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Abstract 
Learning representations of molecular structures using deep 
learning is a fundamental problem in molecular property pre-
diction tasks. Molecules inherently exist in the real world as 
three-dimensional structures; furthermore, they are not static 
but in continuous motion in the 3D Euclidean space, forming 
a potential energy surface. Therefore, it is desirable to gener-
ate multiple conformations in advance and extract molecular 
representations using a 4D-QSAR model that incorporates 
multiple conformations. However, this approach is impracti-
cal for drug and material discovery tasks because of the com-
putational cost of obtaining multiple conformations.  To ad-
dress this issue, we propose a pre-training method for molec-
ular GNNs using an existing dataset of molecular confor-
mations to generate a latent vector universal to multiple con-
formations from a 2D molecular graph. Our method, called 
Boltzmann GNN, is formulated by maximizing the condi-
tional marginal likelihood of a conditional generative model 
for conformations generation.  We show that our model has a 
better prediction performance for molecular properties than 
existing pre-training methods using molecular graphs and 
three-dimensional molecular structures.  

1. Introduction 
Learning representations of molecular structures using deep 
learning is a useful approach in drug and material discovery 
(Gómez et al. 2018; Stokes et al. 2020; Zhou et al. 2018). In 
particular, for the task of molecular property prediction, 
Graph Neural Networks (GNNs) have been successful 
(Glimer et al. 2018; Duvenaud et al. 2015; Fuchs et al. 2020). 
Various models of these architectures have been studied, de-
pending on the prediction task. For example, a Graph Field 
Network (GFN) can predict the potential energy of a mole-
cule from the coordinates of its atomic nucleus (Schütt et al. 
2017; Schütt et al. 2018). Although GNNs and GFNs treat 
molecules as stationary objects, to accurately predict biolog-
ical or physico-chemical properties, we should use their 
conformation ensembles. This is because molecules are not 
static but are in continuous motion in 3D Euclidean space, 
forming a potential energy surface (PES) (Schlegel et al. 
2003; Hawkins et al. 2017). Molecular chemical properties 
are a function of the set of conformations (conformation en-
semble) accessible at a finite temperature (Kuhn et al. 2016). 

Figure 1 shows the relationship between the PES and con-
formations.  
 Recent studies (Zankov et al. 2021; Weinreich et al. 2021; 
Axelrod et al. 2023) used molecular dynamics (MD) simu-
lations to generate conformation ensembles and used the 
conformation ensemble as an input to a DNN to predict mo-
lecular properties. Here, we refer to these models as 4D-
QSARs. These approaches make sense from a physical per-
spective. However, the use of classical molecular dynamics 
simulations to explicitly compute a conformation ensemble 
before predicting its properties is computationally intracta-
ble for many real-world applications.  
 In this study, we propose a pre-training method for GNNs 
using an existing dataset of conformation ensembles as a 
surrogate model for 4D-QSARs. From the perspective of 
statistical physics, a conformation 𝑪 can be treated as a ran-
dom quantity sampled from the Boltzmann distribution 
𝑝∗(𝑪) ∝ exp(−𝐸(𝑪)), where 𝐸(𝑪) is the potential energy 
of 𝑪. If we can obtain a conformation ensemble on the PES 
as observed samples that follow the 𝑝∗(𝑪), we can estimate 
a universal latent vector for multiple conformations using a 
conditional generative model. 

1.1 Related Works  
 Pre-training methods for Molecular GNNs using molecu-
lar conformations have been proposed to obtain a better pre-
diction performance for molecular properties. GraphMVP 

Figure 1 : Illustration of conformations on potential energy 
surface.  The coordinate geometry 𝑪𝒊 on the PES is called 
conformation. 
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(Liu et al. 2021) proposes a generative and a contrastive 
learning task for maximizing between molecular 2D topol-
ogies and the 3D conformations. 3D Infomax (Stärk et al. 
2022) proposes a knowledge distillation method from a 
GFN using molecular 3D geometries to GNNs using molec-
ular graphs. These methods use information from multiple 
conformations but do not explicitly incorporate information 
on the Boltzmann distribution. 
 We introduce a pre-training method for molecular GNNs 
to incorporate information on the Boltzmann distribution.  

2. Methods 

2.1 Preliminaries 
3D conformation of molecule. For geometry, each atom 𝑎# 
in molecule ℳ is embedded by a coordinate vector 𝒄# ∈ ℝ$ 
into 3D space, and the full set of positions (conformation) 
can be represented as a matrix 𝑪 = [𝒄%, 𝒄&, … 𝒄'] ∈ ℝ'×$. 

2D molecular graph. A molecular graph is denoted as 𝓖 =
(𝑽, 𝑬), where 𝑽 = {𝒂#}#)%'  is the set of vertices representing 
atoms and 𝑬 = ;𝒃#* 	|	(𝑖, 𝑗) ⊆ |𝑽| × |𝑽|C is the set of edges 
representing the inter-atomic bonds. 

2.2 Motivation  
Let 𝑝𝓖∗(𝑪)  be the Boltzmann distribution of the confor-
mation ensemble (𝑪%, 𝑪&, …𝑪,) for a molecular graph 𝓖. 
Our aim is to obtain the latent vector 𝒛𝓖 of the molecular 
graph 𝓖 as the conditional variable for a conditional gener-
ative model 𝑝-(𝑪|𝒛𝓖) to approximate the 𝑝𝓖∗(𝑪). This prob-
lem is to obtain 𝒛𝓖∗ ∈ ℝ. such that, 

𝒛𝓖∗ = argmin
𝒛𝓖	∈	ℝ"

𝐷KLL𝑝𝓖∗(𝑪)||𝑝-(𝑪|𝒛𝓖)M, (1) 

where 𝜃  is a set of parameters for conditional generative 
model 𝑝-P𝑪Q𝒛𝓖R.  If 𝑁 is large, 𝐷KL[	∙	] of Eq. 1 can be re-
written as follows:  

𝒛𝓖V= argmin
𝒛𝓖	∈	ℝ"

W
1
𝑁X−Ylog	(𝑝-(𝑪𝒊|𝒛𝓖))

,

#)%

\ + 𝐻P𝑝𝓖∗(𝑪)R_ . 	(2) 

𝐻P𝑝𝓖∗(𝑪)R is the entropy of 𝑝𝓖∗(𝑪) and constant term. There-
fore, Eq. 3 represents the maximum likelihood estimator 
(MLE). This maximum likelihood estimate 𝒛𝓖V includes in-
formation on the conformation ensemble (𝑪%, 𝑪&, …𝑪,) on 
the PES. In practice, the latent vector encoded by a 𝑓5(𝓖) 
(GNN) is denoted as  𝒛𝓖, and we estimate the parameter 𝜙c 
of the 𝑓5(𝓖) using MLE. Therefore, we can obtain the fol-
lowing objective: 

𝜙c = argmin
5	∈	ℝ#

W
1
𝑁 X−Ylog	(𝑝-(𝑪𝒊|𝑓5(𝓖)))

,

#)%

\_ . (3) 

We use this MLE as an objective function for training GNNs. 
Our goal is to improve the prediction performance of mo-
lecular properties for small datasets using this training 
method for the pre-training of GNNs.  

Figure 2 shows a schematic illustration of our solution, 
which constructs a conditional Boltzmann generator that ap-
proximates the Boltzmann distribution using a hierarchical 
model of a GNN and conditional generative model.  

Figure 2 : Scheme of our pre-training method for molecular GNNs. Our pre-training method generates a conditional 
variable 𝒛𝓖 from molecular graph 𝓖 with encoder (GNNs) for 𝒑𝜽(𝑪|𝒛𝓖). This conditional model 𝒑𝜽P𝑪Q𝒛𝓖R generates 
a molecular conformation ensemble using a the latent vector 𝒛𝓖. 
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2.3 Model Architecture  
Conditional generative model. Conditional generative 
model 𝑝-(𝑪|𝒛𝓖) needs to satisfy SE(3)-invariant likelihood. 
Furthermore, it should be possible to generate multimodal 
distributions, such as the Boltzmann distribution. To satisfy 
these requirements, we use a geometric diffusion model 
(Geodiff) (Xu et al. 2022).  
 Geodiff is a conditional generative model using denoising 
diffusion probabilistic model (DDPM) (Ho et al. 2020). The 
training process of Geodiff is to predict Gaussian noise 𝜀 
from a molecular graph 𝓖 and a noisy conformation 𝑪7 that 
contains a Gaussian noise 𝜺7 	 ∈ ℝ'×$~	𝑵(𝟎, 𝑰). This noisy 
conformation is obtained by a discrete Markov chain, called 
the diffusion process, using the following equation: 

𝑪7 = l1 − 𝛽7𝑪78% +l𝛽7𝜺7	, (4) 

where 𝑡 represents time, and 𝑪9 = 𝑪. By increasing 𝛽7 from 
0 to 1 as 𝑡 increases, 𝑪9 is converted to a random noise vec-
tor. Let 𝛼7 ≡ 1 − 𝛽7 and 𝛼7rrr ≡ ∏ 𝛼:7

:)% , we get a sample 𝑪7 
with noise 𝝐	 ∈ ℝ'×$~	𝑵(𝟎, 𝑰) from following equation: 

𝑪7 = l𝛼7rrr𝑪9 +l1 − 𝛼7rrr𝝐	. (5) 

 The objective of Geodiff is to minimize the following 
equation as a variational upper bound on the negative log 
marginal likelihood −	log	𝑝-(𝑪|𝓖):  

𝔼7~Uniform({%,F})[‖𝝐 − 𝜖-(𝑪7 , 𝓖, 𝑡)‖𝟐]	. (6) 

𝜖- is Schnet (Schütt et al. 2018). In Geodiff, although the 
input 𝓖 of Schnet is fixed, we change it to a latent vector 𝒛𝓖 
with 𝓖 encoded by GNNs (𝑓5 ∶ 	𝓖 → 𝒛𝓖). Thus, we change 
Eq. 6 to follows: 

𝔼7~Uniform({%,F}) |}𝝐 − 𝜖-P𝑪7 , 𝒛𝓖, 𝑡R}
𝟐~ . (7) 

GNN model for encoding molecular graphs. We use 
Graph transformer network (GTN) (Dwivedi et al. 2020) for 
encoding molecular graphs into their latent vectors 𝒛𝓖. GTN 
uses self-attention (Vaswani et al. 2017) and Laplacian en-
coding to embed atomic interactions in a molecular graph 
𝓖 = (𝑽, 𝑬)	into latent atomic vectors 𝒉𝒗 = {𝒉#}#)%'  and la-
tent edge vectors 𝒉𝒆 = ;𝒆#* 	|	(𝑖, 𝑗) ⊆ |𝑽| × |𝑽|C. We define 
𝒛𝓖 as [𝒉𝒗, 𝒉𝒆]. The encoding of GTN (𝑓5 ∶ 	𝓖 → 𝒛𝓖) is 

𝒉𝒗, 𝒉𝒆 = 𝑓5(𝓖)	. (8) 

 Figure 4 shows our method using GTN and Geodiff. 
Schnet 𝜖- , which predicts a noise 𝝐	added to the confor-
mation 𝑪, is called score function. The function estimates 
the molecular force field (Zaidi et al. 2022). 𝜖-  estimates 
molecular force fields using latent vectors 𝒛𝓖 from 𝑓5(𝓖), 
therefore, 𝑓5(𝓖) learns latent vectors 𝒛𝓖 about atomic inter-
actions on the conformation. Latent edge vectors 𝒉𝒆 are im-
portant for extracting the atomic interactions between atoms. 

Figure 3 : Illustration of our pre-training method. First, the diffusion process adds a noise 𝝐 to the coordinates of a confor-
mation 𝑪𝟎. GTN encodes a molecular graph 𝓖 to the latent vector 𝒛𝓖, and Schnet uses it to predict the noise 𝝐. 𝑪𝟎∗  indicates 
the original conformation before noise is added. 
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2.4 Loss Function 
The loss function is the mean of the evidence upper bound 
on the − log 𝑝-(𝑪𝒊|𝑓5(𝓖)): 

1
𝑁 XY𝔼7~Uniform({%,F}) |}𝝐 − 𝜖-P𝑪7# , 𝑓5(𝓖), 𝑡R}

𝟐~
,

#)%

\ , (9) 

where 𝑪7#  is the conformation corresponding to the molecu-
lar graph 𝓖, and is the noisy conformation obtained from 
time 𝑡 of the diffusion process. In practice, we compute the 
above loss Eq. 9 for the various molecular graphs and con-
formation ensembles in a dataset. We minimize the follow-
ing expectation ℒ(𝜃, 𝜙) as in Geodiff: 

𝔼M𝑪𝒊,𝓖O	~	P(𝑪,𝓖),7~Uniform({%,F}) |}𝝐 − 𝜖-P𝑪7# , 𝑓5(𝓖), 𝑡R}
𝟐~	 .  

𝜋(𝑪, 𝓖) is a joint distribution of molecular graphs and con-
formations obtained from a dataset. We can optimize 𝜃 and  
𝜙  with stochastic gradient descent for	 ℒ(𝜃, 𝜙) . We call  
GNNs using this objective Boltzmann GNN. 

3. Experiment and Results 
We empirically evaluate our model with transfer learning 
tasks for small datasets. We compare the performance of the 
Boltzmann GNN with existing pre-training methods. 

3.1 Setup 
Datasets. For the pre-training datasets, we take 60k mole-
cules from GEOM (Axelrod et al. 2022). We took 5 con-
formers for each molecule. For downstream tasks, we ob-
tained datasets of biological activity to target proteins ob-
tained from Excape-DB (Sun et al. 2017) and datasets of 
physico-chemical properties such as solubility and lipo-
philicity from MoleculeNet (Wu et al. 2018). Finally, we set 
five regression tasks. 

Baselines. For 2D graph-based pre-training methods, we 
chose well-acknowledged SSL methods: GraphCL (You et 
al. 2020) and AttrMask (Hu et al. 2019). For 3D structure 
informed pre-training methods, we chose recent proposed 
SSL methods: GraphMVP (Liu et al. 2021) and 3D Infomax 
(Stärk et al. 2022).  We used Graph Isomorphism Network 
(GIN) (Xu et al. 2018) and Schnet as baseline models. 

Pre training. 
We trained our model and baseline models for 500 epochs 
and determined the best model for each on validation sam-
ples not used for training. 

3.2 Results 
We summarized in Table 1 the mean squared error for each 
model in each dataset. Boltzmann GNN achieved state-of-
the-art performance for four of the five tasks. Furthermore, 
our model performed better for datasets with small sample 
sizes such as Solubility and BACE1.  

4. Conclusion and Future work 
In this study, we proposed a novel pre-training method for 
molecular GNNs via conditional Boltzmann generator. We 
integrated the geometric diffusion model and the graph 
transformer to infer the latent vector of the Boltzmann dis-
tribution. Our pre-training method explicitly incorporated 
information on Boltzmann distribution, which improved 
prediction performance for downstream tasks such as mo-
lecular properties.  
 These results support the effectiveness of the pre-training 
method with conditional Boltzmann generation, and we will 
continue to explore further in this direction. 
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Table 1: Results for molecular property prediction tasks. For each downstream task, we report the mean squared error (MSE) 
of 3 seeds with scaffold splitting. The best performance for each task is marked in bold. BACE1 and CTSD are biological 
activity datasets for a target protein from Excape-DB. We wrote the sample size next to the dataset name. 
 

Small Datasets (Sample size)Pre-training
method CTSD (1.1k)BACE1 (3.6k)	Lipophilicity (4.2k)Malaria (10k)Solubility (1.1k)

0.80660.84090.57081.21521.2189GraphCL

0.72680.76720.54371.25221.3396AttrMask

0.93270.78820.53891.22631.22763D Infomax

0.76890.80580.50881.16191.1719GraphMVP

0.72570.59840.63461.15860.8649Boltzmann GNN
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