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Abstract

Prototyping is fundamental in manufacturing to evaluate
a new product before mass production; however, physical
prototyping is time consuming, costly, and environmentally
harmful. Diffusion models, which have achieved state-of-the-
art performance in image generation, became a promising al-
ternative. In the manufacturing industry, where new products
are continuously developed, continual learning is essential.
However, diffusion models suffer from catastrophic forget-
ting in continual learning scenarios, particularly when deal-
ing with the imbalanced data which is common in real-world
manufacturing environments. To address this challenge, we
propose Catastrophic Forgetting Mitigation Regularization of
Diffusion (CFMRD), a novel continual learning method that
combines data-level adjustments with model prior distribu-
tion regularization. Using real tire manufacturing data, our
approach reduces the forgetting rate measured via Mean Ab-
solute Percentage Error (MAPE) to 0.1142%, outperform-
ing baseline methods. It also achieves superior performance
across all metrics of Average Final Quality (AFQ), closely
approaching the performance of a model trained on all tasks
simultaneously. Our study findings show that diffusion-based
modeling is a practically viable approach for prototyping,
contributing to the reduction of the product development cy-
cle and environmental waste.

1 Introduction
Prototyping is one of the most important phases in product
development within the manufacturing industry. It is an es-
sential step for evaluating design specifications, functional-
ity, and performance before mass production(Camburn et al.
2017). For example, in the tire manufacturing industry, com-
panies must produce physical tire prototypes to measure tire
footprints, which is essential for evaluating performance and
safety. However, this traditional method is time-consuming,
incurs high costs, and impacts the environment due to ma-
terial consumption and waste during manufacturing and dis-
posal processes. With the advancement of image generation
models, especially diffusion models(Ho, Jain, and Abbeel
2020) demonstrating superior performance(Dhariwal and
Nichol 2021), it has become possible to replace physical
prototyping with virtual simulations.
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Figure 1: Performance Degradation After Learning New
Patterns. This figure illustrates a common scenario in man-
ufacturing, where model train with sequential tasks from im-
balanced datasets. The yellow dashed lines represent the ad-
dition of new data during training. As the model learns new
data, it suffers from catastrophic forgetting, leading to qual-
ity degradation for both head and tail labels. After learning
Task 4 (final task), the model’s Mean Absolute Percentage
Error (MAPE) for tail labels increases to 16% which shows
the inherent challenges of continual learning in such set-
tings.

Nevertheless, these technologies are not widely used for
prototyping, primarily due to the unique characteristics of
the manufacturing data. It often involves the continual intro-
duction of new categories, irregular dataset sizes, and signif-
icant label imbalance(Figure 1). For example, in the tire in-
dustry, some patterns developed in 2024 may have as many
as 3,000 data samples, while specialized patterns, such as
those for motorcycle tires, may have fewer than 10. Further-
more, the number of patterns developed each year is not con-
stant, but tends to decrease over time.

These industrial characteristics worsen catastrophic for-
getting, where models lose previously learned knowledge
when updated with new data(Chrysakis and Moens 2020).
In other words, updating the model for new tire patterns
can degrade the performance of previously learned patterns.
However, retraining the model with all previous data is unre-
alistic due to time and computational costs. For prototyping
modeling, continuously developing and updating the model
for new categories is more critical than for other tasks, mak-



ing it even more challenging to apply the diffusion model to
advanced tasks like prototyping.

Recent research actively addresses the catastrophic for-
getting problem in image generation models, including dif-
fusions. However, directly applying traditional continual
learning methods from classification does not yield signif-
icant performance improvements(Zajac et al. 2023; Zhang
et al. 2024). Although replay-based methods are effective in
classification domains(Lopez-Paz and Ranzato 2017a), they
cause data imbalance issues in diffusion models which in-
duce mode collapse. Attempts to balance labels during mem-
ory sampling in classification tasks(Kim, Jeong, and Kim
2020), which is direct data-level adjustments, do not funda-
mentally solve issues such as forgetting tail patterns in the
diffusion models because diffusion models learn more com-
plex data distributions(Qin et al. 2023).

To overcome these challenges, we propose a novel con-
tinual learning method for diffusion models called Catas-
trophic Forgetting Mitigation Regularization of Diffusion
(CFMRD). This method combines data-level adjustment
techniques like experience replay with soft distribution
adjustment at the loss function level. Inspired by Class-
balancing diffusion(Qin et al. 2023) which adjust imbal-
ance prior distribution to the balance distribution during
the sampling process, we designed an additional loss func-
tion that acts as a regularizer. This regularizer prevents the
model from deviating from the distribution of previous task.
It expands the learning distribution towards the tail classes
of previous task rather than being biased towards the head
classes of currrent task. As a result, we address the problem
of high forgetting rates in low-frequency labels, ultimately
achieving superior performance across all labels.

In this study, using actual tire industry data, we prove
that our method, CFMRD, solves the catastrophic forgetting
problem even in realistic scenarios with increasingly unbal-
anced label distribution. Our research is the first to identify
the continual learning challenges of diffusion models on un-
balanced datasets and to propose a new method that simul-
taneously performs data-level adjustments and model prior
distribution adjustments.

By enabling diffusion models to be effectively used for
prototyping, our method significantly shortens new product
development time and reduces environmental burdens. Fur-
thermore, our method contributes to reducing the time and
cost required not only for prototyping but also for retrain-
ing models. We expect this research play a significant role in
solving catastrophic forgetting problems of diffusions across
various industrial fields in the future. Our contributions are
as follows:

• We are the first to identify and address the continual
learning challenges in diffusion models caused by the
continuous emergence of new categories and unbalanced
data in manufacturing.

• We propose CFMRD, a novel methodology that com-
bines data-level adjustments with model prior distri-
bution adjustments to minimize catastrophic forgetting,
even when learning from unbalanced data.

• By validating our model’s effectiveness with real manu-

facturing data, we demonstrate that diffusion models can
be effectively applied to core tasks like prototyping, con-
tributing to cost savings and environmental benefits.

2 Related Works
2.1 Conditional Image Generation
Generative Adversarial Networks (GANs)(Goodfellow et al.
2014) and diffusion models (Ho, Jain, and Abbeel 2020) are
foundational methods in image generation. Recently, diffu-
sion models are regarded as powerful tool for generating
high-resolution and detailed images(Dhariwal and Nichol
2021). Diffusion models achieve this by progressively de-
noising images through a two-phase process: forward diffu-
sion, where noise is incrementally added, and reverse dif-
fusion, where noise is removed to restore the original im-
age(Ho, Jain, and Abbeel 2020). Conditional image gener-
ation using diffusion models has been researched in many
ways(Batzolis et al. 2021; Hung et al. 2023). These models
generate images reflecting specific attributes based on input
conditions, controlled through two main approaches: pre-
dicting noise that matches given attributes(Rombach et al.
2022), and using classifier-free guidance(CFG), which trains
both conditional and unconditional models simultaneously
to adjust the strength of conditions during image genera-
tion(Ho and Salimans 2022).

Conditional image generation can be also categorized
based on the type of condition used: label-based and text-
based. Label-based methods generate images for specific
categories based on class labels, whereas text-based con-
ditional generation visually represents natural language
description. Text-based approach has been successfully
demonstrated by large transformer-based models, such as
OpenAI’s Dall-E(Ramesh et al. 2021) and Google’s Ima-
gen(Saharia et al. 2022).

These improvements have broadened applications across
fields such as healthcare(Khader et al. 2022), autonomous
driving(Tang et al. 2019), and art creation(Wang, Chen, and
Wang 2024). In contrast, the application of conditional im-
age generation in manufacturing remains limited, due to
challenges such as catastrophic forgetting and the complex-
ities of data. Therefore, further exploration of conditional
image generation in manufacturing—especially approaches
that address product development processes like prototyp-
ing—holds substantial potential to advance industries such
as smart manufacturing.

2.2 Continual Learning in Image Generation
Continual learning is the technique that enables a model to
sequentially learn a series of tasks (T (1), T (2), . . . , T (T ))
integrating new information without forgetting the knowl-
edge of previous task(Delange et al. 2021). Tradition-
ally, continual learning mainly used in classification
tasks, which has limited output spaces such as one-
hot class. These methods can be categorized into three
approaches: Regularization-based(Aljundi et al. 2018),
Replay-based(Wu et al. 2018; Chaudhry et al. 2019) and
Parameter-isolation-based(Masana, Tuytelaars, and Van de
Weijer 2021).
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Figure 2: Qualitative Comparison of Generated Tire Footprint Images after training each task on continual learning setups.
Columns represent the results of generating the same pattern (originally learned in Task 1) after training on subsequent tasks
(Task 2, Task 3, and Task 4). Rows compare the proposed CFMRD (Ours) approach with baseline methods: NCL, Experience
Replay and Experience Replay with Resampling. The proposed method demonstrates the superior performance for mitigating
catastrophic forgetting across tasks.

In image generation task, continual learning is learning
sequential tasks, where each task is defined by a specific
set of conditions. However, due to the complexity of out-
put spaces distribution which is image, traditional methods
are not satisfactory enough to address catastrophic forget-
ting in image generation(Zhang et al. 2024). Specifically,
replay-based method, which store samples from previous
tasks in a memory buffer or generate them to replay along-
side new data, are effective for classification tasks. How-
ever, it faces significant challenges in image generation.
Replay often induces data imbalance, which leads to the
mode collapse; the model over-optimizes for certain classes
while neglecting others, resulting in degradation of over-
all performance(Lopez-Paz and Ranzato 2017b; Srivastava
et al. 2017).

Beyond traditional methods, new approaches for condi-
tional diffusion—such as C-LoRA(Smith et al. 2023) and
Generative Distillation(Masip et al. 2023)—have been pro-
posed. However, these methods assume datasets with uni-
form distributions and simple conditions, like text descrip-
tions or categorical labels. Additionally, they rely on pa-
rameters from previous models, leading to increased storage
and computational costs as models become more complex.
These limitations restrict their applicability to real-world
scenarios like manufacturing, where conditions are inher-
ently complex and datasets are imbalanced. To address these
challenges, this study proposes a novel approach that pre-
vents catastrophic forgetting even in the context of complex
and imbalanced dataset distributions.

3 Methods
3.1 Problem Definition
In this study, we address the challenge of continual learn-
ing in image generation using tire data as a representative
case from the manufacturing industry. The dataset is based
on real-world data collected from a global tire manufactur-
ing company. It consists of tabular data with 82 columns of
specification (spec) information including pattern name, tire
mold specifications and 3 columns of test conditions (condi-
tion) such as test load.

Task Total Size # of Patterns Max Min
Task 1 11,500 10 3,219 14
Task 2 5,750 8 1,870 5
Task 3 4,600 6 1,408 16
Task 4 3,450 5 968 10

Table 1: Data Distribution per Task

Based on domain knowledge—the pattern name column
plays a pivotal role in the spec data, as other attributes such
as mold are closely correlated with the pattern name—we
define each task T (t) based on different patterns. For ex-
ample, Task 1 consists of 15,000 samples distributed across
10 patterns,with the largest pattern containing 3,219 samples
and the smallest only 14. Subsequent tasks consist of fewer
patterns and samples, as detailed in Table 1. This reflects the
real-world data distribution in the manufacturing industry.



Our objective is to develop a model that can effectively
learn from this imbalanced dataset without forgetting previ-
ously learned patterns. Formally, each task T (t) is defined
as:

• Input space C(t): Tire specifications and test conditions

• Output space I(t): Tire footprint images

• Training set D(t): A set of samples {(c(t)j , i
(t)
j )}|D

(t)|
j=1

The goal is to learn a mapping function f that generalizes
across all tasks:

f :

T⋃
t=1

C(t) →
T⋃

t=1

I(t) (1)

This function f aims to generate tire footprint images (I)
from tire specifications and test condition data (C).

3.2 Preliminaries
Stable Diffusion Stable Diffusion(Rombach et al. 2022)
is a generative model that operates in a compressed la-
tent space, where an input image x is encoded into a
latent representation z0 using a Variational Autoencoder
(VAE)(Kingma 2013). In this latent space, the diffusion pro-
cess iteratively adds Gaussian noise to z0 over multiple time
steps, resulting in a noisy latent representation zt at each
time step t. This process is defined as:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, ϵ ∼ N (0, 1) (2)

where ᾱt controls the noise schedule.
To generate high-quality images, the model employs a de-

noising network ϵθ to predict the noise ϵ in zt. The denois-
ing process is conditioned on both the time step t and ex-
ternal information y, which guides the generation process.
To achieve this, the external condition y is transformed into
a feature representation by a condition encoder τθ(y). The
objective function for training is:

LLDM = EE(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, τθ(y))∥22

]
(3)

This objective reconstructs the latent representation z0 to
generate images aligned with the given condition.

In this study, we extend this model to retain the perfor-
mance for previous conditions y across tasks. The conditions
y are provided as tabular data consisting of tire specifications
(spec) and test conditions (condition).

Class-Balancing Diffusion Models Class-Balancing Dif-
fusion Models (CBDM) (Qin et al. 2023) address the
degradation in diffusion model performance in imbalanced
dataset. Diffusion models assume that the prior distribution
of data is balanced. However, in scenarios where the ac-
tual data distribution is imbalanced, this assumption leads
to overfitting on head classes and poor performance on tail
classes. CBDM softly adjust the prior distribution during
the sampling step, modifying the reverse diffusion process
pθ(xt−1|xt, y), where xt represents the noise at time step t

and y serves as the conditional label guiding the generation.
The adjusted distribution is formulated as:

p⋆θ(xt−1|xt, y) = pθ(xt−1|xt, y)
pθ(xt−1)

p⋆θ(xt−1)

q⋆(xt)

q(xt)
(4)

where q(xt) represents the original data distribution, and
q⋆(xt) is the target balanced distribution. Technically this
adjustment is reformulated as a mean squared error (MSE)
loss term, making it computationally feasible to integrate
into the training process. Our study extends this loss term
to induce the diffusion model generates images that are not
biased toward the current task. Through MSE loss, we ad-
just the model to sample images in prior distributions across
tasks, enabling it to generate high-quality images not only
for the current task but also for the previous tasks.

Experience Replay Experience Replay(Chaudhry et al.
2019) is an approach to address the problem of catastrophic
forgetting in continual learning. It involves sampling data
from previous tasks and storing it in a memory buffer, which
is used with new data during training.

3.3 Imbalance Sequential Image Generation
In this study, we propose CFMRD (Catastrophic Forgetting
Mitigation Regularization of Diffusion), a novel training
method that integrates data and sampling-level approach.It
addresses the catastrophic forgetting problem in continual
setting with imbalance data, a common challenge in the
manufacturing industry.

In continual learning setting, diffusions easily forget the
distribution of previous tasks qt−1(y), and becomes biased
toward the distribution of the current task qt(y). To address
this, we adjust the prior distribution at the loss function level
to an idealized distribution q∗(y), that uniformly incorpo-
rates data across tasks t = 1, 2, . . . , T . It is formulated as:

q∗(y) =
1∑T

t=1 |Y (t)|
, ∀y ∈

T⋃
t=1

Y (t) (5)

Here, T denotes the total number of tasks, and Y (t) repre-
sents the set of labels in task t. By aligning the model’s prior
distribution to this distribution, CFMRD minimizes forget-
ting while achieving superior performance across head and
tail classes. Inspired by Classifier-Free Guidance (CFG)(Ho
and Salimans 2022), we train the model on both real and
adjusted distributions, softly guiding the model toward the
ideal distribution. This approach stabilizes training process
preventing mode collapse.

Training Algorithms This section provides an overview
of the training algorithm for the proposed method, CFMRD.
At the beginning of each new task k, a fixed-size mem-
ory buffer B is initialized with balanced samples from all
tasks {1, . . . , k}. The buffer B is then combined with the
current task’s data to construct the training dataset. When
sampling data into the buffer, oversampling or downsam-
pling is applied depending on the availability of samples for
each pattern. During training, the model follows the stan-
dard noise prediction framework utilized in the stable diffu-
sion(Rombach et al. 2022), with regularization losses with



Algorithm 1: Training Algorithm for CFMRD

Inputs: Training data {(y(i), x(i)
0 )}Mi=1, memory buffer

B, current task K, batch size b, number of categories N ,
regularization coefficients τ , γ, and probability p

1: Initialize memory buffer B with balanced data from
tasks {1, . . . , k}

2: Combine the memory buffer B with the current task’s
data to form the training set

3: for each batch of size b from the data loader do
4: for each sample (y(i), x

(i)
0 ) in the batch do

5: Encode input to latent space using VAE:
z
(i)
0 = VAE encoder(x(i)

0 )

6: Sample t ∼ U({1, . . . , T}) and ϵ(i) ∼ N (0, I)
7: Compute the noise of latent representation:

z
(i)
t =

√
ᾱtz

(i)
0 +

√
1− ᾱtϵ

(i)

8: Compute condition embedding τθ(y
(i))

9: Predict noise ϵ̂(i) = ϵθ(z
(i)
t , t, τθ(y

(i)))
10: end for
11: Compute latent diffusion loss:

LLDM = 1
b

∑b
i=1 ∥ϵ(i) − ϵ̂(i)∥2

12: if random probability < p then
13: Sample N data from buffer B
14: for each data (y(j), z

(j)
0 ) sampled from buffer do

15: Compute noisy latent and predict noise as in
lines 6–8

16: end for
17: Compute Past-to-Current Regularization losses:

Lpc = τ · 1
N

∑
i,j ∥ϵ̂(i) − sg(ϵ̂(j))∥2

18: Compute Current-to-Past Regularization losses:
Lcp = γ · τ · 1

N

∑
i,j ∥sg(ϵ̂(i))− ϵ̂(j)∥2

19: Total loss:
L = LLDM + Lpc + Lcp

20: else
21: Total loss:

L = LLDM

22: end if
23: Update with total loss L
24: end for

a probability p (e.g., p = 20%). Specifically, an additional
N samples is drawn from the memory buffer B, and corre-
sponding regularization terms are computed. For these sam-
ples, the model predicts noise ϵ̂(j), and two types of regular-
ization losses are applied:
• Past-to-Current Regularization (Lpc): This term en-

sures that the representations of current task samples (i)
do not deviate significantly from the representations of
samples from ideal distribution containing previous tasks
(j). It induce consistent noise predictions across tasks:

Lpc = τ · 1

N

∑
i,j

∥∥∥ϵ̂(i) − sg(ϵ̂(j))
∥∥∥2 (6)

Here, sg(·) denotes the stop-gradient operation and τ is a
scaling factor for the regularization term.

• Current-to-Past Regularization (Lcp): This term en-
sures that the representations of past task data (j) align
with the representation of data from current task (i). It
prevents the model from being overly influenced by past
tasks, ensuring a balanced learning process for the cur-
rent task:

Lcp = γ · τ · 1

N

∑
i,j

∥∥∥sg(ϵ̂(i))− ϵ̂(j)
∥∥∥2 (7)

Here, γ scales the contribution of this term. Lcp provides
a mechanism for effectively learning new tasks while
preserving past knowledge.

The total loss is computed as:

L =

{
LLDM + Lpc + Lcp if regularized (p = 20%)
LLDM otherwise

where LLDM is the standard noise prediction loss from the
latent diffusion framework.

Lpc prevents the current task representations from shift-
ing too far from past task representations, while Lcp aligns
past task representations with the current task. By incorpo-
rating these regularization terms together, the model ensures
a balance between retaining knowledge from past tasks and
adapting to the current task. Therefore this training method
effectively mitigating catastrophic forgetting.

4 Experiment setup
4.1 Implementation Details
This study utilizes the Stable Diffusion model from scratch
as the backbone where the pretrained-VAE ‘sd-vae-ft-mse’
from Stability AI was used to construct the latent space. The
model trained and evaluated on an NVIDIA A6000 GPU
with a batch size of 64 and a learning rate of 0.0001. Due to
the absence of prior research on continual learning for im-
age generation under imbalanced data, we followed a class-
incremental learning (Liu et al. 2023): pre-training on Task
1 for 1,300 epochs and fine-tuning on subsequent tasks for
800 epochs. The training process is based on 1,000 diffu-
sion steps and 16 worker threads. To mitigate catastrophic
forgetting, the strength of the regularization terms were set
as p = 0.2, τ = 0.0005 and γ = 0.25. The buffer size B
for experience replay was set as 200, which accounts for less
than 1% of the total dataset.

4.2 Baselines
Non-Continual Learning (NonCL) train a single model on
the data from all tasks together. While this approach is not
under a continual learning (CL) setup, it serves as an upper
bound for CL baselines since there is no forgetting. Naive
Continual Learning (NCL) is the simplest baseline in CL,
where the same model is continually trained without apply-
ing any CL techniques to mitigate forgetting. This approach
directly suffers from the catastrophic forgetting problem and
it serves as an lower bound. Experience Replay (ER) com-
bines samples from previous tasks with the current task data
to train the model. We adopt reservoir sampling for man-
aging the memory buffer, following the approach described



Method Evaluation MAPE (↓) LPIPS (↓) PSNR (↑)

NonCL (upper target) AFQ 9.3903 0.1345 17.2204

FR – – –

NCL (lower target) AFQ 14.2250 0.1836 15.1938

FR 4.5071 0.0388 -0.3412

Experience Replay AFQ 13.0452 0.1525 15.4149

FR 3.8702 0.0222 0.010

Experience Replay with Resampling AFQ 12.6200 0.1430 15.8298

FR 2.8414 0.0131 0.7139

CFMRD (Loss Only) AFQ 11.9554 0.1573 14.8846

FR 1.4803 0.0287 -1.0655

CFMRD (Ours) AFQ 9.8499 0.1349 16.1166

FR 0.1142 0.0028 -0.1187

Table 2: Quantitative Comparison of Continual Learning Performance across various methods, based on Average Fi-
nal Quality (AFQ) and Forgetting Rate (FR). CFMRD outperforms all baselines, achieving the best AFQ and FR values in
MAPE mean and LPIPS, as highlighted in bold. These results demonstrate that CFMRD effectively improves the generation
quality at the final step while minimizing knowledge forgetting across previous tasks.

in (Riemer et al. 2018) and (Zhang et al. 2024). Experience
Replay with Resampling extends the basic ER approach by
adding resampling techniques to balance the data distribu-
tion in replayed samples.

4.3 Evaluation Metrics
To evaluate the performance of the proposed method, we
categories metrics into two types: Image Generation Perfor-
mance Metrics and Continual Learning Evaluation Metrics.

Image Generation Performance Metrics To evaluate the
performance of the proposed model, we utilize mean MAPE
of three physical attributes of tire footprint which are essen-
tial for assessing tire performance in real-world scenarios. It
captures the Mean Absolute Percentage Error (MAPE) be-
tween the ground truth and generated tire footprint images
across three key physical properties: contact length, width,
and area. The MAPE for each property is computed as the
mean of the absolute percentage error, defined as MAPE =
GT−Generated

GT × 100, where GT represents the ground truth.
By quantifying the deviation between the generated and ac-
tual footprint attributes, MAPE offers a assessment of the
model’s capability to accurately reproduce the characteris-
tics of tire footprint.

For evaluating similarity with ground truth (GT), we
employ LPIPS (Learned Perceptual Image Patch Similar-
ity)(Zhang et al. 2018)and PSNR (Peak Signal-to-Noise
Ratio)(Xu et al. 2022) as evaluation metrics to assess the
similarity between generated images and GT. LPIPS is a
perceptual similarity metric that measures the distance be-

tween latent features extracted from pre-trained neural net-
works offering a more human-aligned evaluation of visual
quality. In our experiment we employ AlexNet(Krizhevsky,
Sutskever, and Hinton 2012) as pre-trained neural network.
On the other hand, PSNR is a traditional pixel-wise metric
that compares pixel intensities, with higher values indicating
closer fidelity to the ground truth.

Continual Learning Evaluation Metrics Average Final
Quality (AFQ)(Lopez-Paz and Ranzato 2017a) evaluates the
model’s overall performance on all tasks at the end of the
training process. For a model trained on T tasks, AFQ is
defined as:

AFQ =
1

N

N∑
n=1

[
1

T

T∑
t=1

m(f (T ), T (t)
n )

]
(8)

where m(f (T ), T (t)) represents the model’s performance
on task t after it has been trained on all T tasks and N rep-
resents the total number of patterns across all tasks.

Forgetting Rate (FR)(Chaudhry et al. 2018) quantifies the
extent of catastrophic forgetting by calculating the differ-
ence in performance on the previous tasks as the model
learns new tasks. For a model trained on T tasks, FR for
task t is defined as:

FR(t) =
1

N

N∑
n=1

[
1

T − t

T∑
i=t+1

(
m(f (i), T (t)

n )

−m(f (t), T (t)
n )

)]
(9)



where m(f (i), T (t)) is the model’s performance on task t for
pattern n after learning task i > t and m(f (t), T (t)) is the
performance on task t for pattern n directly after training on
task t.

5 Experiment Results
5.1 Quantitative Evaluation
Table 2 provides a comparison of the performance of differ-
ent methods under the continual learning setting.

Catastrophic Forgetting in Diffusion Models Naive
Continual Learning (NCL) shows quality degradation when
training sequentially on multiple tasks, resulting in poor im-
age generation quality compared to Non-Continual Learn-
ing(NonCL). Specifically, NCL achieves an AFQMAPE
of 14.2250 and AFQLPIPS of 0.1836, whereas NonCL
shows superior performance with an AFQMAPE of 9.3903,
AFQLPIPS of 0.1345, and AFQPSNR of 15.1938. Further-
more, the forgetting rates for NCL are relatively high, with
FRMAPE of 4.5071 and FRLPIPS of 0.0388. These findings
confirm that diffusion models suffer from catastrophic for-
getting in continual learning setting in real-world manufac-
turing data.

Performance of CFMRD ER shows a slight improve-
ment over NCL, achieving an AFQMAPE of 13.0452 and
AFQLPIPS of 0.1525, but it still suffers from high forget-
ting rates, with an FRMAPE of 3.8702. ER with Resam-
pling performs better than ER, achieving an AFQMAPE of
12.6200, AFQLPIPS of 0.1430 and AFQPSNR of 15.8289.
It shows relatively high performance in PSNR; however,
the high FRMAPE indicates that it struggles to generate
accurate footprint images, despite having a similar num-
ber of pixels. Furthermore, it still exhibits quality degrada-
tion as indicated by an FRMAPE of 2.8414 and FRLPIPS of
0.0131. When only the regularization term of CFMRD is ap-
plied CFMRDloss only, the forgetting rate is further reduced,
with an FRMAPE of 1.4803 and achieves an AFQMAPE
of 11.9554. It outperforms both ER and ER with Resam-
pling in MAPE. By incorporating both the regularization
and data-level adjustments (CFMRD), our method achieves
the best performance across all metrics, with an AFQMAPE
of 9.8499, AFQLPIPS of 0.1349 and AFQPSNR of 16.1166.
and the lowest forgetting rates as FRMAPE of 0.1142 and
FRLPIPS of 0.0028. It proves superior performance, compa-
rable to the NonCL.

Comparison of Forgetting Rates Between Head and Tail
Classes It is essential to generate high-quality images for
both head and tail patterns in prototyping. For comparison,
we define head and tail patterns based on the concept of
data imbalance as described in (Zhu, Guo, and Xue 2020).
Specifically, patterns with a cumulative data contribution ex-
ceeding 50% of the total dataset are classified as head pat-
terns, while the remaining patterns are classified as tail pat-
terns. According to this definition, the top 5 patterns are cat-
egorized as head patterns, and the remaining 24 patterns as
tail patterns. Figure 3 shows the comparison of forgetting
rates, measured as FRMAPE, between head and tail patterns
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Figure 3: The line graph illustrates the Forgetting Rate via
MAPE(%) for head and tail patterns across different meth-
ods. The proposed CFMRD method achieves the lowest for-
getting rates for both head and tail patterns.
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Figure 4: Generated images of the tail pattern (E) in contin-
ual learning settings.

across different methods. Traditional methods such as NCL
and ER struggle with catatrophic forgetting, especially for
tail patterns. For instance, in the NCL, FRMAPE of head pat-
tern is 3.2623% and tail pattern is 4.8349%. ER shows more
imbalance, with FRMAPE of head patterns at 1.4193% and
tail patterns at 4.5175%. In contrast, our proposed method
CFMRD, consistently reduces FRMAPE across both cate-
gories, achieving the lowest forgetting rates. Specifically,
FRMAPE for head patterns is reduced to 0.9934%, and for
tail patterns, it is further improved to -0.0011%.

5.2 Qualitative Evaluation

Figure 2 illustrates the qualitative performance of each
method in continual learning settings. In NCL, the pattern
in tire footprint image become progressively blurred. After
learning the task 4, it generates entirely different tire foot-
prints. ER demonstrates some improvement compared to
NCL but still generates blurry and distorted images as they
train learn the task. Similarly, ER with Resampling shows
instability, with tire footprint images distorted after certain
tasks. In contrast, CFMRD maintains high fidelity with less
blurring or distortion. These results confirm that our method
effectively mitigates catastrophic forgetting.



5.3 Ablation Study
Complementary of Each Loss Term In our proposed
method, we incorporate both Current-to-Past Regularization
(Lcp) and Past-to-Current Regularization (Lpc) to balance
learning between past and current tasks. To validate the ne-
cessity of these two terms, we conducted an ablation study
by removing Lcp, while keeping Lpc. When Lcp was re-
moved, the metrics were as follows: FRMAPE of 1.091%,
FRLPIPS of 0.0106 and FRPSNR of 0.0093. These results in-
dicate that the model exhibits relatively low forgetting rates,
suggesting that Lpc effectively prevents the model from for-
getting the distribution of past tasks. However, AFQ were
as follows: AFQMAPE of 13.9193%, AFQLPIPS of 0.1649
and AFQPSNR of 15.1694. The relatively high AFQMAPE
and AFQLPIPS values suggest that, while Lpc minimizes for-
getting, the model struggles to effectively learn new tasks
without Lcp.Through this ablation study, we demonstrate the
complementary roles of Lcp and Lpc. While Lpc focuses on
minimizing forgetting by adjusting the model to the past task
distribution, Lcp ensures the model to adapt to current tasks.

6 Conclusion & Limitation
This study addresses the challenge of continuous image gen-
eration under imbalanced data distributions, a common issue
in real-world manufacturing industry where new products
are continuously developed. Since diffusion-based models
learned complex data distribution, it face significant diffi-
culties in such scenarios with existing method. To address
this, we proposed a novel methodology that adjust the distri-
bution of model both at the input level and at the sampling
level. Our experiments show that the proposed approach ef-
fectively mitigates catastrophic forgetting, particularly for
tail classes. As a result, the stable diffusion model generates
high-quality images across all patterns in sequential setting.
This demonstrates the potential of diffusion-based models
for practical applications, such as manufacturing prototyp-
ing, which require continual model updates. However, our
study is limited to four tasks due to resource constraints. Fu-
ture work will focus on validating the proposed method on
more diverse tasks to enhance the applicability of diffusion
models in manufacturing industry.
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