrophilic monomers (OEGMA + SPMA) and 70% hy-
drophobic monomers (MMA + EHMA).

Panganiban et al. (2018) did not rationalize the choice
of four monomers for their design of protein-like RHPs.
Our approach explains why the two-monomer alphabet size
is insufficient. In Figure 2(b), each of the RHP ensembles
can be considered as a subset of RHP B and occupies a
much more localized natural protein sequence space with
smaller variance. In Figures 2(c) and (d), we project AqpZ
onto the two-monomer and four-monomer PCA spaces, re-
spectively. In the two-monomer setting, the RHP B space is
much larger than the span of AqpZ. In the four-monomer
setting, however, the AqpZ projections cover the RHP 4 and
RHP 5 spaces almost entirely. Therefore, we believe the two-
monomer sequence space is too broad with respect to pro-
teins while the four-monomer sequence space is more local-
ized, offering stability in synthesizing RHPs.

In addition to providing heuristics regarding the num-
ber of monomers, DeepRHP sheds light on the choice of
monomer compositions. In Figure 2(d), there is a large over-
lap between the projected proteins and the RHP 4 and RHP
5 contours. Wet-lab experiments in Panganiban et al. (2018)
demonstrated that the optimal RHP has the same monomer
ratio as that of RHP 4 and is capable of stabilizing AqpZ.
Thus, the overlap between RHPs and AqpZ in the PCA
space can modulate their sequence correlation and molec-
ular interactions in the aqueous solution. This indicates that
the latent embeddings discovered by DeepRHP are chemi-

cally meaningful and play a key role in discovering RHPs
that provide strong performance.

5 Conclusion

In this study, we developed DeepRHP, a hybrid variational
autoencoder model to guide RHP design. Our model sug-
gests the feasibility of four-monomer compositions to stabi-
lize ApqZ, matching the respective wet-lab experiment. In
ablation studies, our model outperforms a singular classical
VAE without the additional decoding regressor.

Overall, DeepRHP holds much promise for the future
of integrating deep learning techniques, specifically VAEs,
into RHP design. Hybrid VAE architectures like DeepRHP
possess many advantages. First, they are flexible and can
be trained on any sequence family with variable sequence
lengths and no multiple sequence alignment is needed.
DeepRHP is also flexible due to its flexibility in supervi-
sion. It can be totally unsupervised when no prior knowledge
on RHP subpopulations is available, or it can also be semi-
supervised by combining function-related chemical features
with vast amounts of sequence data to improve interpretabil-
ity of latent variables.

Future work in this regime includes strengthening the
quantitative assessment of DeepRHP. Our model is currently
assessed in a qualitative manner and validated using labora-
tory results. We hope to improve DeepRHP by developing
a quantitative measure to evaluate the quality of the latent
representations. For instance, we hope to complete further
downstream tasks such as classifying specific membrane
proteins and evaluating similarities between each RHP and
their target proteins.
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