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Abstract

Despite the advantages in resolution granted by super-
resolution fluorescence microscopy, the techniques remain
challenging to use for non-expert users due to the large
number of objectives which need to be optimized to ob-
tain high quality images. Artificial intelligence, in partic-
ular reinforcement learning, could prove useful in assist-
ing or controlling image acquisition. However, reinforcement
learning approaches are data-hungry in training, rendering
their application to super-resolution microscopy infeasible
due to the large amount of sample waste training would re-
quire. We present pySTED, a STED microscopy simulation
tool designed for development and application of reinforce-
ment learning approaches to super-resolution microscopy. We
show how pySTED allows to train reinforcement learning
agents to resolve nanostructures in simulated synapses.

1 Introduction
Most of the super-resolution (SR) fluorescence microscopy
techniques rely on our ability to switch fluorophores be-
tween an ON and an OFF state to overcome the diffrac-
tion limit of light (Nobel Prize of Chemistry, 2014) (Scher-
melleh et al. 2019). These approaches are used to charac-
terize fluorescently-tagged sub-cellular structures in fixed
and living cells allowing to resolve two objects that are
a few nanometers apart (Schermelleh et al. 2019). STim-
ulated Emission Depletion (STED) microscopy is a point-
scanning SR technique which provides a ten fold resolution
improvement in comparison to diffraction-limited confocal
microscopy (Schermelleh et al. 2019). This SR technique
remains challenging to use for microscopists, due to the re-
quired simultaneous optimization of conflicting objectives
such as the spatio-temporal resolution, the signal-to-noise
ratio (SNR), and the photobleaching. The optimization of
those objectives depends on the control of several micro-
scope parameters (e.g. excitation and STED beam intensi-
ties, pixel dwell time, pixel size). Gains in resolution and
SNR typically come at the cost of increased photobleaching
or temporal resolution (Lemon and McDole 2020).

Machine learning (ML) methods, more specifically re-
inforcement learning (RL) approaches, present themselves
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as promising solutions for assisting microscopists by learn-
ing to optimize STED imaging processes under these multi-
objective trade-offs (Durand et al. 2018). In an RL prob-
lem, an agent interacts with an environment (e.g. the mi-
croscope), playing actions (e.g. modifying the acquisition
parameters) which impact the environment’s state (e.g. the
sample) and generate a reward signal (e.g. the imaging ob-
jectives). Through training, the agent learns by attempting
to maximize its earned reward. For example, imaging pa-
rameters optimization has been tackled under the most sim-
ple RL instance of multi-armed bandits, allowing the ac-
quisition of high quality STED images of diverse biologi-
cal structures in a completely autonomous fashion (Durand
et al. 2018). These results opened the door to more applica-
tions falling under the more complex RL setting of sequen-
tial decision-making. However, sequential RL methods are
known to be data-hungry, which limits their applicability to
microscopy experiments. Developing and training such ap-
proaches would likely require large number of samples com-
bined with time and cost intensive microscopy experiments.
In other fields sharing similar concerns, such as robotics, this
issue is usually tackled by developing and training RL algo-
rithms within simulated environments before deploying and
fine-tuning these methods in the real environment (Kober,
Bagnell, and Peters 2013; Kadian et al. 2020).

In this work we introduce pySTED (Section 2), a sim-
ulation environment designed with the aim of supporting
the development and training of ML methods for STED mi-
croscopy. More specifically, to facilitate the development of
RL approaches, the pySTED simulator is integrated within
the OpenAI gym framework (Brockman et al. 2016), allow-
ing an RL agent to control acquisitions and learn through
interactions with the simulated microscope. We showcase
pySTED using an application of RL methods for STED
imaging of biological structures (Section 3).

2 The pySTED simulator
STED microscopy relies on the combination of two laser
beams that are co-aligned: a Gaussian excitation beam to
excite fluorescent molecules (fluorophores) and a donut-
shaped beam depleting the fluorophores to their ground state
by the mean of stimulated emission. The laser beams are fo-
cused at the sample using the objective lens and the emitted
light is collected for a specific dwell time on a single-pixel
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Figure 1: pySTED workflow and example acquisitions.
A Simulator inputs (blue) and output (red). The datamap
is updated in real time during acquisition by removing
molecules which get photobleached. B (Left) Datamap dis-
playing the nanostructures (NST). Colorbar shows the num-
ber of molecules. Confocal (Center, 25 µW Exc. power,
0 W STED power, and 10 µs pixel dwell time) and STED
(Right, 0.15 mW Exc. power, 87.5 mW STED power, and
10 µs pixel dwell time) acquisitions from the datamap use
the same color range (number of photons). Datamap and ac-
quired images are 64× 64 pixels (pixel size: 20 nm).

detector. A complete image is formed by scanning the sam-
ple point by point (pixel by pixel).

STED principles
The smallest distance (d) between two objects that can be
resolved with a STED microscope is given by (Schermelleh
et al. 2019)

d =
λ

2NA
√
1 + ISTED

Isat

, (1)

where λ is the wavelength, NA ≃ 1 is the numerical aper-
ture of the objective, ISTED is the intensity of the STED
beam, and Isat is the beam intensity at which the decay
rates of stimulated and spontaneous emission are equal. Flu-
orophore de-excitation to the ground state can take place
either through the emission of a fluorescence photon or
through stimulated emission (induced by the STED donut-
shaped beam). Thus, for increasing ISTED, the effective size
of the area where fluorescence photons are emitted is re-
duced (Schermelleh et al. 2019). When ISTED = 0 (i.e. a
confocal acquisition), Eq. 1 reduces back to the diffraction
limit of light : d = λ

2NA ≃ 250 nm for visible light (Scher-
melleh et al. 2019). In this paper, we refer to nanostructures
(NST) for biological structures that are closer than the dis-
tance d when ISTED = 0 and cannot be resolved by con-
focal microscopy. Increasing the excitation intensity or the
pixel dwell time generally increases the amount of emitted
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Figure 2: Effect of fluorophore parameters on imaging ob-
jectives and imaging parameters. A Imaging objectives as
a function of STED power. B Maximum F1-score projec-
tion for three parameters (Exc. and STED power, and pixel
dwell time). F1-score shows the ability to resolve distinct
NST. Optimal imaging parameters are around 0.25 mW Exc.
power, 87.5 mW STED power, and 10 µs pixel dwell time.

or detected fluorescence photons respectively, while increas-
ing the STED intensity increases the resolution. In prac-
tice however, this improvement in resolution or detected flu-
orescence signal is limited by photobleaching of the flu-
orophores. Staudt (2009) derived the photobleaching rate
from the excitation beam:

kbleach = T1(I)IσTΦreact, (2)

where T1(I) is the population of fluorophores in the excited
state, I is the excitation intensity, σT is the cross-section
for triplet-triplet absorption, and Φreact is the probability of a
photobleaching reaction once the molecule is in the reactive
state.



STED simulation
The pySTED simulator aims to realistically simulate STED
imaging acquisitions. The implementation follows from the
analytical descriptions of STED microscopy mechanisms
(Leutenegger, Eggeling, and Hell 2010; Willig et al. 2006;
Xie et al. 2013; Staudt 2009). 1 The simulator consists in
a microscope that acquires images on a datamap describ-
ing the structure to image (Figure 1A). The microscope is
comprised of five objects : the excitation and STED beams,
an objective lens, a detector, and the photophysical parame-
ters of the fluorophores. Each object is characterized by ad-
justable parameters which will affect the image signal, such
as the fluorophore’s quantum yield, the detector’s efficiency,
and the background signal. The datamap is represented by a
2D array in which each element of the structure of interest
indicates the number of fluorescent molecules at that posi-
tion (Figure1B, left).

pySTED allows to simulate corresponding confocal and
STED acquisitions from a given datamap (e.g. NST inside
a neuronal dendritic spine, Figure 1B). The photobleaching
induced by STED acquisitions is simulated by multiplying
a STED-specific constant to Eq. 2, proportional to the num-
ber of state transitions which the beam forces (Staudt 2009).
Importantly, diverse photophysical constants associated with
fluorescence transition (e.g. photobleaching reactivity, quan-
tum yield, absorption cross-section) can be adapted to the
simulated experimental conditions. The resolution, SNR and
photobleaching objectives are strongly modulated by in-
creasing STED power and rate of photobleaching reactions
(kbleach) (Figure 2A). Figure 2B displays the ability to re-
solve the NST using various combinations of microscope
parameters, showing the impact of imaging parameters on
a downstream task.

The pySTED simulator is integrated within an OpenAI
gym framework (Brockman et al. 2016) to facilitate the for-
mulation of STED imaging tasks as RL tasks.2,3

3 RL for resolving biological nanostructures
This section provides an example of RL applied to STED
control for the specific task of resolving NST in simulated
dendritic spines. A RL agent interacts with an environment
by sequentially making decisions based on its observations.
At every time step t, the agent receives the current state st
of the environment and chooses an action at according to its
internal policy π (a probability distribution mapping states
to actions). As a result of taking action at, the agent tran-
sitions in a new state st+1 and receives a reward rt+1. The
goal of the agent is to maximise the expected return E[R] in
episodes of length T , where R =

∑T−1
t=0 γtrt+1 is the sum

of discounted reward with discount factor γ ∈ [0, 1] (Sutton
and Barto 2018).

Task In the task of resolving NST, a state corresponds to
the confocal image of a new spine and actions correspond to

1https://github.com/FLClab/pySTED
2https://github.com/FLClab/gym-sted
3https://github.com/FLClab/gym-sted-pfrl

choosing imaging parameters. An episode of this task there-
fore corresponds to acquiring a sequence of T images. At
each time step t < T , the agent receives the confocal im-
age of a new spine, selects parameters, an image is acquired
with these parameters, and the imaging objectives (Reso-
lution, SNR, and Photobleaching) are evaluated. The agent
also has a memory of the previous confocal/STED pair and
of the history of the episode, i.e. previously selected param-
eters and the resulting imaging objectives. At the end of an
episode, NST locations are predicted by looking at the se-
quence of acquired images. On each image, local intensity
maxima are identified and fitted with a 2D Gaussian. If the
standard deviation along both of the axis of the Gaussian is
below 250 nm (diffraction limit), a NST is predicted at that
location. Predicted NSTs are then associated to the ground
truth (GT) positions (from the datamap) by solving a linear
sum assignment problem with the Hungarian algorithm. An
associated pair (< 2 pixels apart) is a true positive associ-
ation, a non-associated GT is a false negative, and a non-
associated prediction a false positive. This performance is
summarized by the F1-score.

Methods
We considered Proximal Policy Optimization (PPO) to re-
solve NST in simulated dendritic spines using the Atari con-
volutional network as backbone. PPO is a state-of-the-art RL
algorithm, achieving high performance on problems such as
MoJuCo and Atari (Schulman et al. 2017).

We trained two PPO agents using different reward func-
tions. The first agent uses the F1-score on the detected NST
as reward. However, computing the F1-score requires know-
ing the ground-truth position of the NST, which is not avail-
able in real microscopy experiments. We therefore propose
a second agent which uses an improvement score as reward.
For this agent, a bank of 50 images was acquired in the sim-
ulation platform by an Expert microscopist. At time step t,
the image acquired by the agent is ranked against the bank
of images using the F1-score and a reward rt+1 ∈ [0, 1] is
generated based on the ranking (1: highest rank, i.e. better
than all Expert images; 0: worst rank). While the F1-score is
still required for ranking, the agent does not have access to
these values during training, which is more similar to a real-
life task. For both reward functions, the maximum episodic
cumulative reward is of 10.

The agent trains in episodes of 10 time steps. Both agents
train for 200 000 steps (20 000 episodes), meaning they each
acquire 200 000 image (repeated 5 times with different ran-
dom seeds). This would be infeasible to do on a real micro-
scope, highlighting the need for a robust STED simulation
platform to train RL agents. After training, the agents are
evaluated on 100 episodes of 10 time steps. For the exper-
iments we limit our agent’s parameter selection to image-
wide values for excitation power ([0, 250] µW), STED
power ([0, 350] mW), and pixel dwell time ([10, 150] µs).

Results
Figure 3A displays the performance of the agents trained us-
ing the F1-score (top, blue) and ranking (bottom, orange) as
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Figure 3: RL agent performances. A Training curve for agent
using F1-score as reward (top, blue), and ranking as reward
(bottom, orange). Evolution of the F1-score (B), the imag-
ing objectives (C) and the imaging parameters (D) at var-
ious steps during training (violinplot). Mean and standard
deviation (line and shade) of the evolution of standard de-
viation (STD) across training is presented (right axis). E
Typical images acquired at various steps during training
(1.28µm × 1.28µm, same intensity scale). 5 repetitions.

reward. The performance of both agents converge within ap-
proximately 150k steps. We next compared the capability of
the trained agents at resolving the NST. Agents trained using
F1-score as reward achieve a mean F1-score of 0.65± 0.06,
while the agents using using ranking as reward achieves a
mean F1-score of 0.63±0.06. The evolution of the F1-score
(Figure 3B) shows that he agent trained with the F1-score as
reward obtained slightly higher performance, as expected.
The standard deviation (STD) of the F1-score at each eval-
uated steps decreases for both agents implying the conver-
gence of the metric.

The quantification of the imaging objectives during train-
ing reveals an increase in the resolution and SNR, while the
photobleaching remains constant (Figure 3C). Notably, the
imaging objectives converge as depicted by the reduction in
STD obtained by the agents (Figure 3C, lines). The quan-
tification of the selected parameters shows that both agent
converged to similar imaging parameters even if trained us-
ing different reward functions (Figure 3D). Interestingly, the
imaging parameters at convergence are similar to the opti-
mal parameters that were extracted from the grid search in
Figure 2B (STED power : 82 mW, Exc. power : 0.25 mW
and Pdt. : 10 µs). This confirms the capability of both agents
to resolve the NST STED imaging task (Figure 3E).

4 Conclusion
The pySTED simulator allows RL (and more broadly ML)
methods to be trained and validated in simulation prior to
the deployment on a real microscope. This will allow the
development of new AI based tools to assist microscopists
on complex image acquisition tasks. Here, we have shown
how an RL agent could learn to optimally image simulated
NST in dendritic spines. The next step will be to simulate
the NST dynamics in time-resolved live-cell experiments.
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Bilodeau, A.; Gagné, C.; De Koninck, P.; and Lavoie-Cardinal, F.
2018. A machine learning approach for online automated opti-
mization of super-resolution optical microscopy. Nature Commu-
nications, 9(1): 5247.
Kadian, A.; Truong, J.; Gokaslan, A.; Clegg, A.; Wijmans, E.; Lee,
S.; Savva, M.; Chernova, S.; and Batra, D. 2020. Sim2Real Predic-
tivity: Does Evaluation in Simulation Predict Real-World Perfor-
mance? IEEE Robotics and Automation Letters, 5(4): 6670–6677.
Kober, J.; Bagnell, J. A.; and Peters, J. 2013. Reinforcement learn-
ing in robotics: A survey. The International Journal of Robotics
Research, 32(11): 1238–1274.
Lemon, W. C.; and McDole, K. 2020. Live-cell imaging in the era
of too many microscopes. Current Opinion in Cell Biology, 66:
34–42.
Leutenegger, M.; Eggeling, C.; and Hell, S. W. 2010. Analyti-
cal description of STED microscopy performance. Optics Express,
18(25): 26417–26429.
Schermelleh, L.; Ferrand, A.; Huser, T.; Eggeling, C.; Sauer, M.;
Biehlmaier, O.; and Drummen, G. P. C. 2019. Super-resolution
microscopy demystified. Nature Cell Biology, 21(1): 72–84.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv:1707.06347 [cs].
Staudt, T. M. 2009. Strategies to reduce photobleaching, dark state
transitions and phototoxicity in subdiffraction optical microscopy.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning: an
introduction. Adaptive computation and machine learning series.
Cambridge, Massachusetts: The MIT Press, second edition edition.
Willig, K. I.; Keller, J.; Bossi, M.; and Hell, S. W. 2006. STED
microscopy resolves nanoparticle assemblies. New Journal of
Physics, 8(6): 106–106.
Xie, H.; Liu, Y.; Jin, D.; Santangelo, P. J.; and Xi, P. 2013. An-
alytical description of high-aperture STED resolution with 0–2pi
vortex phase modulation. Journal of the Optical Society of Amer-
ica., 30(8): 1640–1645.


