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Abstract

The use of reinforcement learning (RL) in scientific appli-
cations, such as materials design and automated chemistry,
is increasing. A major challenge, however, lies in fact that
measuring the state of the system is often costly and time
consuming in scientific applications, whereas policy learning
with RL requires a measurement after each time step. In this
work, we make the measurement costs explicit in the form of
a costed reward and propose a framework that enables off-
the-shelf deep RL algorithms to learn a policy for both se-
lecting actions and determining whether or not to measure
the current state of the system at each time step. In this way,
the agents learn to balance the need for information with the
cost of information. Our results show that when trained un-
der this regime, the Dueling DQN and PPO agents can learn
optimal action policies whilst making up to 50% fewer state
measurements, and recurrent neural networks can produce a
greater than 50% reduction in measurements. We postulate
the these reduction can help to lower the barrier to applying
RL to real-world scientific applications.

Introduction
Deep reinforcement learning (DRL) has recently demon-
strated its great potential in challenging simulated sequential
decision making environment (Mnih et al. 2015). As a result,
there is a growing interest in applying DRL to complex real-
world problems. We are particularly interested in the appli-
cation of DRL to improve and expedite design problems,
such as those in materials science and pharmacology. The
sequential decision making problems in these areas, how-
ever, often have explicit costs associated with measuring the
current state of the environment. On the hand, reinforcement
learning (RL) generally requires long training times with
significant exploration. This places a high state measure-
ment burden on the use of RL in applications with explicit
measurement costs. We define this scenario as a Markov De-
cision Process (MDP) with explicit state measurement costs.

The existing RL solutions are not designed for MDPs
with explicit state measurement costs. In the canonical MDP
framework, observations of the state of the environment are
produced automatically at each time sets and have no ex-
plicit associated costs. Generally, agents are either agnos-
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tic to the state observations provided by the environment in
the sense that they learn from what they receive, or they at-
tempt to improve the quality of observations through deep
feature representations (Mnih et al. 2015), maintaining a be-
lief state for partially observable MDPs (POMDP) (Kael-
bling, Littman, and Cassandra 1998), or taking actions to
change the state of the environment in order to gain a better
understanding of it (Bossens, Townsend, and Sobey 2019).
There is no class of algorithms, however, that aims to bal-
ance learning a policy that maximises the discounted sum of
rewards with minimising the incurred measurement costs.

In materials design(Steiner et al. 2019; Burger et al.
2020), determining the microscopic state of the environment
after applying a process (such as heat, stirring, etc), requires
the use of costly measurement and characterisation equip-
ment. For RL to be useful in this application, an agent must
be more thoughtful about which states, and at which time,
are most useful to measure. The same is true for problems
of combinatorial optimisation via quantum-annealing(Mills,
Ronagh, and Tamblyn 2020); repeated measurements of the
system have a high associated cost (they are destructive)
and therefore significantly increase the time-to-solution (and
hence cost).

The optimal solution should both achieve the design goal
and limit the total costs associated with carrying out the de-
sign. We denote the reward minus the cost as the costed re-
ward and the sum of the long-term discounted rewards mi-
nus costs as the costed return (Bellinger et al. 2021). The
fundamental question in this current work is, can DRL be
used to find a non-trivial policy which balances the need for
information with the cost of information acquisition?

In our previous work, we developed a tubular RL algo-
rithm to maximize the costed return (Bellinger et al. 2021).
Here, we explore deep learning strategies to learn policies
for sequential decision making problems with explicit costs.
We do this with a particular focus on setting up an approach
that enables the use of off-the-shelf DRL algorithms. The
fundamental property of costed reward problems is that the
DRL agent can freely explore the relationship between ac-
tions and rewards with the objective of learning a policy that
achieves a high costed return, but is charged each time it
measures the next state.

In this work, we present a strategy to modify the stan-



dard reinforcement learning framework to enable off-the-
shelf DRL algorithms to achieve the goal of maximising
the costed return. Our solution includes the DRL agents that
learn both an action policy and a state measurement policy.
To enable this, we expand the state and action spaces, and
add an explicit cost and one-state memory to the environ-
ment. Our results show that the modified framework enables
agents trained with PPO (Schulman et al. 2017) and Dueling
DQN (Wang et al. 2016) learn interesting state measurement
policies that depend on the unknown underlying dynamics of
the environment to minimise costs whilst learning an action
policy that efficiently achieves the goal. Moreover, our re-
sults also suggest that adding recurrent memory to the model
architecture leads to further improvements in the costed re-
ward. We demonstrate this behaviour on Open AI gym en-
vironments (Brockman et al. 2016) using the costed reward
wrapper class developed for this research1.

Related Work
This work has some relationship to previous work on ac-
tive reinforcement learning (Akrour, Schoenauer, and Se-
bag 2012; Krueger et al. 2016; Schulze and Evans 2018)
that modified the action space. In particular, we utilised the
previously proposed strategy of action pairs that encode a
directive about how to move and whether to measure the
state of the environment or utilise an oracle. The previous
work, however, involved using a human experts to address
the challenge of defining a complete reward signal. Alterna-
tively, our work is focused on reducing the costs associate
with measure the state of the environment.

As with our work, measurement costs sometimes occur
POMDPs (Kaelbling, Littman, and Cassandra 1998). More-
over, the use of the last measured state is can be seen as par-
tial observably. Classic POMDPs techniques, however, re-
quire learning a model of the underlying dynamics or having
a-priori knowledge of them. Critically, while uncertainty in
POMDPs is a consequence of the external environment, here
the uncertainty in a function of agent’s choice to forgo mea-
suring the state of the environment to lower its observation
costs. A POMDP agent can only indirectly affect uncertainty
by choosing actions that change the environment thereby
lowering its uncertainty. Alternatively, under our framework,
the agent can always opt to measure the state of the envi-
ronment to removing uncertain at a cost. As a result, our
proposal resides in the grey area between fully observable
Markov Decision Processes (MDPs) and Partially Observ-
able Markov Decision Processes (POMDPs). The agent can
choose to operate exclusively in a fully observable world by
paying for a state measurement, or learn a that periodically
measure at cost. Therefore, can be seen as a sub-category
of POMDP that can be efficiently solved using off-the-shelf
DRL. The effectiveness of a tabular RL setup version using
classic POMDP methods was demonstrated in our previous
work (Bellinger et al. 2021)

From an alternate perspective, this class of problem can
been seen as a novel subclass of mixed observable MDP

1Costed reward wrapper class code: http://clean.energyscience.
ca/codes

(MOMDP) (Ong et al. 2010), because the agent learns from
a blend of fully observable measurements of the next state
and noisy estimates of that state. In standard POMDPs and
MOMDPs the agent operates with a degree of uncertainty
due to the incomplete observable information received at
each time step but without any notion of measurement cost
itself. As far as we are aware, our proposed solution is the
first to enable the agent explicitly decide to utilise either
fully or partially observable measurements at each time set.

Problem Formulation
This work focus on the classic RL setup which includes the
environment as a tuple: (S,A, P, S′, R, γ). These are the
standard components of an MDP, where S is the state-space,
A is the action-space, P (s′|s, a) is the state transition prob-
abilities, R(s, a) is the reward function, and γ ∈ [0, 1] is a
discount factor. P and R are not known by the agent.

In this work, we focus on episodic environments with
continuous states, S ∈ Rn, discrete action sets A =
{1, ..., |A|}, and stationary state-transition dynamics. The
standard RL objective is to learn a policy π : s → a that
maximises the return, which is defined as the discounted

sum of rewards: v(s) = E

[∑∞
t=0 γ

t
(
R(st, at)

)
| s = s0

]
.

As introduced above, our objective is to facilitate off-the-
shelf DRL algorithms maximise the costed return. As a re-
sult, we incorporate the explicit measurement costs into the
return as:

v(s) = E

[ ∞∑
t=0

γt
(
R(st, at)− C(mt)

)
| s = s0

]
, (1)

where C(mt) is measurement costs at time t.
For DRL to learn a non-trivial policy that maximises the

costed return, it needs the ability to explicitly decide which
actions to take and whether or not to measure the next state
at each time step. Formally, the agent learns action and mea-
surement policies π : s → a,m. To enable DRL to , we
propose a five simple modifications to the classic RL frame-
work.

The first modification is to expand the action space to
action pairs (atomic-action, measurement directive). The
atomic-action is the standard action (e.g. add heat, move up,
etc.), and the measurement directive is a Boolean flag that
indicates if the current state of the environment should be
measured and returned after the application of the atomic
action.

When the agent selects an action pair that gives the direc-
tive to measure the environment (m = 1), the measurement
is returned to the agent for use in the selection of the next
action pair. In addition, we augment the environment to give
it a memory of the last measured state. When the agent se-
lects an action pair that gives the directive not to measure
the environment (m = 0), the environment returns the last
measured state to the agent. In order to learn a useful policy,
however, the agent needs to know when it is seeing the cur-
rent measurement of the system and when it is seeing a stale
one. We provide for this by expanding the state space to in-
clude a Boolean flag at the end of the state representation.



When the environment returns the last measured state to the
agent, the flag is set to zero, otherwise, it is set to one. As
an alternative, this augmentation can be omitted if the agent
is give memory of its last action pair. However, augmenting
the state space rather than the agent enables the use of off-
the-self DRL. The results are expected to be the same either
way.

Most importantly, in order to encourage the agent to learn
a policy that only measures the state of the environment
when it is necessary, we add an explicit user-defined mea-
surement cost to the environment. The environment sub-
tracts this cost from the reward if and only if the agent uses
the measure directive. Therefore, an agent which measures
at every time step will also know the current state of the sys-
tem, but the reward at each time step will be reduced. On the
other hand, a agent that never measures will save the mea-
surement costs, but also will never have a clear picture of
where it is in the state space. A non-trivial policy will bal-
anced the cost of information with the need for information
in order to efficiently (in terms of time and cost) achieve
goal.

The our wrapper class for the Open AI gym (Brockman
et al. 2016) can be accessed here: http://clean.energyscience.
ca/codes.

Experimental Setup
We evaluate the performance of PPO (Schulman et al. 2017)
and Dueling DQN (Wang et al. 2016) on the costed version
of the Open AI gym environments Cartpole, Acrobot and
Lunar lander (Brockman et al. 2016). The DRL algorithms
are implemented using Pytorch and the Tianshou deep learn-
ing packages (Weng et al. 2021), and the results were record
with Weights and Biases (Biewald 2020). The experiments
were executed on Ubuntu 18.04 desktop running a GeForce
RTX 2080 Ti GPU.

In our experiments, we first compare the performance
of the agents on the standard Open AI gym environments
(we refer to this as the vanilla environments, vanilla=1) to
the costed reward version of the environments (vanilla=0).
These results serve to reveal the impact (if any) of costed
reward wrapper class on policy learning in the target envi-
ronments. The main focus of the experiments are: a) our
analysis of the agents ability to learn non-trivial policies
in the costed reward environments with increases measure-
ments costs, and b) our analysis of the impact of cost on
the agents learned measurement policy. All of the results re-
ported below are averaged over 10 independent trials. The
code is available upon request and will be made public after
publication.

Results
Vanilla Environment Versus Costed Environment
This section evaluates if the costed reward wrapper has any
strong negative impact on policy learning in selected Open
AI Gym environment. This analysis is conducted comparing
the agents performance on the vanilla environments to the
performance on the costed reward version of the environ-
ment with the measurement cost is set to 0. The correspond-

ing results for Dueling DQN agents training on the vanilla
Cartpole and Acrobot environments are presented in Figure
1. The results plot the median test rewards on the vanilla en-
vironment versus the costed reward version of environment
with cost = 0. The results show the agents learning under
the costed reward regime converge to the same median re-
ward as on the vanilla environments. This result also holds
for Lunar Lander, but is omitted due to space considerations.

We could expect some lag in the learning of agents on the
costed reward versions of the environments because these
have larger state and actions spaces. Indeed, we see this lag
with agent learning on the costed reward version of Cartpole,
where it takes slightly longer to start learn, but not in the
other environments. This is of interest because Cartpole is
easiest of the three environment. More research is required
to understand this phenomenon.

Learning with a cost
In this section, we evaluate the agents ability to learn in
the costed reward regime as the measurement costs are in-
creased. The median costed reward results for Dueling DQN
on Cartpole and Acrobot are depicted in Figure 2. In particu-
lar, each Figure plots the performance curves for cost 0, 0.1,
0.2 and 0.3.

As verified in the previous section, the cost=0 curves
show the optimal performance for the agents on each of
the environments. Therefore, these serve as an ambitious,
though achievable, objective for the agents learning with
costs greater than 0. Achieving this goal would require the
agent to never measure the state of the environment. This is
clearly not possible, but it aids our analysis. On the other
hand, the lower benchmark is an agent the measures at ev-
ery time step. This result is the agent’s reward at each time
step having the cost subtracted. For Cartpole, this bounds
the reward of an agent that learns an optimal action policy
between 200 and 200-(200*cost). Specifically, 180, 160 and
140 for costs of 0.1, 0.2, and 0.3 respectively. For Acrobot,
this amounts to approximately -71, -78, and -84.

The results for Cartpole and Acrobot show that whilst the
agents policies converge, the levels are well below the am-
bitious upper targets, and they are significantly above the
baseline that solves the problem by measuring at every time
step. On Cartpole, for example, the medians of the best re-
ward per trial are 190.03, 180.07, and 170.10. Therefore, the
agents are able to learn non-trivial measurement policies that
enable them to solve the problem and reduce their measure-
ment costs. This performance trend holds for Lunar lander
as well.

Learned Measurement policies
In this section, we take a deeper dive into the measurement
policies learned by the agents on the costed reward environ-
ments. Here, we aim to understand what the measurement
policy behaviour looks like, and if / how it depends on cost
and the dynamics of the environment.

To explore this question, we load the best policy learned
by the respective agents and test them over 10 independent
episodes. First, we compare the measurement policy learned



Figure 1: Comparison of Cartpole (left) and Acrobot (right) environments in the vanilla mode and in the costed reward mode
with cost equal 0. The results illustrate that expanding the state and action-space have minimal impact on policy learning.

Figure 2: Comparison of Cartpole (left) and Acrobot (right) environments in the vanilla (m=1) with increasing measurement
costs. The results illustrate that increasing the cost reduces the costed rewards, but the agent is able to learn a policy that
balances the frequency and cost of measurements with the need to obtain information to achieve the goal.

on Cartpole with costs of 0 and 0.3. The plots in Figure 3 de-
pict the measurement directives issued by the learned policy
during the evaluation. The x-axis specifies the time steps of
the episode and the y-axis specifies the independent episode
trial. At each time step, the the colour of the rectangle indi-
cates if the agent’s learned policy requested a measurement
or not. The first plot corresponds to a cost of 0 and illustrates
that on the Cartpole environment with the cost set to 0, the
agent learns to measure at each time step. This is clearly the
best policy when measurements are free.

The second plot in Figure 3 illustrates the measurement
policy when the cost is set 0.3. Here we see the agent learns a
policy that alternates between measuring and not measuring
at consecutive time steps. In both the case of cost 0 and 0.3
the agents learn optimal action policies that enable the pole
to stay upright until the maximum of 200 steps. Importantly,
when the agent is change a fee 0.3 for measuring the state, it
is able to learn a more cost efficient policy.

The results for costs 0.1 and 0.2, which are withheld for
space, show that the Dueling DQN and PPO agents learns
the same measurement policy. This indicates that a standard
DRL agent operating in the proposed costed setup can take
at most one step without measuring. This a consequence of
the proposed costed reward setup. More memory in the en-
vironment or an alternative setup are required to step more
steps without measuring. We consider the use of recurrent
networks in the next section.

The results in Figure 4 demonstrate the measurement poli-

cies learning by Dueling DQN on the Acrobot and Lunar
Lander environments with a measurement cost of 0.3. These
results show that the agents do not learn the clean pattern
produced by the agents Cartpole. Rather, the measurement
policies are quite unique and are dependent on the dynamics
of the environment. In the case of Lunar Lander (right plot),
early in the episode, the policy takes measurement at each
step (shown by the prevalence orange rectangles in the early
steps of the episode). We postulate that this is to account for
the changes in environment that occur at the start of each
episode. Once the agent has established an understanding of
the environment in the current episode, the policy shifts to
alternating between measuring and not measuring (alternat-
ing blue and orange rectangles in the middle of the episode.)
Finally, when the lander is close to and lined up over the
landing zone, the agent no longer needs to measure at all
(all blue rectangles towards the end of the episode).

For Acrobot, shown in the left plot of Figure 4, the agent
learns to use the alternating measure-do-not-measure pattern
for the first two-thirds of the episodes. Acrobot, like Cart-
pole, starts each episode in the same position with the same
dynamics. Therefore, the agent can forego some measure-
ments. Alternative, there are many trajectories to flip the Ac-
robot over the goal line and as the agent approaches achiev-
ing goal, the action choice becomes more sensitive, thus the
agent learns that needs to measure frequently as it gets closer
to achieving the goal.



Figure 3: Comparison of the measurement behaviour of Dueling DQN on Cartpole environments with cost of 0 and 0.3. The
show that when the cost is greater than zero, the agent learns to measure only when necessary to achieve the goal.

Figure 4: Comparison of the measurement behaviour of Dueling DQN on Acrobot environments (left) and lunar lander environ-
ment (right) with cost of 0.3. This demonstrates that when the cost is greater than zero, the agent learns to measure only when
necessary to achieve the goal. Interestingly, the measurement pattern demonstrates that the measurement policy is dependent
upon the dynamics of the system.

Recurrent Memory
The final set of results are presented in Figure 6 and Figure 5.
These results compare the use of Dueling DQN to DQN with
a recurrent network (DRQN). The objective is to explore the
idea of adding recurrent memory to the agent. The prelimi-
nary results on Cartpole show that Deuling DQN with recur-
rent memory can can learn to make fewer measurements of
the environment, whilst still achieving the goal. As a result,
it acquires a higher costed reward.

The results in Figure 5 compare the median of the best
costed reward achieved by the Dueling DQN and DRQN on
Cartpole. The results are shown for costs of 0, 0.1, 0.2 and
0.3. For cost=0, both agents learn policies that achieve the
optimal reward. As the cost is increased from 0, the plot
shows that DRQN has a growing advantage in this envi-
ronment in terms of the costed reward. It is also revealed
that the Dueling DQN policy as very little standard devia-
tion between test trails (the variance bars are too small so
see on this plot.) Conversely, the DRQN performance of the
DRQN policy across trials has a noticeable standard devi-
ation. Nonetheless, even with the larger standard deviation,
DRQN has a clear advantage.

Figure 6 presents the measurement policy for Dueling
DQN and DRQN on Cartpole with the measurement cost
of 0.3. In the case of Dueling DQN (left plot), we see the
familiar alternating measurement strategy. Alternatively, in
the DRQN plot on the right, we see that the plot is domi-
nated by blue rectangles with orange ones interspersed. This
illustrates that DRQN learns an action policy that solves the
environment whilst learning a measurement policy that takes
consecutive steps without measuring, thereby achieving the
higher costed rewards seen in Figure 6. This demonstrates

that recurrent DRL can exploit its hidden state represen-
tation to tract the true state of the environment within the
costed reward regime. Importantly, it can utilise this to re-
duce the minimum measurement frequency required by the
agent and achieve a higher costed reward.

Discussion
In laboratory science and design where measuring the state
of the system is costly and time consuming, it is standard
that the research workflow smoothly shifts between take
real measurements of the state of the system and infer-
ring sets state based on textbook knowledge or past expe-
rience. On the other hand, the standard RL framework re-
quires a measurement at teach time step. Although RL is
expected to be beneficial in many scientific applications, it
need for a frequent and predetermined state measurement
pattern can place a significant barrier on the application of
RL to problems with high measurement costs. The above
results demonstrate that the proposed costed reward regime
enables off-the-shelf DRL algorithms to learn a non-trivial
state measurement policy whilst learning an optimal action
selection policy. This is one step towards enable the use of
RL in many scientific applications.

In spite of the benefits demonstrated with the use of the
proposed costed reward regime, we see the reliance of action
pairs a limitation. The environments considered here had rel-
atively small actions spaces. As a result, mapping the actions
to action pairs, which doubles the size of the action space,
had minimal negative impact on the effective learning rate.
Real-world applications, however, often have a large number
of discrete actions or have a continuous action space. The
current solution does not have a straightforward mapping to
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Figure 5: Comparison of the best costed rewards of Dueling DQN and DRQN on Cartpole environments with increasing costs.
As the costs increase, DRQN exploits is recurrent memory to measure less frequently and achive a higher costed reward.

Figure 6: Comparison of the measurement behaviour of Dueling DQN and DRQN on Cartpole environments with cost of 0.3.
The show that when the cost is DRQN is able to further reduce its measurement requirements.

continuous action spaces, a side from discretizing the action
space, which is not always ideal.

The results demonstrate DRL algorithms learning within
the costed reward regime can successfully learn a measure-
ment policy that reduce the need for measurement. The best
achievable reduction is to cut the measurement requirement
in half. The reduction, however, is limited by the complex-
ity of the environment. In the case of Cartpole, which as
simple dynamics and a single start state, the maximum pos-
sible reduction is achieved. In more complex environments,
the agent achieves meaningful reductions but can not fully
reduce the measurements to half. Our results for recurrent
DRL demonstrate that it can help further reduce in the mea-
surement frequency. Our on-going work is explore the full
potential the recurrent DRL improve the measurement re-
quirements in more complex applications and areas of the
state space, such as at the end of Acrobot episodes and the
beginning of Lunar Lander episodes.

Conclusion
Many science-based applications have high temporal and
monetary costs associated with measuring the state of the
environment. This places a significant barrier on the use of
RL in scientific applications such as materials design and
pharmacology. As a result, developing strategies that reduce

the number of state measurements demanded by RL is an
important feature to improving its applicability. To achieve
this, we postulate that the RL agent, much like a laboratory
researcher, should be given the control to decided it is nec-
essary to measure the state of the system. From an RL per-
spective, this poses an interesting challenge that requires the
agent to learn a policy that balances the need for informa-
tion with the cost of obtaining it, while attempting to learn
an optimal action policy.

This work proposed a set of modifications to the stan-
dard RL framework which facilitates the use of off-the-shelf
DRL costed reward regime. Our results show that within this
setup, Dual DQN and PPO can learn optimal action poli-
cies and a measurement policy that reduces the measurement
cost. Using DRL, the agents can learn to cut the total cost in
half, whereas DRQN can reduce the cost further by leverag-
ing its internal memory to facilitate successive steps without
measuring the state of the environment.

Our on-going work is focused on developing a simulated
chemistry lab environment as a test-bed that is closer to the
real-world applications of interest. From a technical per-
spective, we are exploring alternatives to the action pair
setup so as to not require a doubling the action space, and
conducting more research into the use of recurrent network
architectures in a wider variety of costed reward environ-
ments and with policy gradient methods.
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