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Abstract

This paper provides a simulated laboratory for making
use of Reinforcement Learning (RL) for chemical dis-
covery. Since RL is fairly data intensive, training agents
‘on-the-fly’ by taking actions in the real world is infea-
sible and possibly dangerous. Moreover, chemical pro-
cessing and discovery involves challenges which are not
commonly found in RL benchmarks and therefore offer
a rich space to work in. We introduce a set of highly
customizable and open-source RL environments, Chem-
GymRL, implementing the standard Gymnasium API.
ChemGymRL supports a series of interconnected virtual
chemical benches where RL agents can operate and train.
The paper introduces and details each of these benches
using well-known chemical reactions as illustrative ex-
amples, and trains a set of standard RL algorithms in
each of these benches. Finally, discussion and compari-
son of the performances of several standard RL methods
are provided in addition to a list of directions for future
work as a vision for the further development and usage
of ChemGymRL.

Introduction
In Material Design, the goal is to determine a path-
way of chemical and physical manipulation that can be
performed on some starting materials or substances in
order to transform them into a desired target material.
Reinforcement Learning (RL) (Sutton and Barto 1998)
is class of Machine Learning algorithms that learn by
taking actions, making observations, viewing the results,
and updating its model/or hypothesis/policy/beliefs. In
other words, RL is a perfect analogy for the experimen-
tal scientist! The aim of this research is to demonstrate
the potential of goal-based reinforcement learning (RL)
in automated labs. Our experiments show that when
given an objective (such as a target material) and a set
of initial materials, RL can learn general pathways to
achieve that objective. We postulate that well-trained RL
chemist-agents could help reduce experimentation time
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and cost in these and related fields by learning to com-
plete tasks that are repetitive, labour intensive and/or
require a high degree of precision. To support this, we
share the ChemGymRL environment that allows scien-
tists and researchers to simulate chemical laboratories
for the development of RL agents.

ChemGymRL is a collection of interconnected environ-
ments (or chemistry benches) that enable the training
of RL agents for discovery and optimization of chemical
synthesis. These environments are each a virtual variant
of a chemistry "bench", an experiment or process that
would otherwise be performed in real-world chemistry
labs. As shown in Fig 1, the ChemGymRL environment
includes reaction, distillation and extraction benches on
which RL agents learn to perform actions and satisfy
objectives.

The need for a simulated chemistry environment for
designing, developing and evaluating artificial intelli-
gence algorithms is motivated by the recent growth in
research on topics, such as automated chemistry and
self-driving laboratories (Manzano et al. 2022; MacLeod
et al. 2022b,a; Seifrid et al. 2022; Flores-Leonar et al.
2020), laboratory robots (Jiang et al. 2022; She et al.
2022; Caramelli et al. 2021; Fakhruldeen et al. 2022;
Rooney et al. 2022; Hickman et al. 2023; Bennett
and Abolhasani 2022; Porwol et al. 2020) and digital
chemistry for materials and drug discovery (M. Mehr,
Caramelli, and Cronin 2023; Bubliauskas et al. 2022; Piz-
zuto et al. 2022; Pyzer-Knapp et al. 2021; Li et al. 2021;
Fievez et al. 2022; Yoshikawa et al. 2023; Choubisa
et al. 2023; Roch et al. 2020). Given RL’s adeptness at
sequential decision making, and its ability to learn via
online interactions with a physical or simulated envi-
ronment without a supervised training signal, we see
it as having a great potential within digital chemistry
and self-driving laboratories. Recent work has demon-
strated some successful applications of RL to automated
chemistry (Volk et al. 2023; Zhou, Li, and Zare 2017;
Gottipati et al. 2020). Nonetheless, it remains an un-
derstudied area of research. Our work aims to partially
addresses this problem by sharing an easy to use, ex-



Figure 1: (a) The ChemGymRL simulation. Individual agents operate at each bench, working towards their own
goals. The benches pictured are extraction (ExT), distillation (DiT), and reaction (RxN). The user determines which
materials the bench agents have access to and what vessels they start with. Vessels can move between benches; the
output of one bench becomes an input of another, just as in a real chemistry lab. Successfully making a material
requires the skilled operation of each individual bench as well as using them as a collective. (b) Materials within a
laboratory environment are stored and transported between benches within a vessel. Benches can act on these vessels
by combining them, adding materials to them, allowing for a reaction to occur, observing them (thereby producing a
measurement), etc.

tensible, open source, simulated chemical laboratory.
This serves to simplify the design and development of
application specific RL agents.

Although RL agents could be trained online in physical
laboratories, this approach has many limitations, par-
ticularly in early stages of the research before mature
policies exist. Training agents in a robotic laboratory in
real-time would be costly, in both time and supplies, and
restrictive, or even dangerous due to potential safety
hazards. Our simulated ChemGymRL environment reme-
dies this by allowing the early exploration phase to oc-
cur digitally, speeding up the process and reducing the
waste of chemical materials. It provides a mechanism
to design, develop, evaluate and refine RL for chem-
istry applications and researcher, which cannot safely be
achieved in a physical setting.

The software is developed according to the
Gymnasium standard, which facilitates easy experimen-
tation and exploration with novel and off-the-self RL
algorithms. When users download it, they gain access
to a standard Gymnasium compatible environment that
simulates chemical reactions using rate law differen-
tial equations, the mixing/settling of soluble and non-
soluble solutions for solute extractions, the distillation
of solutions, and a digital format for storing the state
of the vessels used. In addition to this article, further
detailed information about this software package, docu-
mentation and tutorials, including code and videos can
be found at urlsupressed.

In our experimental results, we illustrate how to setup
and use each bench with two distinct classes of reac-
tions, along with how they can be extended to new reac-
tion types. We evaluate the capabilities of a wide cross-
section of off-the-shelf RL algorithms for goal-based pol-
icy learning in ChemGymRL, and compare these against

hand-designed heuristic baseline agents. In our analy-
sis, we find that only one RL off-the-shelf RL algorithm,
Proximal Policy Optimization (PPO), is able to consis-
tently outperform these heuristics on each bench. This
suggests that the heuristics are a challenging baseline to
compare to but that they are also far from optimal. Thus
there is space for an optimization approach such as RL
to achieve optimal behavior on each bench. Near the
end of the paper, we discuss some of the challenges, lim-
itations and potential improvements in RL algorithms
required to learn better, more sample efficient policies
for discovery and optimization of material design path-
ways.

The remainder of the paper is organized as follows.
The next section describes the ChemGymRL environ-
ment, including the three primary benches: Reaction, Ex-
traction and Distillation. Section provides an overview
of reinforcement learning and Section contains a case
study of the Wurtz Reaction and its use in each bench.
Our experimental setup involves training off-the-shelf RL
algorithms on each of the benches. The RL algorithms
and hyperparameters are discussed in Section and the
specific laboratory settings and objectives used in our
experiments are described in Section . The results of
the RL experiments are presented in Section and the
limitations of the simulations are discussed in Section
followed by our general conclusions and some ideas for
future directions.

ChemGymRL
The Laboratory
The ChemGymRL environment can be thought of as
a virtual chemistry laboratory consisting of different
benches where a variety of tasks can be completed, see
Fig. 1(a) for an overview.
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Figure 2: A visualization of the reaction bench (RxN)
observation and action space. (a) An example of a UV-
Vis spectra that would been seen in an observation and
(b) The icons representing each action in RxN.

The laboratory is comprised of 3 basic elements: Ves-
sels contain materials, in pure or mixed form, and track
their hidden internal state, Shelves are collections of
vessels for input/output to benches, and Benches are
simulations of particular chemistry activities

A bench must be able to receive a set of initial experi-
mental supplies, possibly including vessels, and return
the results of the intended experiment, also including
modified vessels. Each bench has at least three common
components: Input: target material given as a one-hot
vector, State: vessels and contained materials, Render:
Human Rendering and various possible numeric out-
puts for learning. In addition, every bench has it’s own
set of Actions and Rewards. The details and methods
of how the benches interact with the vessels between
these two points are completely up to the researcher
using the framework, this includes the goal of the bench
itself. In the following sections we describe the set of
core benches we have define in the initial version of
ChemGymRL.

The Benches
A short description of the four chemistry benches, see
supplementary material for further details.

Extraction Bench (ExT): This bench provides meth-
ods to separate out undesired products from after a
chemical reactions. It aims to isolate and extract cer-
tain dissolved materials from the input vessels. Actions:
Transferring materials between different vessels and uti-
lizing specifically selected solvents to separate materials
from each other. Rewards is the difference in the rela-
tive purity of the desired solute at the first and final step
of the episode.

Distillation Bench (DiT): This bench aims to isolate
certain materials from an input vessel containing multi-
ple materials. Actions: Transferring materials between
a number of vessels and heating/cooling the vessel to
separate materials from each other. Rewards: Amount

and purity of target in output vessel.
Reaction Bench (RxN): This bench enables the agent

to transform available reactants into various products
via a chemical reaction. Actions: The agent has the
ability to control: the temperature of the vessel and
the amounts of reactants added. Rewards: After the 20
steps have elapsed, the agent receives a reward equal to
the molar amount of the target material produced.

The goal of the agent operating this bench is to modify
the reaction parameters, in order to increase and/or de-
crease the yield of certain desired/undesired materials.
The key to the agent’s success in this bench is learning
how best to allow certain reactions to occur such that
the yield of the desired material is maximized, while the
yield of the undesired material is minimized.

Characterization Bench: Not currently operated by
an agent. Any observation of a vessel made by an agent
must pass through this “bench”. Current Observations:
As visual layers, the same level of information as pro-
vided in human operated visualization (ordering of mix-
ture layers).

Reinforcement Learning

Reinforcement Learning (RL) (Sutton and Barto 2018)
can be used as a way to solve Markov Decision Processes
(MDPs). MDPs are represented as a tuple 〈S,A,R, T, γ〉
where the s ∈ S ⊆ Rn denotes the state space, a ∈
A ⊆ Rm denotes the action space, r ∈ R ⊆ R denotes
the reward function and T = P (st+1|st, at) denotes
the transition dynamics that provides the probability
of state st+1 at the next time step given that the agent
is in state st and performs action at. The objective for
an RL agent is to learn a policy π(a|s) that maximizes
the discounted sum of expected rewards provided by
the equation Jπ(s) = Eπ[

∑∞
t=0 γ

trt|s0 = s], where γ ∈
[0, 1) is the discount factor.

For this domain we look at two broad classes of RL
algorithms, discrete action Q-learning approaches and
discrete or continuous action Actor-Critic approaches.
In Q-learning, a state-value function Q is learned iter-
atively using the Bellman update B∗Q(s, a) = r(s, a) +
γEs′∼T (s′|s,a)[maxa′ Q(s′, a′)]. Here s and s′ denote the
current and next state respectively, a and a′ denotes
the current and next action respectively. An exact or
approximate scheme of maximization is used to extract
the greedy policy from the Q-function.

In actor-critic, the algorithm alternates between com-
puting a value function Qπ by a (partial) policy evalua-
tion routine using the Bellman operator on the stochastic
policy π, and then improving the current policy π by
updating it towards selecting actions that maximize the
estimate maintained by the Q-values. This family of
methods apply to both discrete and continuous action
space environments so they can be used on any bench
in chemistry gym environment.



100

80

60

40

20

0

H
ei

gh
t

(a)
0%

STOP

20% 40% 60% 80% 100%

Drain EV to B1

Mix EV

Pour B1 into EV

Pour B2 into EV

Pour EV into B2

Pour S1 into EV

Pour S2 into EV

Wait

End Experiment

(b) (c)

(d)

Figure 3: Typical observations seen in extraction bench (ExT) for a vessel containing air, hexane, and water. (a) The
vessel in a fully mixed state. Each material is uniformly distributed throughout the vessel with little to no distinct
layers formed. (b) The vessel in a partially mixed state. The air has formed a single layer at the top of the vessel and
some distinct water and hexane layers have formed, however they are still mixed with each other. (c) The vessel in
a fully settled state. Three distinct layers have formed in order of increasing density: water, hexane, and then air.
(d) The icons representing each action and their multiplier values available in ExT. The extraction vessel (EV) is the
primary vessel used, B1/B2 are the auxiliary vessels used in the experiment, and S1/S2 are the solvents available.

Experimental Setup
To test and demonstrate the framework, we trained RL
agents for 100K time steps across 10 environments in
parallel (for a total of 1M time steps). Each experiment
was limited to 256 time steps of experience (in each
environment) to update policies/Value-functions. For
the replay buffer, 1 millions experiences were used for
DQN, SAC, and TD3. For exploration, the first 30K steps
of DQN used a linear schedule from 1.0 down to 0.01,
then fixed. All of these RL algorithms were performed
using the Stable Baselines 3 (Raffin et al. 2021) imple-
mentations.

In our discrete benches, Proximal Policy Optimiza-
tion (PPO) (Schulman et al. 2017), Advantageous Actor-
Critic (A2C) (Mnih et al. 2016) and Deep Q-Network
(DQN) (Mnih et al. 2015) were used. In our continu-
ous benches, Soft Actor-Critic (SAC) (Haarnoja et al.
2018) and Twin Delayed Deep Deterministic Policy Gra-
dient (TD3) (Fujimoto, Hoof, and Meger 2018) were
used instead of DQN. Note that we can choose between
SAC and TD3 fairly arbitrarily since they are both off-
policy algorithms that use Q-learning. The details of the
methodology for each chemistry bench can be found in
Appendix .

Case Study
As a simple example, we outline how a particular chem-
ical production process uses each of the benches.

We use the Wurtz Reaction, which are a very com-
monly used, and well-understood, approach for the for-
mation of certain hydrocarbons. These reactions are of
the form:

2R-Cl + 2Na
diethyl ether−−−−−−−→ R-R + 2NaCl. (1)

RL Results
Reaction Bench

Since reaction bench (RxN) has a continuous action
space, we trained SAC and TD3 in addition to A2C
and PPO. For the first experiment, we are looking at
the Wurtz reaction dynamics. Given that we know the
system dynamics in this case, we have also devised a
heuristic agent for the experiment, which we expect to
be optimal. This agent increases the temperature, and
adds only the required reactants for the desired product
immediately. This heuristic agent achieves an average
return of approximately 0.62. Using the performance of
this heuristic as a reference, the best and mean relative
performances of the agents trained with each algorithm
is shown in Fig. 8. Each algorithm can consistently give
rise to agents that produce sodium chloride when re-
quested. Since this is a by-product of all reactions in
our set-up, it is the easiest product to create. While the
other products are not hard to produce either, they re-
quire specific reactants, and in order to maximize the
yield, they require the absence of other reactants. The
PPO agents are able to match the heuristic agent for
all targets, while some SAC and TD3 agents are able to
come close on a few targets. A2C only comes close to
the heuristic on producing sodium chloride.

The average return as a function of training steps
for each algorithm is shown in Fig. 9. On average, the
agents trained with each algorithm are able to achieve a
return of at least 0.4. This is expected as even an agent
taking random actions can achieve an average return of
approximately 0.44. The agents trained with A2C, SAC,
and TD3 do not perform much better than a random
agent in most cases, however the ones trained with PPO



significantly outperform it. While on average, A2C, SAC,
and TD3 have similar performance, we saw in Fig. 8 that
the best performing SAC and TD3 agents outperformed
the best A2C agents.

The second RxN experiment uses reaction dynamics
more complicated than the Wurtz reaction. In the Wurtz
reaction, the agent need only add the required reactants
for the desired product all together. In this new reaction,
this is still true for some desired products, however not
all of them. Similarly to the previous experiment, we
also devised a heuristic agent for this experiment, which
achieves an average return of approximately 0.83. Us-
ing the performance of the heuristic agent as reference
again, the best and mean relative performances of the
agents trained with each algorithm are shown in Fig.
10. Once again, PPO consistently produces agents that
can match the performance of the heuristic agent. The
best performing policies produced by A2C, SAC, and
TD3 are able to nearly match the heuristic agent for all
desired products excluding I. This is not unexpected as
producing I requires producing intermediate products
at different times during the reaction. On average, the
policies produced by SAC and TD3 however, are unable
to match the heuristic agent when asked to produce E.
This is also not unexpected, given that producing E is
penalized for all other desired products.

Unlike PPO, the other algorithms used appear to be
less reliable at producing these best performing agents.
This could be due to PPO learning these policies much
faster than the other algorithms, as seen in Fig. 11. Since
PPO converges to optimal behavior so quickly, there’s
very little room for variation in the policy. The other al-
gorithms however are slowly converging to non-optimal
behaviors, leaving much more room for variation in the
policies (and returns) that they converge to.

For the best performing agents produced by each al-
gorithm, the average action values for each target are
shown in Fig. 4. Looking at the heuristic policy, a con-
stant action can be used for each target product, ex-
cluding I. When the target is I, the desired action must
change after several steps have passed, meaning the
agent cannot just rely on what the specified target is.
Note that if all of a material has been added by step
t, then it does not matter what value is specified for
adding that material at step t+ 1.

The best performing agent for each algorithm were
all able to produce E when requested and Fig. 4 shows
that they each have learned to add A, B, C, and not D.
It can also be seen that all four algorithms learned to
add two of A, B, or C in addition to D, then add the
third one several steps later when I is the target product,
mimicking the behavior of the heuristic policy. Note that
even though the heuristic waits to add C, waiting to add
A or B instead would be equally optimal. While each
algorithm does this, PPO and A2C do so better than the
others. PPO is also the only one that succeeds in both
of these cases, showing that an RL agent can learn the
required behavior in this system.

Extraction Bench
With the results seen in the RxN tests, we now move onto
the extraction bench (ExT) experiment. Regardless of
the target material in our Wurtz extraction experiment,
the optimal behavior is quite similar so we will not
focus on the different cases as before. Since the ExT
uses discrete actions, we replace SAC and TD3 with
DQN. We also use what we call PPO-XL which is PPO
trained with more environments in parallel. Unlike the
reaction bench, we do not have an analytic solution for
this bench, therefore we have devised a heuristic policy
for this experiment based on what an undergraduate
chemist would learn. However, as the dynamics are more
complex we do not necessarily expect it to be optimal.

As seen in Fig. 5, the agents trained with A2C do not
achieve a return above zero, while the agents trained
with DQN ended up achieving a negative return. Not
only do both PPO and PPO-XL produce agents that
achieve significantly more reward than the other algo-
rithms, they are able to outperform the heuristic policy
as well. On average, the best performing agent trained
with PPO-XL manages to achieve a return of approx-
imately 0.1 higher than the heuristic (see Fig. 5), re-
sulting in roughly a 10% higher solute purity. PPO and
PPO-XL consistently outperform the agents trained with
the other algorithms.

As shown in Fig. 5(b), the action sequences of the
policies learned from A2C, DQN, and PPO are quite
different. The action sequences of the policies learned
by PPO and PPO-XL are much more similar, as expected.
The first half of these sequences are comparable to the
heuristic, however the agents in both cases have learned
a second component to the trajectory to achieve that
extra return. Interestingly, both PPO and PPO-XL agents
have learned to end the experiment when they achieve
the desired results, whereas the A2C and DQN agents do
not. PPO once again shows that an RL agent can learn
the required behavior in this system.

Distillation Bench
Lastly, we now move onto the final experiment, distil-
lation bench (DiT). Similar to ExT, the desired target
material in the Wurtz distillation experiment does not
have much effect on the optimal behavior so we will not
focus on the different target cases. Instead we will focus
on the different cases of when salt is and is not present
with another material in the initial distillation vessel.
Note that a single agent operates on both of these cases,
not two agents trained independently on each case. As
before, we have devised a heuristic policy and as with
the RxN experiments, we expect it to be optimal once
again. In Fig. 6 we can see that on average, the algo-
rithms (excluding A2C) converge faster than in the other
experiments, however there is much less variation in
return compared to before.

For the case when salt and an additional material are
present, the best performing agents trained with PPO
and PPO-XL modify their actions similar to the heuris-
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Figure 4: Fictitious RxN, average value of each action at every step for the best performing policies for each algorithm.
The five curves in each box represents the sequence of actions for the five different target materials. The well performing
policies are the ones that add only the required reactants (such as A2C and SAC), while the best performing policies
are the ones that add them according to the right schedule (such as PPO).

tic policy, achieving the optimal return in both cases.
The best performing agent trained with A2C modifies
their actions in a similar fashion, however it does so
in a way that also achieves a much lower return. The
best performing agent trained with DQN makes much
more significant changes to their policy, however it still
achieves a return closer to optimal than A2C. This shows
that the expected behavior in our final bench can also
be learned by an RL agent.

Limitations
ChemGymRL has limitations; any reaction or material
that one wishes to model must be predefined with all
properties specified by the user. Additionally, the sol-
vent dynamics are modeled using simple approxima-
tions and while they suffice for these introductory tests,
they would not for real-world chemistry.

As previously mentioned, the ChemGymRL framework
was designed in a modular fashion for the ease of im-
provement. The differential equations used to model the
reactions could be replaced with a molecular dynamics
simulation. This would allow RxN to operate with on a
more generalizable rule-set. Without having to manually
define the possible reactions, the RxN could be used to
discover new, more efficient reaction pathways by an
RL agent. Currently, the reward metric used in RxN is
the molar amount of desired material produced by the
agent. If this metric was changed to reflect a certain
desired property for the produced material, then the
RxN could be used for drug discovery. Making similar

improvements to ExT and DiT, the RL agent could then
learn to purify these new discoveries.

Conclusions and Future Work
We have introduced and outlined the ChemGymRL inter-
active framework for RL in chemistry. We have included
three benches that RL agents can operate and learn in.
We also include a characterization bench for making
observations and presented directions for improvement.
To show these benches are operational, we have suc-
cessfully, and reproducibly, trained at least one RL agent
on each of them. Included in this framework is a ves-
sel state format compatible with each bench, therefore
allowing the outputs of one bench to be the input to
another.

As future work, the lab manager environment will be
formatted in a way that allows an RL agent to operate
in it. We would also like to try other kinds of reactions
and more classes of RL methods using ChemgymRL.
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Bench Details
Reaction Bench (RxN)
The sole purpose of the reaction bench (RxN) is to
allow the agent to transform available reactants into
various products via a chemical reaction. The agent has
the ability to control temperature and pressure of the
vessel as well as the amounts of reactants added. The
mechanics of this bench are quite simple in comparison
to real-life, which enables low computational cost for RL
training. Reactions are modelled by solving a system of
differential equations which define the rates of changes
in concentration (See Appendix).

The goal of the agent operating on this bench is to
modify the reaction parameters, in order to increase,
or decrease, the yield of certain desired, or undesired,
materials. The key to the agent’s success in this bench
is learning how best to allow certain reactions to occur
such that the yield of the desired material is maximized
and the yield of the undesired material is minimized.
Therefore the reward in this bench is zero at all steps
except the final step, at which point it is the difference
in the number of mols of the desired material and unde-
sired material(s) produced.

Observation Space: In this bench, the agent is able
to observe a UV-Vis absorption spectra of the materials
present in the vessel as shown in Fig. 2(a), the nor-
malized temperature, volume, pressure, and available
materials for the system.

Action Space: The agent can increase or decrease the
temperature and volume of the vessel, as well as add
any fraction of the remaining reactants available to it.
In this bench, the actions returned by an agent are a
continuous valued vector of size n + 2, where n is the
number of reactants. These actions are also shown in
Fig. 2(b).

A main feature of ChemGymRL is its modularity. If
one wanted to make the results of RxN more accurate
and generalizable, they could replace the current sys-
tem of differential equations with a molecular dynamics
simulation without needing to change how the agent
interacts with the bench or how the bench interacts with
the rest of ChemGymRL.

Extraction Bench (ExT)
Chemical reactions commonly result in a mixture of
desired and undesired products. Extraction is a method
to separate them. The extraction bench (ExT) aims to
isolate and extract certain dissolved materials from an
input vessel containing multiple materials through the
use of various insoluble solvents. This is done by means
of transferring materials between a number of vessels
and utilizing specifically selected solvents to separate
materials from each other.

A simple extraction experiment example is extracting
salt from an oil solvent using water. Suppose we have a
vessel containing sodium chloride dissolved in hexane.
Water is added to a vessel and the vessel is shaken to
mix the two solvents. When the contents of the vessel

settle, the water and hexane will have separated into
two different layers.

Observation Space: For a visual representation of the
solvent layers in the vessel for the agent, as seen in Fig.
3(a)-(c), we sample each solvent corresponding to each
pixel using the relative heights of these distributions as
probabilities. This representation makes this bench a
partially observable Markov decision process (POMDP).
The true state is not observed because the observations
do not show the amount of dissolved solutes present nor
their distribution throughout the solvents. In this set up,
very light solvents will quickly settle at the top of the
vessel, while very dense solvents will quickly settle at
the bottom. The more similar two solvents densities are,
the longer they will take to fully separate.

Action Space: The agent here has the ability to mix
the vessel or let it settle, add various solvents to the
vessel, drain the contents of the vessel into an auxiliary
vessel bottom first, pour the contents of the vessel into
a secondary auxiliary vessel, and pour the contents of
either auxiliary vessel into each other or back into the
original vessel. Unlike in RxN, only one of these actions
can be performed at a time, therefore the actions re-
turned by the agent conceptually consist of two discrete
values. The first value determines which of the processes
are performed and the second value determines the mag-
nitude of that process. If the drain action is selected by
the first value, then the second value determines how
much is drained form the vessel. Including the ability to
end the experiment, the agent has access to 8 actions
with 5 action multiplier values each. These actions are
depicted in Fig. 3(d). Practically however, the actions
returned by the agent consist of a single discrete values
to reduce redundancy in the action space.

The goal of the agent in this bench is to use these
processes in order to maximize the purity of a desired
solute relative to other solutes in the vessel. This means
the agent must isolate the desired solute in one vessel,
while separating any other solutes into the other vessels.
Note that the solute’s relative purity is not affected by
the presence of solvents, only the presence of other
solutes. Therefore the reward in this bench is zero at
all steps except the final step, at which point it is the
difference in the relative purity of the desired solute at
the first and final steps.

Distillation Bench (DiT)
Similar to the ExT, the distillation bench (DiT) aims to
isolate certain materials from a provided vessel contain-
ing multiple materials (albeit with a different process).
This is done by means of transferring materials between
a number of vessels and heating/cooling the vessel to
separate materials from each other.

A simple distillation example is extracting a solute
dissolved in a single solvent. Suppose we have a ves-
sel containing sodium chloride dissolved in water. If
we heat the vessel to 100◦C, the water will begin to
boil. With any added heat, more water will evaporate
and be collected in an auxiliary vessel, leaving the dis-
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solved sodium chloride behind to precipitate out as solid
sodium chloride in the original vessel.

Observation Space: For a visual representation for
the agent, we use the same approach described for ExT.
For the precipitation of any solutes, we define a precipi-
tation reaction and use the same approach described for
RxN.

Action Space: The agent has the ability to heat the
vessel or let it cool down and pour the contents of any
of the vessels (original and auxiliaries) into one another.
When the agent heats/cools the vessel, the temperature
of the vessel and its materials are altered by a well-
understood formula. Similar to the ExT bench, only one
of these processes (heating/cooling) can be done at a
time. Therefore in the DiT bench, the action returned
by the agent again can be seen as two-part with an
indicator of the action and a magnitude component.
With the inclusion of the ability to end the experiment,
the agent then has access to 4 actions, each with 10
action multiplier values. These actions are depicted in
Fig. 7. Just as in ExT, the actions actually returned by
the agent are flattened into a single discrete value to
reduce redundancy in the action space.

The goal of the agent in this bench is to use these
processes to maximize the absolute purity of a desired
material in the vessel. This means the agent must isolate
the desired material in one vessel, while separating any
other materials into other vessels.

Characterization Bench
The characterization bench is the primary method to
obtain insight as to what the vessel contains. The pur-
pose of the characterization bench is not to manipulate
the input vessel, but to subject it to analysis techniques
that observe the state of the vessel, possibly including
the materials inside it and their relative quantities. This
allows an agent or user to observe vessels, determine
their contents, and allocate the vessel to the necessary
bench for further experimentation.

The characterization bench is the only bench that is
not “operated”. A vessel is provided to the bench along

with a characterization method and the results of said
method on that vessel are returned. Currently, the char-
acterization bench consists of a UV-Vis spectrometer that
returns the UV-Vis absorption spectrum of the provided
vessel. Each material in ChemGymRL has a set of UV-Vis
absorption peaks defined and the UV-Vis spectrum for a
vessel is the combination of the peaks for all materials
present, weighted proportionally by their concentrations.
In future versions of ChemGymRL we will expand the
characterization bench to include other forms of partial
observation.

Wurtz Reaction Case Study
As a simple example, we outline how a particular chem-
ical production process uses each of the benches.

We use the Wurtz Reaction, which are a very com-
monly used, and well-understood, approach for the for-
mation of certain hydrocarbons. These reactions are of
the form:

2R-Cl + 2Na
diethyl ether−−−−−−−→ R-R + 2NaCl. (2)

Chemistry Bench Methodology
Reaction Bench Methodology
For the reaction bench (RxN), we consider two chemical
processes. In both processes, each episode begins with a
vessel containing 4 mols of diethyl ether, and operates
for 20 steps. We chose 20 steps because it’s long enough
that the agent can explore the space to find the optimal
behavior but short enough that the reward acquired at
the end of the episode can be propagated back through
the trajectory. In the first process, the agent has access
to 1.0 mol each of 1, 2, 3-chlorohexane, and sodium,
where the system dynamics are defined by the Wurtz
reaction outlined above. Each episode, a target material
is specified to the agent via length 7 one-hot vector
where the first 6 indices represent the 6 Wurtz reaction
products and the last represents NaCl. After the 20 steps
have elapsed, the agent receives a reward equal to the
molar amount of the target material produced.

In the second experiment, we introduce a new set of
reaction dynamics given by

A+B + C → E

A+D → F

B +D → G

C +D → H

F +G+H → I

(3)

where the agent has access to 1.0 mol of A, B, C and 3.0
mol of D. We introduce this second reaction explore dif-
ferent mechanics required in the optimal solution. This
reaction includes undesired and intermediate products,
adding difficulty to the problem. Each episode, a target
material is specified to the agent via length 5 one-hot
vector with indices representing E, F , G, H, and I. If
the target is E, the agent receives a reward equal to the
molar amount of E produced after the 20 steps have
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Figure 8: Radar graphs detailing the average return of each policy with respect to each target material in Wurtz RxN.
Panel (a) uses the best policy produced from 10 runs, whereas panel (b) averages across the 10 runs (still using the
best policy of each run). Returns of each RL algorithm are relative to the heuristic policy and clipped into the range
[0,∞). Here, the PPO agents consistently outperform the A2C, SAC, and TD3 agents for all 7 target materials. Target
materials with high returns across each algorithm (such as sodium chloride) appear to be easier tasks to learn, where
target materials with less consistent returns across each algorithm (such as 5,6-dimethyldecane) appear to be more
difficult tasks to learn.
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Figure 9: Wurtz RxN, average return with σ/5 shaded,
10 runs for each algorithm with 10 environments in
parallel per run, 1M (100K sequential steps x 10 envi-
ronments) total steps per run, averages are over 3200
returns. The performance of each algorithm converges
before 300K total steps, with only PPO converging on an
optimal policy. Despite training for an additional 700K
total steps, A2C, SAC, and TD3 were not able to escape
the local maxima they converged to.

elapsed. Otherwise, the agent receives a reward equal
to the difference in molar amounts between the target
material and E after the 20 steps have elapsed. Here, E
is an undesired material. The reaction A+B + C → E
occurs quickly relative to the others, adding difficulty to
the reaction when E is not the target.

Extraction Bench Methodology
For the extraction bench (ExT), we consider a layer-
separation process where the agent operates for up to
50 steps. We chose a larger number of steps in this exper-
iment because the optimal solution is more complicated
than the previous bench. Similar to the Wurtz reaction,
the target material is specified via length 7 one-hot vec-
tor. Each episode begins with a vessel containing 4 mols
of diethyl ether, 1 mol of dissolved sodium chloride,
and 1 mol of one of the 6 Wurtz reaction products. The
Wurtz reaction product contained in the vessel is the
same as the target material, unless the target material is
sodium chloride, in which case dodecane is added since
sodium chloride is already present. After the episode has
ended, the agent receives a reward equal to the change
in solute purity of the target material weighted by the
molar amount of that target material, where the change
in solute purity is relative to the start of the experiment.
If the target material is present in multiple vessels, a
weighted average of the solute purity across each vessel
is used.

As an example, consider when the target material is
dodecane. In this experiment, the 1 mol of dissolved
sodium chloride becomes 1 mol each of Na+ and Cl−,
so the initial solute purity of dodecane is 1/3. Suppose
we end the experiment with 0.7 mols of dodecane with
0.2 mols each of Na+ and Cl− in one vessel, and the
remaining molar amounts in a second vessel. Dodecane
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Figure 10: Radar Graph detailing the average return of each policy with respect to each target material in Fictitious
RxN. Panel a) uses the best policy produced from 10 runs, whereas panel b) averages across the 10 runs (still using
the best policy of each run). Returns of each RL algorithm are relative to the heuristic policy and clipped into the
range [0,∞). Again, the PPO agents consistently outperform the A2C, SAC, and TD3 agents for all 5 target materials,
however it is not as significant of a gap as in Wurtz RxN. Target materials with high returns across each algorithm
(such as F, G, and H) appear to be easier tasks to learn, where target materials with less consistent return across each
algorithm (such as E and I) appear to be more difficult tasks to learn.
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Figure 11: Fictitious RxN, average return with σ/5
shaded, 10 runs for each algorithm with 10 environ-
ments in parallel per run, 1M (100K sequential steps
x 10 environments) total steps per run, averages are
over 3200 returns. PPO quickly converges to an opti-
mal policy, like in Wurtz RxN. Unlike in Wurtz RxN, the
other algorithms take much longer to converge. While
they still converge to sub-optimal performances, the gap
between optimal performance is less severe.

has a solute purity of 7/11 and 3/19 in each vessel
respectively. The final solute purity of dodecane would
be 0.7×7/11+0.3×3/19 ≈ 0.493. Thus the agent would
receive a reward of 0.159.

Distillation Bench Methodology
For the distillation bench (DiT), we consider a similar
experimental set-up to the ExT one. Each episode begins
with a vessel containing 4 mols of diethyl ether, 1 mol

of the dissolved target material, and possibly 1 mol of
another material. If the target material is sodium chlo-
ride, the additional material is dodecane, otherwise the
additional material is sodium chloride. After the episode
has ended, the agent receives a reward calculated sim-
ilarly to the ExT, except using absolute purity rather
than solute purity.


