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Abstract

A wide variety of applications rely on the characterization of
objects from radar observations. Existing approaches in this
space primarily focus on inferring object type. In this work,
we focus on inferring the input parameters of a physics-based
radar simulator from its output, a temporal sequence of radar
observations. Sequential radar observations inherently have
a complex spatio-temporal structure that is difficult to cap-
ture with many standard vision-based deep learning archi-
tectures. We model such complex phenomena as a sequence
to sequence prediction problem and use a transformer archi-
tecture, taking advantage of its ability to capture contextual
temporal dependencies. We demonstrate that our method, In-
verse Radar Transformer (InvRT), outperforms baseline ap-
proaches in predicting object properties, for both high and
low observability settings. Furthermore, its errors are highly
correlated with the level of object observability, highlighting
its potential to learn the geometric limitations of radar sens-
ing.

Introduction
The advantages of radar technology, such as the ability to
search wide areas and to operate in all weather conditions,
have led to its widespread use in object detection for au-
tonomous cars (Bilik et al. 2019), robotics (Stetco et al.
2020), and biosensing (Diraco, Leone, and Siciliano 2017).
It has additionally proven useful for weather and climate
forecasting, such as detection of tornado debris (Cheong
et al. 2017), ice crystals in clouds, (Myagkov et al. 2016),
and rainfall estimation (Gorgucci et al. 2001), which will be-
come increasingly critical in the future as society faces the
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effects of climate change. In such scenarios, object proper-
ties play a major role in making critical decisions. Addition-
ally, solving nonlinear inverse physics problems with deep
learning is the subject of ongoing research (Mason, Yonel,
and Yazici 2017). Motivated by neural networks’ capabili-
ties as universal function approximators, these approaches
involve estimating the inputs to physics-guided simulations,
given the noisy outputs. In this work, we use transformers to
solve the useful inverse problem of object property estima-
tion from simulated sequential radar observations, using ob-
ject shape as an example. Transformers are the current state-
of-the-art deep learning architecture for processing sequen-
tial data (Vaswani et al. 2017). Although developed for natu-
ral language processing problems, recently they have signif-
icantly advanced the state-of-the-art in a variety of domains,
including signal processing and computer vision (Dosovit-
skiy et al. 2020; Li et al. 2019; Guo et al. 2021).

Existing deep learning algorithms developed for radar ob-
ject characterization primarily infer object class rather than
object attributes (Geng et al. 2021). In addition, many such
approaches only encode spatial information in individual
radar signals by utilizing 1D convolutional neural networks
(CNNs) (Lundén and Koivunen 2016a; Wan et al. 2019;
Song et al. 2019; Lundén and Koivunen 2016b; Pan et al.
2022; Wan et al. 2020) or recurrent neural networks (RNNs)
(Xu et al. 2019). Some of these approaches additionally ap-
ply attention mechanisms (Pan et al. 2022; Wan et al. 2020;
Xu et al. 2019) and transformers (Zhang et al. 2021) to en-
hance spatial encodings, boosting algorithm performance.
However, temporal structure is equally important as spatial
structure, and all of these approaches only consider individ-
ual radar observations, rather than sequential observations
over time.

We introduce the Inverse Radar Transformer (InvRT)
which expands on prior work in the following ways: (1) In-
vRT directly infers radar object properties; (2) InvRT ex-
ploits the temporal structure of radar observation sequences
over time, in addition to spatial structure in individual ob-
servations. We demonstrate that our approach can learn to
infer object characteristics at a higher performance rate than



the baseline approach, while staying consistent with inherent
noise and observability constraints.

Methods
Our problem relates closely to the class of reconstruction-
based inverse problems: given a set of input states y, a for-
ward model F (·), and the measured output x that is subject
to measurement noise ν:

x = F (y) + ν, ν ∼ N(0,Σ),

the objective is to estimate y given noisy measurements x
using a neural network architecture. The following describes
our approach to data generation, the model architecture, and
the training and evaluation methodology.

Data Simulation
We use a high-frequency radar simulation tool (Chance et al.
2022) that allows us to parameterize objects so that their
measurements are the summation of individual components.
We define a set of individual components to create dif-
ferent objects consisting of circular flat plates, spherical
hemispheres, and conical frustums (Figure 1). The Radar
Cross Section (RCS) for each component is calculated us-
ing legacy software (Burt and Moore 1991). To simplify our
architecture and analysis, our experiments consider collec-
tions of stacked frustums with flat plates on both ends and
collections with one end being a flat plate and the other a
hemisphere. Other component combinations can be handled
with minor changes to the architecture.

Figure 1: Geometry of the three main input shape compo-
nents of the radar simulation.

The simulation input is a vector y ∈ RNy of parameter-
ized circular roll-symmetric objects (Figure 2a). The simu-
lation produces noisy radar observation, x ∈ RNx . The ob-
servation is the normalized magnitude of the range-profile as
described in Section III of (Chance et al. 2022) using wave-
form parameters provided in Figure 2c. The observation de-
pends on the waveform, the dimensions of the components,
and the angle between the line-of-sight vector and the ob-
ject’s axis of symmetry, which we call the aspect angle θ.
An object is fully observed if the observations cover all as-
pect angles, θ ∈ [0, π] (an illustration is given in Figure 2d),
otherwise it is partially observed. We generate observations
such that each object is partially observed.

Figure 2: (a) Illustration of a random object cross-section.
(b) The range profile for 140◦ aspect. (c) The waveform pa-
rameters for the simulation. (d) The range profiles stacked
over all aspect angles.

Figure 3: Overview of transformer architecture, adapted
from (Carion et al. 2020). si corresponds to component i.

Model Architecture
The InvRT architecture consists of an embedding network,
a conventional transformer backbone, and shape prediction
heads (Figure 3). The embedding network uses a shallow 1-
D CNN to learn a spatial embedding for each range profile.
The CNN outputs are pooled across spatial dimensions to
produce the final d-dimensional spatial embedding, where
d = 64. A positional encoding is added to the spatial em-
bedding.

The transformer architecture consists of 3 encoder and
3 decoder blocks, with the hidden dimension of all feed-
forward layers and number of attention heads being 512 and
8, respectively. There are Q object component queries and
1 shape characteristic query (presence of a hemisphere) that
are used in the attention layers of the transformer decoder.
All queries are learned d-dimensional embeddings shared
across all inputs. The decoder thus outputs Q component
features and 1 shape characteristic feature for every input.



Component features are locations on the object surface, a
similar setup to (Carion et al. 2020). In this work, we set
Q = 20. The component features are fed to parallel linear
prediction heads: the classification head predicts a binary
value for each component feature, and the regression head
predicts (z, r) coordinates for each feature, where z is the
location along the axis of symmetry and r is the radius.

During inference, InvRT only outputs coordinates for pos-
itively classified components. The shape characteristic fea-
ture is also fed to parallel linear prediction heads: the clas-
sification head classifies each end of the object as a hemi-
sphere or flat plate, and the regression head predicts an ax-
ial z coordinate representing the tip of the hemisphere (the
radius is zero at the tip of the hemisphere). During infer-
ence, InvRT only outputs this coordinate for end sections
classified as a hemisphere. InvRT-Decoder has the same ar-
chitecture as InvRT, except that it is a decoder-only trans-
former. All objects are post-processed to ensure geomet-
ric consistency (e.g. components representing flat plates are
post-processed to have the same axial value, ensuring that
all flat plates are vertical).

Loss Function

The loss is a weighted sum of (a) the component classifica-
tion loss, (b) the component regression loss, (c) the hemi-
sphere detection loss, and (d) the hemisphere detection re-
gression loss. We use the weights 1.0, 10.0, 0.5, and 0.5,
respectively, chosen with careful hyperparameter optimiza-
tion. (c) is the binary cross-entropy loss between labeled and
predicted end shapes. (d) is the mean-squared loss between
labeled and predicted hemisphere tip axial coordinates.

For a given component feature q, let the component classi-
fication logits be qc and the regression output be qr = (z, r).
The cost C(p, q) between each ground truth component
p = (z, r) and q is defined as:

C(p, q) = − log qc + ||qr − p||, (1)

where || · || is the l1 norm. Using this cost function, an
optimal bipartite matching γ between true components and
transformer outputs is computed with the Hungarian match-
ing algorithm. We define (a) as:

1

|Q|
(
∑
q∈M

wpos log σ(qc) +
∑
q/∈M

log (1− σ(qc))), (2)

where M is the set of matched transformer outputs and σ
represents the sigmoid activation function. We set wpos =
3.0. We define (b) as:

1

|M |
∑
q∈M

||qr − γ(q)||2, (3)

where the matching function γ(q) returns the ground-truth
coordinates assigned to the component feature q, and || · || is
the l2 norm.

Model Training and Evaluation
All models were trained with 2 GPUs using 20,000 train-
ing objects and 1000 validation objects. They were trained
with stochastic gradient descent (SGD) for 100 epochs with
a constant learning rate of 0.001 and a batch size of 4. As
each data sample comes from a noisy, inline simulation of an
object, the amount of training data is the product of training
objects and training epochs (2 million). Ten separate models
were trained using differently seeded training and validation
datasets. The data were augmented with random Gaussian
noise. Varying the level of noise during training produced
consistent trends, so we picked the range −40 to −30 dB for
illustration.

Evaluation metrics consisted of: (1) intersection over
union (IoU) between true and predicted object cross-sections
and (2) hemisphere detection accuracy. Both metrics were
evaluated over high and low observability settings. For (1),
we define high observability as occurring when the range
of observed aspect angles is greater than 90 degrees, and
low observability when this is not the case. For (2), we de-
fine high observability as occurring when the median ob-
served aspect angle is less than 90 degrees (thus centered on
the front of the object), and low observability when this is
not the case. Evaluation was run on the same holdout test
dataset of 5000 testing objects, and the metrics were aggre-
gated across all ten models using mean and standard devia-
tion. To analyze performance sensitivity to signal degrada-
tion, all models were further evaluated on samples generated
under signal degradation common in real-world radar appli-
cations, adding random Gaussian noise varying from -80 to
-10 dB.

We compare the performance of InvRT and InvRT-
Decoder against two baselines by replacing, where possi-
ble, the InvRT’s encoder, decoder, or both with a LSTM re-
current network. Our goal is to evaluate whether the trans-
former architecture improves performance relative to other
sequence networks. Note that we did not implement ar-
chitectures with LSTM decoders and non-LSTM encoders,
since LSTM decoders require hidden states as input and
radar inputs are variable-length sequences. The baselines are
trained in the same manner as InvRT and InvRT-Decoder.

Results
InvRT and InvRT-Decoder learned to predict object shape
successfully in both high and low observability settings (Ta-
ble 1) and outperformed both LSTM-based baselines. Since
transformers have more capability to model long-range tem-
poral dependencies than LSTMs, this indicates that the mod-
eling of the full temporal sequence is critical for this task.
We also note that although InvRT shows slightly better per-
formance than InvRT-Decoder, the relatively similar per-
formance of the two models demonstrates the power of
decoder-only transformers, the architecture for many widely
used algorithms (Brown et al. 2020). Last, even though we
still observe high variability around the performance met-
rics, the InvRT and InvRT-Decoder models are able to re-
duce this variability in addition to improving average per-
formance.



Cross-Section IoU Hemisphere Detection Accuracy (%)
Observability Observability

Method Encoder Decoder High Low High Low
InvRT Transformer Transformer 0.67± 0.11 0.63± 0.12 84.70± 36.00 64.56± 47.83

InvRT-Decoder None Transformer 0.61± 0.12 0.64± 0.11 80.86± 39.34 55.15± 49.73
LSTM-Transformer LSTM Transformer 0.45± 0.19 0.45± 0.20 55.86± 49.66 50.91± 49.99

LSTM LSTM LSTM 0.51± 0.14 0.51± 0.14 50.73± 49.99 49.88± 50.00

Table 1: Baseline Comparisons of Model Performance on Holdout Test Dataset

Figure 4: Algorithm sensitivity to signal noise in high (a) and low (b) observability settings.

Furthermore, when the range of viewing aspects limits ob-
servability of the object, the InvRT trained on partial obser-
vations outputs higher uncertainty in inferring its shape. This
effect is most pronounced when it comes to the hemisphere
detection task (right side of Table 1), given that this task is
expected to be the most susceptible to partial observability
effects. However, it is interesting to observe that while In-
vRT methods performance degrades in a consistent manner
with degraded observability, the LSTM baselines have com-
parative low performance in both low and high observability
settings. This behaviour provides further indication that the
InvRT models have improved performance due to their abil-
ity to better incorporate knowledge of the observed object
geometry.

Figure 4 shows the performance of InvRT and InvRT-
Decoder and both baselines at increasing levels of signal
noise. The performance is measured as the cross-section IoU
under both high and low object observability. InvRT and
InvRT-Decoder consistently outperform the baseline across
the different levels of modeled noise at both observability
settings. This suggests that capturing the long-range tempo-
ral structure in radar signals with attention allows for better
algorithm performance on degraded signals.

Discussion and Conclusion
We have shown that transformers can be used to improve
performance when solving the inverse problem of estimat-
ing object characteristics given radar observation data. Our
work has several key advantages: (1) we model the problem
as a sequence-to-sequence prediction problem and show that
transformers can estimate object properties more effectively,
when compared to other sequence-based architectures; (2)
InvRT and InvRT-Decoder are better able to make predic-
tions consistent with physical observability constraints than

these baselines; and (3) they further outperform baselines
on degraded signal inputs. (2) suggests that InvRT methods
show potential for generative modeling of object property
probability distributions given partial viewing histories. This
is especially useful in high uncertainty cases when object ob-
servability is restricted and is a promising extension of our
work. Furthermore, the algorithm can be adapted to predict
other object attributes.

There are several limitations to our approach. Although
the use of synthetic data allows our models to be trained on
larger datasets and evaluated on some real-world sources of
error (e.g. signal noise), it does not account for all sources,
such as non-uniform time sampling. Additionally, the model
is trained and validated on static radars and objects, but real-
world equivalents often are moving. Thus, the next step for
this work is to update the simulation and algorithm to better
capture and generalize to real-world data.
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