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Abstract

In industrial applications, achieving accuracy and under-
standing prediction outputs are both crucial, particularly
when dealing with large datasets with numerous features
and multi-prediction targets. This paper presents a novel
method grounded in the projective operation concept, de-
signed to provide explanations for multi-output prediction
models (ProjEx). Our approach is model-agnostic, ensuring
wide applicability across various contexts. We validate the
robustness and efficiency of our method within a semicon-
ductor production virtual metrology (VM) setup. The need
to explain the multi-output learning approach in VM arises
due to the interrelated properties of a product that should be
predicted simultaneously, and experts monitoring production
must understand and trust these prediction outputs. Further-
more, we introduce a stability index to rigorously evaluate the
reliability of the explanations generated by our method. Pro-
jEx outperforms SHAP and TreeInterpreter in computation
time, while the introduced stability index and correlation are
comparable.

Introduction
Artificial intelligence (AI) has seen dramatic advancements
recently. It is being utilized to make suggestions to humans’
decisions in diverse domains, such as education, health care,
news, entertainment, travel, logistics, manufacturing, law
enforcement, and finance (Rai 2020). As AI systems become
increasingly integrated into various aspects of society, it is
crucial to understand how users perceive and trust these sys-
tems. Explainable AI (XAI) helps make AI systems trans-
parent, understandable, and trustworthy. Arrieta et al. (2020)
described explainable AI as a suite of algorithmic techniques
that generate high-performance explainable models humans
can easily understand and trust. Trust in the AI system de-
pends on fairness, explainability, accountability, privacy, and
user acceptance (Kaur et al. 2022).

Multi-output learning is a machine learning (ML)
paradigm that aims to predict multiple outputs simultane-
ously given an input (Xu et al. 2019). Examples include
multi-label learning, where multi labels are assigned to an
instance, multi-dimensional learning, where multi-tasks are
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learned together, and multi-target regression, where multi-
continuous outputs are predicted. These methods improve
prediction accuracy by capturing complex relationships be-
tween outputs, essential in scenarios with multiple interre-
lated factors.

The need for a multi-output learning approach arises
in several applications such as virtual metrology (VM) in
the semiconductor manufacturing industry (Choi et al.
2024), healthcare (Cui et al. 2018), environmental sci-
ence (Džeroski, Demšar, and Grbović 2000), multi-classes
image classification (Dong, Zhu, and Gong 2019), text pro-
cessing (Sanh, Wolf, and Ruder 2019), weather and air qual-
ity forecasting (Liang et al. 2023). However, the integration
of such predictions in industrial processes is aggravated due
to a lack of transparency and explainability of the prediction
process and its outcomes.

Figure 1: An example of using VM to replace post-process
quality control measurements. The VM system uses ML
models to predict wafer properties at 17 characteristic points
from sensor data and classify products, eliminating the need
for post-process quality measurements. Experts who rely on
predictions to adjust process parameters and schedule main-
tenance need to understand and trust the model outputs.



Manufacturing semiconductors involves several steps, in-
cluding coating and removing layers from silicon bases,
known as wafers. They have a disk-like shape, are made of
pure silicon, and, as the final products contain thousands of
chips on average. VM introduced in 2005 in the semicon-
ductor manufacturing industry (Chen et al. 2005), involves
estimating a product’s quality directly from production pro-
cess data, using supervised or unsupervised ML algorithms,
without physically measuring it (Dreyfus et al. 2022), and in
this way reducing production times and costs. The VM pro-
cess addressed within this paper is demonstrated in Fig. 1.

Multi-output approaches are overlooked in deep learning-
based VM modeling, although the joint information among
the process outputs can improve prediction performance.
Choi et al. (2024) proposed a CNN-based multivariate VM
model using multi-sensor process sensor data and evaluated
the proposed model for VM modeling at an etching pro-
cess. Yamaguchi and Yamashita (2024) proposed a multi-
target regression method that combines Random Linear Tar-
get Combinations and PCA. However, there is a lack of re-
search based on explainability and interoperability.

Production equipment sensors continuously monitor a
large number of signals. There is also a need to use fea-
ture selection and dimensionality reduction methods in VM
systems, and they are often considered as a separate ele-
ment (Djedidi et al. 2022). Several feature selection meth-
ods (Boyd et al. 2018; Brouard et al. 2022; Jordan, Liu,
and Ruan 2021; Song et al. 2012) have been proposed
for structured output learning tasks. Still, they use sepa-
rate kernels for data samples in input and output spaces and
may not scale well to large sample sizes. Szedmak et al.
(2023) proposed a novel approach for variable selection for
vector-valued or two-view learning problems utilizing pro-
jection operators and their algebra - the ProjSe algorithm.
This paper builds upon their findings, introduces Projective
Operator-based Explanations (ProjEx), and provides a novel
and transparent solution that enables more accurate predic-
tions and a deeper understanding of the importance of indi-
vidual variables.

Numerous methods have been proposed for interpretabil-
ity and explainability in single-output prediction scenarios,
including well-known techniques like SHAP (Kariyappa
et al. 2024) and LIME (Ribeiro, Singh, and Guestrin 2016).
These foundational methods have given rise to more ad-
vanced approaches, such as Counterfactual Shapley Ad-
ditive Explanations (Albini et al. 2022). To the best of
our knowledge, no methods specifically designed to explain
multi-output predictions are currently available in the litera-
ture. The main contributions of this paper are:

• We present a projective operator-based framework for
interpreting multi-output predictions (ProjEx) and intro-
duce its stability measure.

• We showcase the effectiveness of the proposed method
on the real-world problem of VM in the semiconduc-
tor manufacturing industry.To the best of our knowledge,
this paper utilizes a feature selection method for vector-
valued output as part of a VM system for the first time.

Preliminaries

Multi-Ouptput Prediction involves mapping each input
(instance) to multi outputs. Given that X ∈ Rnx represents
a nx-dimensional input space and Y ∈ Rny represents an
ny-dimensional output space, the goal is to learn a function
f : X → Y from a training set D = {(xi, yi) | 1 ≤ i ≤ m},
where m is number of samples. Here, each training example
(xi, yi) consists of a nx- dimensional feature vector xi ∈ X ,
and yi ∈ Y represents the corresponding output linked to
xi (Borchani et al. 2015; Tsochantaridis et al. 2005; Xu
et al. 2019). The general framework for multi-output learn-
ing can be described as follows: the task is to find a func-
tion F : X × Y → R using a training set of input-output
pairs, where F (x, y) serves as a compatibility function that
measures how well the input x and output y align. When
presented with a new instance x during testing, the output
is predicted to be the one that maximizes the compatibility
score, specifically f(x) = ŷ = argmaxy∈Y F (x, y) (Bor-
chani et al. 2015).

Feature Selection is the process of selecting a subset of
relevant features from a larger set Xs ⊂ X for use in
model construction thereby improving model performance
and interpretability. For given a dataset represented as X
with nx features and m samples, the goal of feature selec-
tion is to find a subset of features Xs ⊂ X such that the
predictive model built using Xs achieves the highest pos-
sible accuracy. This can be mathematically expressed as:
maximize f(Xs) subject to |Xs| ≤ k where:f(Xs) is a per-
formance metric (e.g., accuracy, F1 score) evaluated on the
model trained with features in Xs, |Xs| denotes the num-
ber of features in subset Xs, k is a predefined limit on the
number of features to select (Lutu et al. 2010).

Least-Square Regression is a fundamental method in
statistics and ML used to find the best-fitting line or hyper-
plane that minimizes the sum of the squared differences be-
tween the observed values and the values predicted by the
model (Farebrother 2018). This method is widely used for
linear regression analysis to model the relationship between
a dependent variable and one or more independent variables.
Given a dataset with m samples and nx features (or vari-
ables), let X ∈ Rm×nx represent the matrix of input fea-
tures, and let y ∈ Rm represent the vector of observed out-
comes. The goal of least squares regression is to find the
vector of coefficients w ∈ Rnx that minimizes the residual
sum of squares: ŵ = argminw

∑m
i=1

(
yi − x⊤

i w
)2

where:
yi is the observed outcome for the i-th instance, x⊤

i is the
transpose of the i-th row of the matrix X, representing the
feature values for the i-th instance, w is the vector of co-
efficients to be estimated, ŵ denotes the estimated coeffi-
cients that minimize the sum of squared residuals. The least
squares solution can also be expressed in matrix form as:
ŵ = (X⊤X)−1X⊤y where X⊤X is the Gram matrix, and
X⊤y is the vector of correlations between the features and
the output variables.



Methodology
Szedmak et al. (2023) proposed a novel approach for vari-
able selection for vector-valued or two-view learning prob-
lems utilizing projection operators and their algebra. The
method incorporates a kernel-based representation of the
variables, enabling the capture of complex and nonlinear re-
lationships. The proposed method is scalable and can han-
dle large-scale selection tasks with millions of data samples.
Due to the properties of the projection operators, ProjSe en-
sure invariance: the selected variables depend only on the
subspace spanned by the target variables and are indepen-
dent of any transformation on the response variables that
would span the same subspace. We build upon these find-
ings and create important values of features based on the
model-trained data to provide explanations for end users.

Features importance The properties of projection opera-
tors into subspaces of a Hilbert space can be used to measure
the correlation between input features nx and a set of out-
put variables ny . As Szedmak et al. (2023) did, we observe
all potential variables that can be used as features and se-
lecting the most significant ones. The correlation between
an unselected input variable x and the subspace spanned
by the outputs Y after selecting t input variables, where
(t = 0, . . . ,min(ny, nx)), is given by
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where PLY ∩L
X⊥

t

is the orthogonal projection operator into
the intersection of the subspace LY spanned by output vari-
ables and the orthogonal complement of the subspace LX⊥

t

spanned by the input variables selected earlier.
Determination of the importance of variables and their

selection is based on efficient iterative computation of pro-
jections of input variables into the intersection of the space
spanned by all output variables and the orthogonal comple-
ment of the space of the previously selected input variables.
This projection guarantees that the selected input variable
has a high correlation to all output variables, but in contrast,
the correlation between a newly selected input and the pre-
viously selected ones is minimized. This is the foundation
of the ProjSe selection algorithm given within Algorithm 1
while the graphical demonstration is shown in Fig. 2.

Kernel-based representation of the feature selection
problem allows exploring complex, nonlinear relationships
between all the variables appearing in the available data
set, (Szedmak et al. 2023). A kernel can be interpreted as
a function which can express the similarity between pairs
of vectors in a high-dimensional reproducing kernel Hilbert
space without explicitly determining the coordinates of
those vectors (Hofmann, Schölkopf, and Smola 2008). The
usage of a kernel function allows including non-linearity to
the models implicitly via a feature map φ : X → Fk:
a kernel evaluated with two samples corresponding to an
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Figure 2: The first step in the variable selection process is
maximizing the projection of a feature x1 onto the subspace
spanned by the vectors of output (prediction) variables LY .
Next feature, x2 is projected on the intersection of LY and
Lx⊥

1
, subspace orthogonal to x1, and the correlation between

Y and x2 is computed via the formula (1) which ensures a
deterministic selection.

inner product in this so-called feature space : k(x, z) =
⟨φ(x), φ(z)⟩Fk

. We investigate the difference between se-
lections where linear and Gaussian kernel is applied, and the
stability of the variable selection process regarding Gaussian
kernel parameters is discussed. The linear kernel calculates
the dot product between pairs of data points in the original
feature space. The N-dimensional Gaussian kernel is defined
as

GND(x⃗;σ) =
1

(
√
2πσ)N

exp−
|x⃗|2
2σ2 , (2)

where σ determines the width of the kernel, σ2 the vari-
ance, N the dimensionality of the space, and x⃗ is an N -
dimensional vector, (Shawe-Taylor and Cristianini 2004).

Projective Operator-based Explanations
The proposed framework for interpreting multi-output pre-
dictions, ProjEx, is based on projective operator algebra and
utilizes the results from feature selection by ProjSe to pro-
vide local and global explanations of behavior ML mod-
els. Local explanations focus on understanding individual
predictions by analyzing the specific features that influence
a single instance’s outcome, providing insights into why a
model made a particular decision for a given input (Mor,
Belinkov, and Kimelfeld 2024). Global explanations aim to
provide an overarching understanding of the model’s be-
havior across all predictions, analyzing the model’s over-
all structure and feature importance to identify patterns and
trends that apply to the entire dataset (Arya et al. 2023). This
framework comprises four main components, illustrated in
Fig. 3: a heatmap of the correlation matrix between input
and output variables, global explanations, local explanations
and predicted target values.

The procedure for generating explanations is as
follows. First, all features are used to predict the



Algorithm 1: Variable Selection by Projection

1: Input:
• A set of output variables {y1, . . . ,yny

} in Rm, rep-
resented by Y ∈ Rm×ny .

• A set of input variables {x1, . . . ,xnx
} in Rm, col-

lected into X ∈ Rm×nx .
• D ≤ min(ny, nx): number of variables to be chosen

from X.
2: Output: Set ID of indices of selected variables from X

in the selection order.
3: Initialize: Let t = 0 and It = ∅. Set X̃t = X[:, It];

since It = ∅, X̃⊥
t = Rm.

4: while t < D do
5: Let PLY ∩L

X̃⊥
t

be the projection into the intersection
of LY and LX̃⊥

t
.

6: Choose an index k∗ by:

k∗ = arg max
k∈{1,...,nx}\It

∥∥∥∥PLY ∩L
X̃⊥

t

xk

∥xk∥

∥∥∥∥2
7: Update It+1 = It ∪ {k∗} and X̃t+1 = X[:, It+1].
8: Increment t = t+ 1.
9: end while

target variables using a regression model, such as
DecisionTreeRegressor (DTR) (Clark and
Pregibon 2017). Next, ProjSe is applied to select the
features most correlated with the predicted target vari-
ables. For each selected feature xs ∈ Xs , we find the
projection of the vector xs onto the plane spanned by
the predicted target variables yp ∈ Yp. The projection
xsproj of a xs onto the plane spanned by yp is given by:
xsproj = Yp(Yp

⊤Yp)
−1Yp

⊤xs.
We calculate the correlation coefficient ρ between xs and

xsproj using: ρ =
xs·xsproj

∥xs∥∥xsproj∥ . These correlation coefficients
are presented as a bar plot in Fig. 3, with feature indices on
the y-axis and coefficients on the x-axis. This bar plot pro-
vides a global explanation of the model by indicating the in-
fluence of features on the predicted targets through the pro-
jection coefficients.

To assess the impact of each feature value on the predicted
target variables, we calculate xi vectors by scaling the se-
lected feature with the correlation coefficient: xi = xs · ρ.
The procedure is shown within Algorithm 2. The bar plot in
Fig. 3 shows the values of xi for a randomly selected sample.
The x-axis represents the values of xi, indicating the impact
of the feature on the prediction, while the y-axis shows the
selected features and their normalized values. Additionally,
the normalized values of yp for the given point are provided.
This approach creates local explanations, revealing the influ-
ence of features on the predicted targets for a single sample.

Based on projective operator algebra, ProjEx is exact
and does not rely on probabilistic assumptions, ensuring
that the explanations are deterministic and free from vari-
ance caused by stochastic elements. Furthermore, ProjEx is
model-agnostic and can be applied to any predictive model.

Algorithm 2: Generating Explanations

1: Input: Matrix X (features), matrix Y (predicted target
variables)

2: Select Xs by ProjSe
3: for xs ∈ Xs do
4: Compute the projection of xs onto the plane spanned

by yp ∈ Yp:

xsproj = Yp(Yp
⊤Yp)

−1Yp
⊤xs

5: Calculate
ρ =

xs · xsproj

∥xs∥∥xsproj∥
6: end for
7: for xs ∈ Xs do
8: Calculate

xi = xs · ρ
9: end for

The global explanations, derived from projection coeffi-
cients, provide a understanding of how each feature con-
tributes to the overall prediction while the local explanations
allow analysis of how individual feature values impact spe-
cific predictions. This dual approach ensures that the expla-
nations offer a broad view of model behavior, and granular,
enabling detailed insight into individual predictions.

Stability
The “stability” of a feature selection algorithm refers to the
robustness of its feature preferences, with respect to data
sampling and to its stochastic nature. An algorithm is ‘un-
stable’ if a small change in data leads to large changes in the
chosen feature subset. We use rigorous statistical treatment
proposed in (Kuncheva 2007), (Nogueira, Sechidis, and
Brown 2018) and (Hamer and Dupont 2021). The stability
index measures the consistency of a feature selection process
by determining whether two selections are considered iden-
tical if their unordered sets of selected indices are equal. In
contrast, the stability correlation also applies weights on the
variables to capture their importance, for example, the posi-
tion in the selection. In our analysis, those weights are given
by 1/ni, where a ni is the position of variable i in the se-
lection, thus, variables selected earlier have higher weights.
The dependence on the selection order distinguishes the sta-
bility index from correlation; the former is insensitive to the
order, but the latter is.

Relation with TreeInterpreter and SHAP
SHAP (SHapley Additive exPlanations) is a model-agnostic
method that provides both local and global explanations us-
ing game-theoretic Shapley values (Shapley et al. 1953). By
measuring the marginal contributions of features across dif-
ferent coalitions, SHAP assigns a score to each feature that
reflects its contribution to the final prediction of the model.
For ProjEx, the number of selected features matches the
number of output variables, whereas in SHAP, the user must
set a selection threshold, which can be subjective and may



Figure 3: ProjEx Explanations: The image includes a heat map of the correlation matrix between input and output variables,
with positive correlations shown in green and negative correlations in red. It also presents global explanations of the model
through projection coefficients, indicating the influence of features on predicted targets. Features with red values decrease the
target values, while green features increase them. Additionally, the image provides local explanations, showing the influence of
features on predicted targets for one sample in a bar plot. In this plot, negative influences are highlighted in red, and positive
influences in green. Normalized values of both the features and predicted target values are also shown.

require experimentation to gain optimal subset for predic-
tion. Additionally, SHAP is resource-intensive with high-
dimensional data, making the analysis impractical due to the
vast number of potential feature combinations. SHAP is not
suited for multi-output learning tasks.

TreeInterpreter is a model explanation method tailored
for tree-based models, including decision trees, random
forests, and gradient boosting machines (Sharma et al.
2020). It reveals each feature’s contribution to a prediction
by decomposing it based on decision paths in tree-based
models. TreeInterpreter does not support multi-output pre-
diction settings, despite the capability of tree-based models
to handle multi-output tasks.

Dataset
We use a real-world dataset from semiconductor manufac-
turing, focusing on the physical vapor deposition (PVD) pro-
cess—one of the key production steps for creating thin lay-
ers by depositing metal vapor onto a substrate (Powell and
Rossnagel 1999). The crucial physical properties of the film,
thickness and resistance, depend mostly on deposition time,
power, and temperature. Numerous sensors monitor these
parameters throughout the PVD process to ensure optimal
deposition conditions. After a process the product’s physical
properties are measured at 17 different points (Fig. 1). The
dataset includes data collected from 16 chambers of six PVD
machines at the same semiconductor manufacturing fab, In-
fineon Technologies AG, from 2021 to 2023. For over 3
years, 3598 procedures have been performed and considered
as samples for this dataset. For each PVD sample procedure,
1007 attributes were collected: logistics attributes, process
parameters defined by recipe, and values of these parame-
ters during a process. After removing features with missing
or constant valuesnx = 104 features were remained. For
each of the 17 points on the wafer resistance and thickness
are measured and their product (resistivity) is calculated. In
our multi-output learning problem, the outputs include resis-
tivity values at all 17 points, their average, and their standard
deviation, resulting in a total of ny = 19 target variables.

Evaluation
Comparison of ProjSe with random selection We com-
pared the prediction results using features selected by Pro-
jSe with those selected randomly. To ensure unbiased eval-
uation, the data are centralized and normalized. We itera-
tively recalculate the least-squares regression model (Fare-
brother 2018) as features are added for features selected
randomly and by ProjSe based on the introduced feature
importance. Prediction accuracy is measured using Pear-
son correlation between actual Y and predicted outputs Yp:
ρY,Yp

=
Cov(Y,Yp)
σY σYp

=
∑n

i=1(yi−ȳ)(ypi
−ȳp)√∑n

i=1(yi−ȳ)2
√∑n

i=1(ypi
−ȳp)2

.

Fig. 4a demonstrates how the number of selected features
enhances prediction accuracy compared to random selec-
tion. The projective operator-based selection yields higher
Pearson correlation coefficients, indicating a correlation be-
tween selected features and outputs. Fig. 4b shows the
changes in Pearson correlation coefficients as features se-
lected by ProjSe are added incrementally. The first 5 features
capture the most relevant information for predicting the out-
put, and subsequent features contribute minimally.

Stability and computation time w.r.t. dataset size Al-
gorithm 1 was applied to the entire dataset (3,598 samples),
the training dataset (2,878 samples), the test dataset (720
samples), and the test dataset with outputs predicted by a
DTR (720 samples). Experiments were performed on a sys-
tem equipped with dual Intel(R) Xeon(R) Gold 6448Y pro-
cessors (32 cores), an NVIDIA H100 80GB HBM3 graphics
card, and 503GB of RAM. In each case, there were selected
19 features. Table 1 presents the first 5 selected variables
and the computation time for each dataset. The first three
most important variables were consistent across the whole,
training, and test datasets, but significant differences were
observed between selections on actual and predicted out-
puts. The stability index was 0.84 for selections on the actual
datasets and 0.82 when the dataset with predicted outputs
was included. The stability correlation was 0.94 for datasets
with actual outputs but dropped significantly to 0.49 when
the dataset with predicted outputs was included. Execution



(a) The blue line shows how prediction ac-
curacy changes when variables are added
randomly, whereas the orange line demon-
strates the performance when variables
are chosen using the projective selection
method.

(b) Features with indices 23, 17, 30, 100,
and 59 contribute most significantly to
prediction accuracy measured by Pearson
correlation, with the correlation increasing
with each added feature until saturation af-
ter the fifth feature (index 59).

(c) The plot illustrates the oscillatory behavior of the
R2 scores of DTR, RFR, and XGB models as a func-
tion of the Gaussian kernel parameter σ for different
feature selection. The x-axis represents the σ values
on a logarithmic scale. All models’ highest R2 scores
were observed when σ was 0.5.

Figure 4: Examination of feature importance

time was measured 5 times, with average values shown in
the Table 1. As expected, computation time decreased with
the reduction in dataset size.

Dataset Selected features Time (ms)
Whole 23, 17, 30, 100, 59 6
Training 23, 17, 30, 100, 59 4
Test 23, 17, 30, 59, 99 2
Test-Predicted outputs 0, 19, 30, 100, 20 2

Table 1: Comparison of the first 5 selected features and com-
putation time across different datasets.

Stability of feature selection with respect to Gaussian
kernel parameters Eleven different σ values (0.01, 0.02,
0.05, 0.1, 0.2, 0.5, 1, 10, 20, 50, 100) were tested, resulting
in 11 subsets of selected features. These features predicted
19 target variables, yielding a stability index of 0.82 and a
stability correlation of 0.27. We used three tree-based mod-
els (Clark and Pregibon 2017) for prediction: DTR, Ran-
domForestRegressor (RFR), and XGBoost (XGB). Fig. 4c
shows the R2 scores for prediction model as function of σ on
a logarithmic scale. All models performed best with features
selected at σ = 0.5, achieving R2 scores of 0.49 (DTR),
0.75 (RFR), and 0.71 (XGB). The R2 scores exhibited os-
cillatory behavior across different σ values. For comparison,
when using all features, the R2 scores were 0.46 (DTR), 0.73
(RFR), and 0.75 (XGB).

Fig. 5a shows the Pearson correlation of 19 output vari-
ables: 17 raw values, their mean value, and standard devi-
ation. We expected uniform resistivity on the wafer, so we
consider standard deviation as an indicator of uniformity.
The raw values are mutually highly correlated and also cor-
related with the mean values, while the correlation with the
standard deviation is significantly lower. Pearson correlation
matrix of outputs variables reveals that those variables con-
centrate around the first principal component (PC) which

might be interpreted as the general quality of the wafer, and
the other, significantly weaker PCs relating to the location
and geometry of the measurement points.

Comparison of ProjSe with tree-based feature selec-
tion methods We compared ProjSe with feature selection
methods based on tree-based models for multi-output pre-
diction. A 5-fold cross-validation was conducted to assess
the stability of these feature selection methods. Table 2
presents the stability indices and correlations calculated
across the 5 subsamples for each technique. While the stabil-
ity indices are similar across the methods, ProjSe shows the
lowest stability correlations. ProjSe also demonstrates su-
perior computational efficiency, with average computation
times significantly lower than tree-based methods.

Method Index Correlations Time (s)
ProjSe 0.83 0.64 0.0036
DecisionTree 0.88 0.85 0.3120
RandomForest 0.95 0.95 18.2079
XGBoost 0.94 0.87 12.5884

Table 2: Feature selection method comparison.

ProjEx multi-output prediction explanations We com-
pared ProjSe with two widely used model explanation meth-
ods: SHAP and TreeInterpreter. Since these methods do not
inherently support multi-output prediction, we adapted them
by selecting the most influential features for each of the 19
output variables in a 5-fold cross-validation setting to ensure
a fair comparison. The stability, computed independently for
each output variable across the 5 folds, is generally high for
all methods. However, when stability was assessed for each
fold by considering the results across all output variables as
samples within the folds, it was significantly lower due to
the lack of consideration for interactions between the out-
put variables. Table 3 presents the average stability indices



(a) Pearson correlation matrix of outputs variables reveals that those
variables concentrate around the first principal component (PC).

(b) Eigenevalues of the Pearson correlation matrix

Figure 5: Pearson correlation of the output variables

and correlations across all folds. ProjSe achieved the highest
stability index, while the stability correlation was equal for
ProjSe and TreeInterpreter, and slightly lower for SHAP. For
SHAP and TreeInterpreter, the summed average time across
5 folds to obtain explanations for each of the 19 variables is
shown. ProjSe’s explanation time is 3 orders of magnitude
faster than TreeInterpreter and 4 orders than SHAP.

The concentration of the distribution of the PCs in Fig.5b
can explain the significant difference between the values of
the stability index and correlation in Tables 3 and 4. The
weak secondary PCs allow only the selection of the un-
ordered set of best-performing input variables, stability in-
dex, but do not yield sufficient information to accurately de-
termine their order or stability correlation, except those that
highly correlate with the first PC.

Similarity between explanations w.r.t. different predic-
tion models The results are presented in Table 4. The stabil-
ity of ProjEx varies slightly depending on the used model.
The highest stability index was observed with RFR, while
DTR yielded the highest correlation and the lowest execu-
tion time.

Physical consistency of feature selection In the PVD
process, resistivity is primarily influenced by the current

Method Index Correlations Time (s)
ProjEx 0.96 0.56 0.002
SHAP 0.88 0.54 54.64
TreeInterpreter 0.90 0.56 2.992

Table 3: Explanantion methods comparison.

Method Index Correlations Time (ms)
DecisionTree 0.80 0.53 2.1
RandomForest 0.85 0.42 2.5
XGBoost 0.81 0.52 2.7

Table 4: Feature selection performance across models.

and voltage applied to the target, as well as the deposition
time and temperature (Powell and Rossnagel 1999). The first
seven variables selected by ProjSe represent aggregated val-
ues of current, voltage, and time, aligning with the physical
principles of the PVD process.

Conclusion
In this paper, we have introduced a novel, model-agnostic
method based on the projective operation concept to pro-
vide explanations for multi-output prediction models. Our
approach has demonstrated robustness and efficiency in the
context of semiconductor production VM, showcasing its
practical applicability in industrial settings where accuracy
and interpretability are paramount. Additionally, we have
examined a stability index to rigorously assess the reliability
of the generated explanations, further enhancing the utility
and trustworthiness of our method.

Acknowledgments
The work is supported by the IPCEI on ME/CT program of
Infineon Technologies Austria AG.

References
Albini, E.; Long, J.; Dervovic, D.; and Magazzeni, D. 2022.
Counterfactual shapley additive explanations. In Proceed-
ings of the 2022 ACM Conference on Fairness, Accountabil-
ity, and Transparency.
Arrieta, A. B.; Dı́az-Rodrı́guez, N.; Del Ser, J.; Bennetot, A.;
Tabik, S.; Barbado, A.; Garcı́a, S.; Gil-López, S.; Molina,
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