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Abstract  

We developed a de-centralized, peer-to-peer AI metadata 
framework that enables end-to-end metadata & lineage track-
ing for distributed Machine Learning pipelines spanning 
edge, High Performance Computing and cloud environments. 
It enables reproducibility, audit trail, AI model provenance, 
and incremental model development in environments that 
may suffer from high latencies, intermittent connectivity & 
disparate security policies, common in Science use cases. We 
describe innovations that enable merging of metadata from 
disconnected sites without a central coordinator and across 
independently executed steps, and discuss benefits of this 
new open source framework for example Science use cases.  

 Introduction 

Complex Artificial Intelligence (AI) workflows involve 

multiple stages with different needs from compute, storage 

and network and can span multiple sites. In experimental 

science use cases, it is often desirable to perform part of the 

analysis at the edge, close to where the data is collected. This 

allows insights in real time for better control of experiments 

or quick response to anomalies, to reduce the volume of data 

transmitted to central servers, and support large interopera-

ble distributed systems. AI inference at the edge can help 

dynamically steer instruments for more precise or relevant 

observations in weather monitoring, microscopy, medical 

imaging, nuclear fusion, etc. [1]. It can help early responders 

during dynamic extreme weather events such as wildfires 

and tornados [2]. AI model training is more compute inten-

sive and typically performed in the cloud or at HPC clusters 

with the possibility of cloud bursting. Consequently, the 

workflow can span three or four domains: edge, HPC clus-

ter, private cloud (such as, for example, the National Re-

search Platform [2]) and public cloud.  

Tracking of AI model and data provenance is essential for 

AI pipeline reproducibility, trustworthiness, explainability, 

incremental improvements, reuse and collaborative devel-

opment. AI metadata tracking solutions available in the in-

dustry (MLFlow[3], Weights & Biases[4], AIM[5] etc.) 

adopt a centralized approach suitable for enterprise models, 

where data acquisition, model training and model inference 

are performed in the cloud or at enterprise data centers. This 

approach is inadequate for heterogeneous workflows repre-

senting complex usage patterns that span multiple domains 

with different compute and data access characteristics as i) 

they have very limited abstractions to model composite 

workflows and track their interdependencies, and, ii) do not 

support the exchange of metadata. As shown in Figure 1, the 

usage patterns may involve AI inference at the edge for low 

latency (Type A) or with inference in the datacenter (Type 

B) both types potentially informing deeper analysis (Type 

1), or being used in conjunction with simulations in the loop 

(Type 2). Recurrent pipelines with model re-training in HPC 

cluster/cloud (Type 3) optionally complemented by light re-

training at the edge (Type 4) also need to be supported.   

In this paper, we propose Federated Common Metadata 

Framework (CMF), a solution that supports all these usage 

patterns and addresses the weaknesses of centralized ap-

proaches by tracking and storing metadata and data locally 

at the site and distributing required metadata which can then 

be merged with metadata from other sites to provide lineage 

and provenance tracking. It decouples the data management 

from the metadata management, thereby enabling sharing of 

only the required data and ensuring data privacy. 

 
Figure 1: Example use patterns for AI edge data analysis 

 

Our key contributions in Federated CMF include: 1. Ability 

to create lineages & associate metadata from independently 

executed steps (from disassociated sites) without needing 

the order of steps to be defined before. This is done by iden-

tifying each artifact with its content hash and associating it 

with execution as input or output. Recursive querying of this 

information enables the creation of lineage chains for arti-

facts and executions. 2. Ability to merge  metadata from dis-

connected sites without a central coordinator enabled 



through the hierarchical organization of metadata. 3. Ability 

to manage metadata and data separately, e.g. by storing 

metadata in SQLite and data in an Artifact store and having 

pointers in metadata store to the location of Artifacts. 

Federated CMF Design 

 The key components are explained below (See Fig 2).  

Metadata Store: Federated CMF builds upon CMF library 
[6] which enables tracking of metadata for AI pipeline 
through implicit & explicit metadata tracking API’s. CMF 
builds upon ML-Metadata [7] library to store and organize 
metadata.  

The metadata store records pipeline metadata through hier-
archical abstractions: “Pipeline”, “Context” and “Execu-

tion”.  An Execution is the smallest unit of tracking a “pipe-
line” (an end-to-end experiment or workflow). A unique ex-
ecution is created for every distinct experiment. There can 
be multiple executions for a single stage in a “pipeline” with 
different hyper parameters, model architectures or artifact 
versions. Executions of the same type (e.g., training stage) 
are grouped under a single Context. There could be multiple 
such Contexts corresponding to preprocessing, training, fea-
turization, stages etc. Multiple contexts are grouped under a 
Pipeline. Pipeline and Context entities in CMF are single-
tons. Pipelines and contexts are identified by unique names 
and are only created once in a metadata store. Attempting to 
recreate a previously existing Pipeline or Context will incre-
mentally update them. Artifacts used or produced in an Ex-
ecution are associated with it as input or output properties 
respectively. This hierarchical tree representation (Pipe-
line→ Context → 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛) in CMF is the key to tracking 
pipelines with multiple stages in different sites. By travers-
ing this pipeline tree, Federated CMF framework can build 
lineages for Artifacts and Executions across disjointed exe-
cutions.  

Artifact Store: Federated CMF needs a mechanism to 
uniquify artifacts. We build upon data version control e.g. 
(DVC) [8] which provides this capability for artifact man-
agement. The physical files (HDF5, parquet etc.) are stored 
in an Artifact store. Through integration with DVC [8], we 
can support different kinds of storage remotes like HTTPS, 

SSH, Amazon S3, Google Cloud Storage, HDFS, or a local 
filesystem making it suitable for edge and datacenter use 
cases. We support both shared and unique Artifact store for 
users. This is because the metadata store indexes an arti-
fact’s unique content-hash and unique URI. 

CMF supports external artifacts and their metadata via the 

mechanism of uniform resource identifiers (URIs). External 

artifacts are artifacts whose life cycle is not managed by 

CMF. When such an external artifact needs to become part 

of a CMF lineage graph, CMF creates a derived artifact with 

its URI encoding the location of the source artifact. CMF 

uses the URI’s scheme field to identify the artifact owner, 

and the remaining fields (authority, path, query and frag-

ment) are used to uniquely locate the artifact within the own-

er's name space. For instance, for MLFlow-managed ML 

model artifacts, the following URI template is used: 

mlflow:///runs/RUN_ID, where RUN_ID is a unique 

MLFlow run identifier. For AIM-managed artifacts, the URI 

template is aim:///runs/RUN_HASH. Similarly, CMF 

encodes other artifact types, such as datasets and results of 

hyperparameter search experiments. 

 CMF Server: Any site within the Federated CMF can func-
tion as the server by running the command “cmf server up”. 
This creates a rest endpoint that can be accessed over 
HTTPS and used by other clients to push or pull metadata. 
On the startup of the server, a token is generated. Connect-
ing clients should pass the same token to be able to push and 
pull. Our intent here is simplicity: this model does not pre-
clude more rigorous authentication/authorization systems to 
be employed over this scheme. When the server receives 
metadata from authorized clients, it verifies the payload & 
merges the metadata. By design in a metadata store pipeline 
names are unique and under a pipeline, context names are 
unique. The merge step identifies the branch in the pipeline 
tree under which an incoming execution fits or creates a new 
context branch or creates a new pipeline tree. Artifact 
metadata from different sites can be merged using its con-
tent hash as the joining key.  

CMF Client: It provides commands to push or pull 
metadata to/from the server. The pulled metadata is stored 
in the local store. It also enables the push and pull of subsets 
of metadata. Out of the multiple executions (experiments) to 
find the optimum model the researcher may be interested 
only in the execution which produced the best result. Fur-
ther, compression techniques are employed to make this 
subset exchange between client-server bandwidth opti-
mized. CMF client also enables the export of metadata from 
the cmf metadata store in JSON format to a flat file. The 
JSON format follows the OpenLineage [9] specifications for 
compatibility and can be imported into Federated CMF 
server or in GUI tools like Marquez [10] which support open 
lineage format to visualize the extracted metadata and line-
age. “cmf artifact pull” enables pulling artifact from the re-
mote store to the local store selectively. The design enables 
sharing of data when needed, but each site can use its local 
artifact store enabling data locality. 

Figure 2: Federated Common Metadata Framework 
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In summary Federated CMF enables: 1. Different sites to 
work independently and merge their metadata after comple-
tion and iterate on workflows. 2. It enables bandwidth opti-
mized transfer of only relevant metadata. 3. It eliminates the 
need for a central coordinator (or quorum). 4. Enables data 
privacy by managing and sharing data and metadata sepa-
rately. Many distributed scientists working at each domain 
can get near real-time view of metadata from each other em-
ploying CMF Clients/Servers described earlier. 

Modern multi-site AI for Science Workflows  

We outline four science workflows, which motivates the 

need for a federated approach to metadata management 

with reference to Fig. 1 (workflow type).  

 

AI integrated real-time fire management (Type A1&2): 

Realtime fire management involves multiple intertwined 

workflows distributed across different sites and in heteroge-

neous compute resources [2]. Detection of fire at the edge 

[12], triggers a fire modeling workflow at the supercompu-

ting facility to predict the growth and spread of fire. Fire 

growth model is fed with real-time measurements from the 

field on the perimeter of fire, the weather conditions etc., to 

dynamically adjust parameters of the model (post-fire re-

training). This heterogenous workflow is fed with data from 

diverse sources like sensors, weather forecast centers, cam-

era images etc. with different formats, different storage 

backends time series database or filesystem. With Federated 

CMF, the data can reside at the best suited artifact repository 

while independently tracking references to the data.  

Magnetic Confinement Fusion (Type A4&B3): Attaining 

self-heating plasma in Tokamak rings is a key step towards 

harnessing clean fusion energy. Understanding & optimiz-

ing plasma characteristics is the primary goal of experiments 

at DIII-D National Fusion Facility [12]. Each plasma dis-

charge experiment produces tens of GB of data that are fed 

to multilayer analysis (increase to TBs on future ITER To-

kamak). Results from rapid analysis inform configuration 

for the next discharge. For example, Magnetic Equilibrium 

Reconstruction accelerated by AI (EFIT-AI) – is required 

within 5-7 minutes window between experiments. New ap-

proaches to improve resolution & quantify uncertainties will 

require significantly higher compute resources not available 

at fusion facilities. Federated CMF is architected to enable 

development of reproducible & extensible pipelines that in-

clude i) training of an ensemble of AI models at HPC facil-

ities, ii) concurrent deployment of simplified models at fu-

sion facility (the edge) for real time analysis & complex 

models at HPC for deep insight, iii) monitoring of model 

performance and lightweight retraining at the edge after new 

data & iv) occasional full-scale model retraining at HPC 

center.       

Autonomous Electron Microscopy & Computational 

Steering (Type A2&3): Advances in microscopy now 

make it possible to record convergent beam electron diffrac-

tion (CBED) pattern at every scan position of a scanning 

transmission electron microscope creating GB/s of 4D-

STEM data. AI/ML methods are increasingly used to pro-

cess this 4D-STEM data to quantify the 3D atomic structure 

of materials [13]. New CBED images are converted to 

atomic structure descriptors using pretrained neural net-

works (i). These networks are typically trained (ii) at a HPC 

facility using simulated CBED pattern data. However, since 

the initial scan is sparse a Bayesian optimization estimate 

(iii) is generated through a material energetics simulation of 

the imaged region to reduce variability in the area imaged 

by the microscope. Therefore, the next set of scan positions 

is chosen to steer the next CBED imaging run (iv). Federated 

CMF is built to support such decentralized, tightly coupled 

computational processes (i-iv) in different infrastructure do-

mains (edge and HPC facility or cloud) in tight unison [14].   

High Energy Physics Particle Tracking Pipeline (Type 

A4): Deep learning-based pattern recognition methods are 

now regularly used for High energy Physics (HEP) particle 

tracking [15]. The leading techniques involve successive fil-

tering of detector impact cloud points from sensors in col-

lider experiments to isolate possible trajectories of exotic 

particles. This involves metric learning using fully con-

nected multi-layer perceptron’s, binary classifier for edge 

filtering and a graph neural network (GNN) to improve pu-

rity of selected points. This work faces numerous chal-

lenges: large datasets, large parameter space with cascaded 

inputs/outputs making optimization difficult, distributed al-

gorithm development, multiple compute environments 

(HPC, on-prem & cloud). Federated CMF has been applied 

in such a scenario to capture metadata for the entire experi-

ment population by capturing data lineage, metrics, network 

architecture, hyperparameters.  

Early Results  

We applied Federated CMF to high energy physics particle 

trajectory reconstruction pipeline (ExatrkX [15]) that has six 

stages including data pre-processing and two neural network 

models, where outputs from one model become inputs of an-

other model. Figure 3 shows the parallel coordinate plot de-

scribing dependence of output metrics (Efficiency, Fake 

Rate, Duplication Rate) on selected hyper-parameters 

(Train-*) from different model training experiments. The 

figure shows improvement of metrics after the base model 

(Orange) trained in HPC facility has been further tuned with 

additional data at an edge facility (Purple). Note that only 

one hyper-parameter (TrainGNN) affecting the final pipe-

line stage has been tuned at the edge. Tracking of lineage 

from different pipeline stages enable CMF to associate an 



execution output as the input for another execution and build 

end to end execution lineages from disjointed executions 

distributed between different sites. 

In this case, it associates output from the model 1 trained in 

HPC facility with input of the model 2 tuned at the edge.  

We have also assessed the performance of metadata merges, 

for high energy physics particle tracking pipeline as shown 

in Figure 4. The results show the time taken to merge 170 

and 90 executions are in the order of few seconds whereas 

their execution times are 2550 mins and 1350 mins respec-

tively. The exact time depends on the existing metadata in 

server. The results indicate that the time taken for merges 

(for a payload size) is comparable as we increase the size of 

existing metadata in the server. This makes it scalable to 

merge data to servers having sizeable metadata accumulated 

from incremental merges from across different sites or 

workflows. Code for Federated CMF is available at [16]. 

Related Work 

MLFlow [3], Weights and Biases [4], and DataFed [17] en-

able synchronization of metadata from experimental & com-

putational facilities to a central server and their presentation 

via a linked data portal. In contrast, Federated CMF enables 

peer to peer exchanges, bandwidth optimal transfers and 

merging of metadata independently at any site. Metadata 

can be exported/imported between servers making it ideal 

for shared compute scenarios. Although Workflow systems 

like Kepler scientific workflow [18] provides metadata 

tracking, the tracked metadata is trapped inside the system, 

making it difficult to correlate with metadata outside of its 

ecosystem. In contrast Federated CMF can track metadata 

& artifacts as derived metadata enabling FAIR lineage 

across heterogeneous workflow systems.    

Conclusion & Future Work 

We present the approach and early results to manage 

metadata of heterogeneous AI workflows. The results are 

promising, and we intend to deploy this in heterogeneous 

science workflows to further optimize them.  
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