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Abstract 

We propose a method to apply diffusion models, commonly 
used for image generation, to generate crystal structures by 
conditioning on X-ray diffraction intensities. Traditionally, 
image generation is conditioned using label-based learning 
and prompts, but there is growing interest in conditioning 
based on the Tweedy formula, which does not require addi-
tional training. On the other hand, traditional X-ray crystal-
lography use the physical model of X-ray diffraction together 
with chemical knowledge to solve structure. From the theory 
of X-ray diffraction, we derived an expression for the condi-
tional score of the diffusion model. The method is imple-
mented in a pretrained diffusion model, and its property is 
examined. This research develops a method to utilize power-
ful empirical priors to a scientific inference without using la-
bel-based learning. 

Introduction    

Diffusion models have gained significant attention in the 

field of image generation, and their applications have re-

cently expanded to the field of chemistry, including struc-

ture generation of molecules, proteins, and crystals. In crys-

tal structure generation, CDVAE (Xie et al. 2021) showed 

that with suitable neural networks, the variational autoen-

coder (VAE) can generate crystal structures. Later, DiffCSP 

(Jiao et al. 2023) emerged as an accurate generative model 

solely based on the diffusion model. It enables the genera-

tion of structures similar to those in the training data by 

specifying the types and numbers of atoms in a crystal. 

 These studies unlock new possibilities for inverse prob-

lems as they allow for the incorporation of strong empirical 

priors into the process of scientific inference. Unlike image 

generation, however, this field is not mature enough to gen-

erate specific structures with prompts. The present study 

aims to utilize X-ray diffraction intensities as prompts for 

crystal structure generation. Traditional conditional genera-

tion methods, including classifier guidance (Dhaliwal and 

Nichol 2021) and classifier-free guidance (Ho and Salimans 
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2021), require a large number of sample-prompt pairs, lead-

ing to high computational costs. However, as the physics of 

the X-ray diffraction is completely known, it is possible to 

derive analytically the conditional score, or the guidance. 

Using the torus-based diffusion process in crystal structure 

generation and the Tweedy formula on it, we demonstrated 

this and implemented it in the pretrained diffusion model. 

We applied this method to several systems and showed that 

structures that reproduce diffraction intensities are preferen-

tially generated. While the method struggles with struc-

tures containing mixed heavy and light atoms or a large 

number of atoms, as sufficient guidance cannot be provided 

during generation, its effectiveness has been demonstrated 

for data with fewer atoms and without such mixtures. 

Related Works 

Definitions 

A crystal ℳ  is specified with the unit cell formula 𝐴 ∈
𝑅ℎ×𝑁, crystal lattice vector 𝐿 ∈ 𝑅3×3, and the atomic coor-

dinates within the unit cell 𝑋 ∈ 𝑅3×𝑁, where N is the num-

ber of atoms in the unit cell. Crystals have symmetry; the 

translation or the rotation as a whole does not change a crys-

tal, and it has an obvious periodicity. There are multiple ℳs 

that represent the same crystal, yet the crystal generation 

model should yield the same result no matter which one is 

used. This enforces on the model the stringent conditions, 

the permutation and periodic invariance, and the SE(3) 

equivariance, which means that inputting a rotated (trans-

lated) structure to a model will output a vector rotated (trans-

lated) by the same amount. Many graph neural networks 

(GNNs) could satisfy these requirements. The characteris-

tics of the data compared to other modalities are as follows. 

Since the typical N is less than 102, the number of dimen-

sions of 𝐿 and 𝑋 is small compared to images. The degrees 

of freedom of A are very large in principle, but much less in 

the actual elements used. Since the observed 3D structure is 
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stable, the score should be close to the force on each atom, 

and the GNN for approximating the molecular force field 

would be suitable for the score model.  

CDVAE 

To reconstruct the material from the latent representation, 

CDVAE first creates an approximate crystal structure with 

VAE and then improves the structure using score. CDVAE 

consists of three networks: a GNN that encodes ℳ into a 

latent representation 𝒛 , a MLP that approximates crystal 

structure  ℳ = (𝐴, 𝐿, 𝑋) from 𝒛, and a GNN to improve the 

structure (𝐴, 𝑋) . The model satisfies permutational and 

SE(3) equivariance. Periodicity is recovered using several 

adjacent unit cells. The multi-graph representation to pre-

dict bonds between atoms (or to define “neighbor” atoms) is 

built with CrystalNN (Pan et al. 2021) for the encoder, and 

with the K-nearest neighbor algorithm (K = 20) for the de-

coder. The DimeNet++ (Gasteiger et al. 2020) and the suc-

cessor (GemNet-dQ, Gasteiger et al. 2021) were used as 

GNNs to incorporate the bending and dihedral angle de-

pendence.  

DiffCSP 

DiffCSP (Jiao et al. 2023) generates the crystal lattice vec-

tors 𝐿 and the atomic coordinates (fractional coordinates) 𝑋 

using the Denoising Diffusion Probabilistic Model (DDPM) 

(Ho, Jain, and Abbeel 2020). The diffusion process of the 

lattice vector is the standard Ornstein-Uhlenbeck process in 

𝑅3×3. As in image generation, 𝐿𝑡 is reduced toward zero and 

noise is added to it to learn the score. The transition proba-

bility distribution from time 0 to t is the multivariate Nor-

mal: 

𝑞(𝐿𝑡|𝐿0) = 𝒩(𝐿𝑡;  √α𝑡̅𝐿0, (1 − α𝑡̅)𝐼)             (1) 

Here, the noise strength is controlled with the cosine sched-

uler: 𝛼̅𝑡 = ∏ α𝑡
𝑡
𝑠=1 = ∏ (1 − β𝑠)𝑡

𝑠=1 = cos2(π𝑡/2𝑇). In the 

reverse diffusion process noise is gradually removed, and 

the transition probability is represented as usual:  

𝑝(𝐿𝑡−1|ℳ𝓉) = 𝒩(𝐿𝑡−1;  𝑚(ℳ𝓉), 𝑐(ℳ𝓉)𝐼)        (2) 

𝑚(ℳ𝓉) =
1

√α𝑡

(𝐿𝑡 −
β𝑡

√1 − 𝛼̅𝑡

  ϵ̂𝐿(ℳ𝓉 , 𝑡)) (3) 

𝑐(ℳ𝓉) = β𝑡
1−𝛼̅𝑡−1

1−𝛼̅𝑡
(4)      

 The noise removal term ϵ̂𝐿(ℳ𝓉 , 𝑡) ∈ 𝑅3×3 is predicted by 

a neural network model. To train it standard score matching 

(Song and Ermon 2020; Song et al. 2020) is used: we first 

sample ϵ𝐿 ∼ 𝒩(0, 𝐼) , 𝑡  is sampled from uniform random 

number, 𝑡 ∼ 𝑈(1, 𝑇)  and obtain a noisy sample 𝐿𝑡 =

√𝛼̅𝑡𝐿0 + √1 − 𝛼̅𝑡ϵ𝐿. The objective function for training is 

the L2 loss between ϵ𝐿 and ϵ̂𝐿: 

ℒ𝐿 = 𝐸ϵ𝐿∼𝒩(0,𝐼)

𝑡∼𝑈(1,𝑇)

[|ϵ𝐿 − ϵ̂𝐿(ℳ𝑡 , 𝑡)|2 ] (5) 

 

 Due to the periodicity of crystals, the diffusion processes 

for the atomic coordinates needs special care. The domain 

of the fractional coordinate 𝑋, [0,1)3×𝑁, forms a quotient 

space 𝑅3×𝑁/𝑍3×𝑁 due to the periodicity. Therefore, we con-

sider the diffusion on the torus without drift term: we sample 

noise ϵ𝑋 ∈ 𝑅𝟛×𝑁, do the random walk from 𝑋0 to 𝑋0 + σ𝑡ϵ𝑋, 

then extract fractional coordinate, 𝑋𝑡 = 𝑤(𝑋0 + σ𝑡ϵ𝑋) , 

where 𝑤(𝑋) = 𝑋 − ⌊𝑋⌋ ∈ [0,1)3×𝑁 . The transition proba-

bility of this process is given by the Wrapped Normal (WN) 

distribution (Bortoli et al. 2022). 

𝑞(𝑋𝑡|𝑋0) ∝ ∑ exp (−
|𝑋𝑡 − 𝑋0 + 𝑍|2

2σ𝑡
2 )

𝑍∈𝑍3×𝑁

(6) 

The noise scale σ𝑡 obeys the exponential scheduler. 

σ𝑡

σ1

= (
σ𝑇

σ1

)

𝑡−1
𝑇−1

(7) 

The WN distribution has been used in molecular structure 

generation (Jing et al. 2022). The objective function for 

score matching is: 
ℒ𝑋 = 𝐸𝑋𝑡∼𝑞(𝑋𝑡|𝑋0)

𝑡∼𝑈(1,𝑇)

[λ𝑡|∇𝑋𝑡
log 𝑞 (𝑋𝑡|𝑋0) − ϵ̂𝑋(ℳ𝑡 , 𝑡)|2 ](8)

 

Here, λ𝑡
−1 is the averaged 2-norm of the score, 

λ𝑡
−1 = 𝐸𝑋𝑡∼𝑞(𝑋𝑡|0)[∇𝑋𝑡

log 𝑞 (𝑋𝑡|0)|2 ] (9) 

 To approximate score DiffCSP uses special EGNN that 

satisfies the periodicity. Denoting latent representation of 

the 𝜈-th atom as 𝒉𝜈, the message from the 𝜉-th atom to the 

𝜈-th atom is 

𝑚𝜈𝜉 = MLP (𝒉𝜈 , 𝒉𝜉 , 𝐿𝑇𝐿, Ψ𝐹𝑇(𝒙𝜈 − 𝒙𝜉)) (10) 

         Ψ𝐹𝑇(𝒙𝜈 − 𝒙𝜉) 

= (sin 2π𝑚(𝒙𝜈 − 𝒙𝜉) , cos 2π𝑚(𝒙𝜈 − 𝒙𝜉)) (11) 

Relative coordinate 𝒙𝜈 − 𝒙𝜉  is defined by the three real 

numbers, but Ψ𝐹𝑇  expresses it with the 256 point values of 

the 6 periodic functions of 𝑚.  

 After updating the latent representations for 4-6 times,  

𝒉𝜈 → 𝒉𝜈 + MLP (𝒉𝜈 , ∑ 𝑚𝜈𝜉

𝑁

𝜉=1

) (12) 

they are used to approximate the score. 

ϵ̂𝐿 = 𝐿 ∙ MLP (
1

𝑁
∑ 𝒉𝜈

𝑁

𝜈=1

) (13) 

ϵ̂𝒙𝜈
= MLP(𝒉𝜈) (14) 

Classifier/Classifier-Free Guidance 

To generate x under condition y, we need the conditional 

distribution and its score. Using Bayes’ theorem 



𝑝𝑡|𝒚(𝒙𝑡|𝒚) =
𝑝𝒚|𝑡(𝒚|𝒙𝑡)𝑝𝑡(𝒙𝑡)

𝑝(𝒚)
(15)    

we obtain the following equation. 

                    ∇𝒙𝑡
log 𝑝𝑡|𝒚(𝒙𝑡|𝒚) 

= ∇𝒙𝑡
log 𝑝𝑡(𝒙𝑡) + ∇𝒙𝑡

log 𝑝𝒚|𝑡(𝒚|𝒙𝑡) (16) 

 

The last term in the right-hand side (RHS) is the score of the 

classifier 𝑝𝜃(𝒚|𝒙𝒕) that predicts the label y on noisy sam-

ple. According to (Dhariwal and Nichol 2021) Eqs. (2) and 

(3) become 

𝑝(𝐿𝑡−1|ℳ𝓉 , 𝑦) = 𝒩(𝐿𝑡−1; 𝑚̃(ℳ𝓉), 𝑐(ℳ𝓉)𝐼) (17) 

𝑚̃(ℳ𝓉) = 𝑚(ℳ𝓉) + 𝜔𝑐(ℳ𝓉)∇𝑥𝑡
log 𝑝𝜃 (𝑦|ℳ𝓉) (18) 

The scaling parameter 𝜔 adjusts the guidance strength.  

 Classifier-free guidance is intended to generate samples 

in a given class 𝒚  using only score estimator 𝜖𝜃(𝒙𝑡 , 𝒚) , 

without separate classifier models. Unconditional means a 

null token ϕ for the class 𝒚. Sampling is performed using 

the following linear combination of the scores: 

𝜖𝜃̃(𝒙𝑡 , 𝒚) = (1 − 𝜔)𝜖𝜃(𝒙𝑡 , 𝒚 = 𝜙) + 𝜔𝜖𝜃(𝒙𝑡 , 𝒚) (19) 

This has been very successful with the image generation 

model. The neural network for the score should also accept 

the condition 𝒚, which poses a particular challenge in crystal 

generation. 

Tweedie Moment Projected Diffusions 

Classifier- and classifier-free learning need large amounts of 

data and retraining for each specific task. If the process of 

generating label y is explicitly known, Tweedie Moment 

Projected Diffusions (TMPD) (Boys et al. 2023) gives a way 

to avoid them. Its purpose is to preferentially generate sam-

ples 𝒙0 that explain noisy measurements 𝒚, when 𝐻 and σ𝑦  

are known. 

𝒚 = 𝐻𝒙0 + 𝒖,  𝒖 ∼ 𝒩(0, σ𝑦
2 𝐼) (20) 

The score function under this condition has a correction 

∇𝒙𝑡
log 𝑝𝒚|𝑡(𝒚|𝒙𝑡) and below we express it in terms of 𝒙𝑡 

and 𝒚. Because of Eq. (20), 𝑝(𝒚|𝒙0) is Gaussian, and as-

suming 𝑝0|𝑡(𝒙0|𝒙𝑡) ≈ 𝒩(𝒙0; 𝒎(𝒙𝑡), 𝐶(𝒙𝑡)), we have 

       𝑝𝒚|𝑡(𝒚|𝒙𝑡) = ∫ 𝑝𝒚|0(𝒚|𝒙0) 𝑝0|𝑡 (𝒙0|𝒙𝑡)𝑑𝒙0 

= 𝒩(𝒚 ;  𝐻𝒎, 𝐻𝐶𝐻⊤ + σ𝑦
2 𝐼) (21)  

meaning that the correction can be represented with 𝒎,𝐶,𝐻, 

and σ𝑦 . Next, given the marginal density 𝑝𝑡(𝒙𝑡), the mean 

of 𝑝0|𝑡(𝒙0|𝒙𝑡) establishes the relation between 𝒎 and 𝒙𝑡 , 

called the Tweedy formula, 

𝒎 = 𝐸[𝒙0|𝒙𝑡] =
1

√α𝑡

(𝒙𝑡 + 𝑣𝑡∇𝒙𝑡
log 𝑝𝑡(𝒙𝑡)) (22) 

where 𝑣𝑡 = 1 − α𝑡. Similarly, the covariance yields the for-

mula of 𝐶. 

         𝐶 = 𝐸[(𝒙0 − 𝒎)(𝒙0 − 𝒎)⊤|𝒙𝑡] 

=
𝑣𝑡

α𝑡

(𝐼 + 𝑣𝑡∇2 log 𝑝𝑡(𝒙𝑡)) =
𝑣𝑡

√α𝑡

∇𝒙𝑡
𝒎 (23) 

Putting all of them together we have the analytical formula 

of the conditional correction. 

∇𝒙𝑡
log 𝑝𝒚|𝑡(𝒚|𝒙𝑡) 

≈ ∇𝑥𝑡
𝒎(𝒙𝑡)𝐻⊤(𝐻𝐶(𝒙𝑡)𝐻⊤ + σ𝑦

2 𝐼)
−1

(𝒚 −  𝐻𝒎(𝒙𝑡))(24) 

Here,∇𝒙𝑡
 acts only on 𝒎. This enables the conditional gen-

eration without extra training or data for guidance. 

Crystal Structure Analysis in X-ray Diffraction 

Experiments 

The X-ray diffraction intensity measured in the experiment 

changes with scattered direction. Scattering occurs only in 

directions satisfying Bragg’s law:  

𝒔 =
𝑺 − 𝑺𝟎

𝜆
= ℎ𝒂∗ + 𝑘𝒃∗ + 𝑙𝒄∗ (25) 

where  𝑺𝟎 (𝑺) is the unit vector of the incident (scattered) 

direction,  𝜆 is the X-ray wavelength, (𝒂∗, 𝒃∗, 𝒄∗) are the re-

ciprocal lattice vectors (i.e., bi-orthogonal system of the lat-

tice vector 𝐿 = (𝒂, 𝒃, 𝒄)). The three integers (ℎ, 𝑘, 𝑙) spec-

ify the direction. 

 The amplitude of X-ray scattered toward 𝒔  by an electron 

at position 𝒓 is proportional to the real part of 𝑒2π𝑖 𝒓⋅𝒔. Hence 

X-ray amplitude from a crystal is proportional to the Fourier 

transform of the electron density of the crystal.  

𝑎𝑚𝑝~ ∫ 𝜌𝑐𝑟𝑦𝑠(𝒓) 𝑒2π𝑖 𝒓⋅𝒔𝑑𝒓 (26) 

When the 𝜈-th atom with the electron density 𝜌𝜈(𝒓) is lo-

cated at 𝒓𝜈, the electron density in the unit cell is sum of the 

convolution 

𝜌𝑐𝑒𝑙𝑙(𝒓) = ∑ 𝜌𝜈(𝒓) ∗ 𝛿(𝒓 − 𝒓𝜈)

𝑁

𝜈=1

(27) 

and the electron density of the crystal is the convolution of 

it with the three comb functions. 

𝜌𝑐𝑟𝑦𝑠(𝒓) 

= 𝜌𝑐𝑒𝑙𝑙(𝒓) ∗ ∑ 𝛿(𝒓 − 𝑛1𝒂)

𝑛1

∗ ∑ 𝛿(𝒓 − 𝑛2𝒃)

𝑛2

 

∗ ∑ 𝛿(𝒓 − 𝑛3𝒄)

𝑛3

(28) 

Because of the convolution theorem the amplitude is 

𝑎𝑚𝑝~𝐹(𝒔) ∑ 𝛿(𝒔 − 𝑛1𝒂∗)𝛿(𝒔 − 𝑛2𝒃∗)𝛿(𝒔 − 𝑛3𝒄∗)

𝑛𝑖

(29) 

𝐹(𝒔) = ∑ 𝑓𝜈 (𝑠)𝑒2π𝑖 𝒙𝜈⋅(ℎ,𝑘,𝑙)

𝑁

𝜈=1

(30) 



which explains Bragg’s law. Here, 𝑓𝜈 is the element-specific 

constant called the atomic scattering factor and 𝒙𝜈  is the 

fractional coordinate. In short, the X-ray scattering by a 

crystal is characterized with the so-called the structure factor 

(Woolfson 1997). 

𝐹(ℎ𝑘𝑙) = ∑ 𝑓𝜈𝑒2π𝑖 𝒙𝜈⋅(ℎ,𝑘,𝑙)

𝑁

𝜈=1

(31) 

Since F is the Fourier transform of the unit cell electron den-

sity, determining complex F (including its phase) solves the 

atomic coordinates. However, only intensity, which is pro-

portional to |𝐹(ℎ𝑘𝑙)|2, is measurable in experiments. The 

absence of phase information is known as the “phase prob-

lem” and is a major obstacle in crystal structure analysis. 

 The direct method is a primary approach for solving the 

phase problem, effective for simple structures composed of 

light elements. Using highly-probable mathematical rela-

tionships among phases, the method first generates several 

reliable initial phase sets from the observed structure factor 

amplitudes. New phases are then estimated from these, and 

the phase sets are extended. During this iteration the relia-

bility of each trial solution is quantified, and the best solu-

tion is selected.  
 The structural parameters of this initial model are then re-

fined. Due to thermal vibration, the atoms are Gaussian dis-

tributed at the equilibrium position. This effect is measured 

as the temperature factor in experiment, and the iso-

tropic/anisotropic displacement parameter is estimated. 

Since the scattering from hydrogen atom is weak, the posi-

tion is estimated from positions of other atoms.  The whole 

structure is then refined by minimizing the difference be-

tween the measured and the predicted intensity.  

Proposed Method 

Determining the structure from X-ray diffraction experi-

ments requires both theoretical and empirical knowledge; an 

initial structure is created from diffraction intensities and 

chemical knowledge, and it is refined by minimizing the er-

ror in the predicted intensities from the measured ones. We 

would like to solve the issue by using a diffusion model that 

learns empirical priors about the crystal structure, and the 

X-ray diffraction intensity as a theoretical constraint. Since 

the structure determines the diffraction intensity via Eq. (31), 

the TMPD-like classifier-guidance is used. We derive the 

Tweedy formula under periodic condition. This enables us 

to predict what diffraction image the structure in the reverse 

process will eventually give. The conditional score indicates 

the direction of the correct structure in the reverse diffusion 

process.  

Tweedy Formula under periodicity 

The fractional coordinate domain [0,1)3×𝑁 forms a quotient 

space 𝑅3×𝑁/𝑍3×𝑁 due to the periodicity of crystals. As in 

DiffCSP, the transition from 𝑥0 to 𝑥𝑡 is given by WN distri-

bution: 

𝑞(𝑥𝑡|𝑥0) =
1

√2𝜋𝜎𝑡
2

∑ exp (−
(𝑥𝑡 − 𝑥0 + 𝑍)2

2σ𝑡
2 )

+∞

𝑍=−∞

(32) 

In analogy with usual diffusion model the transition proba-

bility from 𝑥𝑡 to 𝑥0 is assumed to WN distribution: 

𝑝(𝑥0|𝑥𝑡) =
1

√2π𝑐𝑡

∑ exp (−
(𝑥0 − 𝑚𝑡 + 𝑍)2

2𝑐𝑡

)

+∞

𝑍=−∞

(33) 

Here, we call 𝑚𝑡 = 𝑚(𝑥𝑡) and 𝑐𝑡 = 𝑐(𝑥𝑡) as the mean and 

the variance, respectively. Now we derive Tweedy formula 

on Torus. As explained before, it relates the moment with 

the score and the derivative. However, the mean depends on 

the arbitrary-chosen origin and is ill-defined on Torus, and 

it is not evident that such formula exists. We show that the 

derivative of the normalization condition of 𝑝,  

𝜕𝑛

𝜕𝑥𝑡
𝑛 ∫ 𝑝(𝑥0|𝑥𝑡)𝑑𝑥0

∞

−∞

= 0 (34) 

yields the corresponding formulas. 

 Below we use physicist’s notation of the derivative, 

𝜕𝑛𝑓 = 𝜕𝑛𝑓/𝜕𝑥𝑡
𝑛, 𝑞 = 𝑞(𝑥𝑡|𝑥0), 𝑝 = 𝑝(𝑥0|𝑥𝑡), 𝑝𝑡 = 𝑝(𝑥𝑡), 

and  𝑝0 = 𝑝(𝑥0). Using Bayes’ theorem 𝑝 = 𝑞𝑝0/𝑝𝑡 , after 

tedious calculation we have 

𝜕𝑝 = 𝜕 (
𝑞𝑝0

𝑝𝑡

) = 𝑝(𝜕 log 𝑞 − 𝜕 log 𝑝𝑡) (35) 

The integral of this equation is zero, which results in the 

first-order formula.  

∫ 𝑝(𝑥0|𝑥𝑡) ∂ log 𝑞 (𝑥𝑡|𝑥0)𝑑𝑥0

1

0

= 𝜕 log 𝑝 (𝑥𝑡) (36) 

Similarly, the equation of the second derivative 

𝜕2𝑝

𝑝
 

=
1

𝑝
𝜕2 (

𝑞𝑝0

𝑝𝑡

) 

 = 𝜕2 log 𝑞 + (𝜕 log 𝑞)2 − 2(𝜕 log 𝑞)(𝜕 log 𝑝𝑡) 

−𝜕2 log 𝑝𝑡 + (𝜕 log 𝑝𝑡)2 (37) 

results in  

                        ∫ 𝑝(𝜕2 log 𝑞 + (𝜕 log 𝑞)2)𝑑𝑥0

1

0

 

= 𝜕2 log 𝑝𝑡 + (𝜕 log 𝑝𝑡)2 (38) 

The score and its derivative in the RHS are approximated by 

the NN model, and the derivative of q in the left-hand side 

(LHS) is known. Hence, these identities establish the rela-

tion between score and its derivative and 𝑚(𝑥𝑡) and 𝑐(𝑥𝑡) 



in 𝑝. In other words, given 𝑥𝑡 in the reverse diffusion, we 

know the final distribution via Eq. (33). Since this is an 

equation that cannot be solved analytically, we devise a 

method to solve it numerically. Details is presented in Ap-

pendix A.  

Conditional Score 

Eq. (33) indicates that the distribution of the 𝜈-th atom in a 

unit is specified by the Normal, 𝒩(𝒙𝜈; 𝒎𝜈 , diag 𝒄𝜈). Here, 

𝒎𝜈 ∈ 𝑅3 is the mean of the three fractional coordinates and 

𝒄𝜈  the variance. Replacing 𝛿(𝒓 − 𝒓𝜈)  with it leads to the 

structure factor.  

𝐹𝑐𝑎𝑙𝑐(ℎ𝑘𝑙) = ∑ 𝑓𝜈𝑒2𝜋𝑖 𝒎𝜈⋅(ℎ,𝑘,𝑙)−2𝜋2𝒄𝜈⋅(ℎ2,𝑘2,𝑙2)

𝑁

𝜈=1

(39) 

We dropped the unit cell volume of no interest. The square 

gives the predictive intensity, 
    𝐼𝑐𝑎𝑙𝑐(ℎ𝑘𝑙) 

= ∑ 𝑓𝜈𝑓𝜉𝑒2𝜋𝑖 (𝒎𝜈−𝒎𝜉)⋅(ℎ,𝑘,𝑙)−2𝜋2(𝒄𝜈+𝒄𝜉)⋅(ℎ2,𝑘2,𝑙2)

𝑁

𝜈,𝜉=1

(40) 

Let 𝐼𝑒𝑥𝑝𝑡𝑙  be the measured diffraction intensity, which is 

ideally, 

𝐼𝑒𝑥𝑝𝑡𝑙(ℎ𝑘𝑙) = ∑ 𝑓𝜈𝑓𝜉𝑒2𝜋𝑖 (𝒓𝜈−𝒓𝜉)⋅(ℎ,𝑘,𝑙)

𝑁

𝜈,𝜉=1

         (41) 

and 𝐼𝑐𝑎𝑙𝑐  the predicted diffraction intensity from 𝑥𝑡. We as-

sume that the difference, which corresponds to “measure-

ment error”, is the Gaussian noise: 

𝐼𝑐𝑎𝑙𝑐(ℎ𝑘𝑙) − 𝐼𝑒𝑥𝑝𝑡𝑙(ℎ𝑘𝑙) = 𝑢, 𝑢 ∼ 𝒩(0, σ𝑦
2 𝐼)      (42) 

Assume that measurement is done only for 𝑁ℎ × 𝑁𝑘 × 𝑁𝑙 

intensities, which constitutes of our condition 𝑦. The proba-

bility that 𝑦 is realized given 𝑥𝑡 is calculated as follows: 

𝑝(𝑦|𝑥𝑡) = ∏ exp (−
(𝐼𝑐𝑎𝑙𝑐(ℎ𝑘𝑙) − 𝐼𝑒𝑥𝑝𝑡𝑙(ℎ𝑘𝑙))

2

2𝜎𝑦
2

)

ℎ,𝑘,𝑙

(43) 

Thus, the conditional score is calculated as follows: 

𝜕

𝜕𝑥𝑡

log 𝑝 (𝑦|𝑥𝑡) = −
1

𝜎𝑦
2

∑(𝐼𝑐𝑎𝑙𝑐 − 𝐼𝑒𝑥𝑝𝑡𝑙)
𝜕𝐼𝑐𝑎𝑙𝑐

𝜕𝑥𝑡
ℎ,𝑘,𝑙

      (44) 

We denote as 𝜕 log 𝑝 (𝑦|𝑋𝑡)/𝜕𝑋𝑡 ∈ 𝑅3×𝑁  collection of 

them at all coordinates. The reverse diffusion process is then 

represented by the following equation: 

𝑋𝑡−1 = 𝑤(𝑋𝑡 + 𝜁𝑡𝝐̃𝑿 + 𝜁𝑡̅𝛜𝑿) (45) 

𝝐̃𝑿 = 𝛜̂𝑿(ℳ𝑡 , 𝑡) +
𝜕

𝜕𝑋𝑡

log 𝑝 (𝑦|𝑋𝑡) (46) 

Here, 𝛜̂𝑿(ℳ𝑡 , 𝑡) is an approximated score without condition, 

𝜁𝑡 = σ𝑡
2 − σ𝑡−1

2 , and 𝜁𝑡̅ = (σ𝑡−1/σ𝑡)√𝜁𝑡. For the crystal lat-

tice vector 𝐿, the same reverse diffusion step as in DiffCSP 

is applied. Eq. (44) contains various derivatives, and their 

numerical calculation method is summarized in Appendix A.  

Experiment 

This section presents three experiments to explore the effec-

tiveness of the proposed method, along with their results. 

Definitions and Experimental Parameters 

The matching rate measures how well the generated crystal 

structures align with the true crystal structures. As previous 

work we evaluated it using the StructureMatcher class in 

pymatgen (Ong et al. 2013), which determines matches 

based on three thresholds: 

• angle_tol: The maximum angular difference (in degrees) 

allowed between corresponding lattice angles for two struc-

tures to be considered equivalent. 

• ltol: The tolerance for lattice vector lengths. It allows 

slight variations in lattice dimensions. 

• stol: The site tolerance, which determines how far atomic 

positions can deviate for two structures to match. 

These thresholds define the level of similarity required for a 

match. The matching rate is defined as the proportion of 

sampled crystal structures that match the true structures. 

 In all experiments, Miller indices (ℎ, 𝑘, 𝑙) was taken from 

(-2, -1, 0, 1, 2). As a result, there are a total of  53 diffraction 

intensities to reproduce.  

 The 𝜎𝑦 parameter in Eq. (44) is dynamically determined 

during sampling to ensures that the maximum absolute val-

ues of 𝛜̂𝑿(ℳ𝑡 , 𝑡) and the conditional score 𝜕 log 𝑝 (𝑦|𝑋𝑡)/
𝜕𝑋𝑡 keep a specific ratio. We call this hyperparameter the 

score ratio, which differs in each experiment. Score ratio = 

1:3 means that the maximum absolute values of 𝛜̂𝑿(ℳ𝑡 , 𝑡) 

and the conditional score are 1:3. We found empirically that 

this adjustment stabilizes and improves the reverse diffusion 

process. Other training details are provided in the Appendix. 

Selective Generation of Crystals from Diffraction 

Intensity 

To verify the effectiveness of the proposed method, we con-

ducted a simple experiment: from two crystal structures with 

the same chemical composition but different atomic ar-

rangements, generate the one specified with the X-ray dif-

fraction intensities. 

Dataset As shown in Figure 1, two artificial crystal struc-

tures, Crystal-1 and Crystal-2, were prepared. Both are the 

Table 1: Comparison of generation accuracy with-

out/with the conditional score.  

 DiffCSP Ours 

Crystal-1 15.7% 95.6% 

Crystal-2 7.5% 95.5% 

 



same cubic lattice with constant 4.24596 Å, have the same 

chemical composition CoN₂OTl, but the atomic sequences 

differ: Crystal-1 has the sequence [O, N, N, Tl, Co], while 

Crystal-2 has the sequence [Tl, O, N, N, Co]. Gaussian noise 

𝒩(0, 0.012) was added to each atomic position to augment 

the dataset, creating a total of 10,000 samples (5,000 for 

each type).  

Sampling Sampling was performed using both DiffCSP, 

which does not use conditioning, and the proposed method. 

The score ratio was set to 1:4. The X-ray diffraction inten-

sity of Crystal-1/2 was calculated using the atomic scatter-

ing factors in CrysFML (Rodriguez-Carvajal and Gonzalez-

Platas 2006). The thresholds for matching rate were set with 

stol=0.05, angle_tol=10, and ltol=0.3. 

 The results are summarized in Table 1. Without condi-

tions, ideally either Crystal-1 or 2 should be generated and 

the match ratio would be 50%, but it was much lower in our 

matching threshold. By adding diffraction constraint it dras-

tically improved to 96%. We can say that our method not 

only biased the generation toward one of the two structures 

but also made fine adjustments based on subtle differences 

in X-ray diffraction intensity, enabling it to handle random 

noise effectively. 

Generation of Unlearned Crystals 

In the first experiment, we demonstrated that the proposed 

method can differentiate between learned structures. How-

ever, in X-ray diffraction experiments, it is often necessary 

to determine unknown structures that have not been encoun-

tered during training. This experiment aims to verify 

whether the method can generate structures which are not 

present in the training data. To this end, a new structure, 

Crystal-3, with the same lattice parameter and the chemical 

composition as Crystal-1/2 but different atomic arrange-

ments and X-ray diffraction intensities, was introduced. 

Crystal-3 was taken from in the Perov-5 dataset (Castelli et 

al. 2012a; Castelli et al. 2012b). Crystal-1 and Crystal-3 

were used as training data, and the ability to generate Crys-

tal-2 was tested by conditioning on its X-ray diffraction in-

tensities. Gaussian noise 𝒩(0, 0.012) was added to each co-

ordinate to augment the dataset, creating a total of 10,000 

samples (5,000 for each type). 

Sampling We generate 10,000 variants of the Crystal-2 

structures by adding random noise 𝒩(0, 0.012), and calcu-

late the X-ray diffraction intensities. Structures are gener-

ated with and without these intensity constraints. The score 

ratio was set to 1:4. The thresholds for matching rate were 

set with angle_tol=10 and ltol=0.3, while three values (0.05, 

0.1, 0.5) were used for stol. 

Results Sampled structures are shown in Figure 3, and the 

matching rate for each stol values are summarized in Table 

2. The matching rate with stol=0.05 was 0% for both meth-

ods. However, when the stol threshold was increased, our 

method achieved a higher matching rate. However, no crys-

tals with the same arrangement as Crystal-2 [Tl, O, N, N, 

Co] were observed. 

 Although crystals with the same atomic arrangement as 

Crystal-2 were not obtained, the X-ray diffraction intensities 

of the sampled crystals were similar to those of the true 

structure. X-ray diffraction intensities are highly dependent 

on the positions of atoms with large scattering factors, i.e., 

heavier atoms. Co and Tl atoms have much more electrons 

than N and O. Hence, during reverse diffusion, Co and Tl 

Table 2: Comparison of generation accuracy between 

DiffCSP and ours, showing the generation accuracy for 

both Crystal-1 and Crystal-2. The stol parameter is the 

threshold for the StructureMatcher class, and the matching 

accuracy was measured at three different threshold levels. 
stol DiffCSP Ours 

0.05 0.00% 0.00% 

0.1 

0.5 

0.00% 

8.03% 
0.62% 

96.21% 

 
 

Figure 1: Crystal-1 (top left) has the sequence [O, N, N, 

Tl, Co], while Crystal-2 (top right) has the sequence [Tl, 

O, N, N, Co]. The bottom shows the corresponding X-ray 

diffraction intensities (h=0). 

 

Co 
Tl 

N 
O 

Co 

Tl 

N 
O 

Figure 2: Crystal-3 (left) has the same lattice parameter 

and the composition as Crystal-1/2, but a different struc-

ture. The right shows the X-ray diffraction intensity (h=0). 
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atoms are more mobile than N and O. This explains the ap-

pearance of structures such as [Tl, N, N, O, Co], where the 

Co atom shifted closer to the O atom than to the Tl atom, or 

the sample where the Tl atom moved away from the Co atom, 

overlapped with the N atom. 

Datasets Containing Various Elements 

Following Jiao et al. (2023), we also evaluated generation 

accuracy on well-known crystal datasets: Perov-5 (Castelli et 

al. 2012a; Castelli et al. 2012b), Carbon-24 (Pickard 2020), 

MP-20 and MPTS-52 (Jain et al. 2013).  For each dataset, 

the data were divided into training, validation, and test sets. 

During training, both the training and validation sets were 

used, while the test set was used to measure the matching 

rate. 

Dataset Perov-5 includes 18,920 perovskite materials with 

similar structures, each containing 5 atoms per unit cell. Car-

bon-24 contains 10,153 carbon materials with 6-24 atoms in 

each unit cell. MP-20, derived from the Materials Project 

(Jain et al. 2013), consists of 45,231 stable inorganic mate-

rials, mostly experimentally synthesized, with up to 20 at-

oms per unit cell. MPTS-52 is an extension of MP-20, con-

taining 40,476 structures with up to 52 atoms, sorted by the 

earliest publication year. Perov-5, Carbon-24, and MP-20 

were split following Xie et al. (2021) at a 60-20-20 ratio. 

Following Jiao et al. (2023), MPTS-52 was divided into 

27,380/5,000/8,096 samples for training, validation, and 

testing based on chronology. 

Sampling was performed using both DiffCSP, which does 

not use conditioning, and the proposed method. The score  

ratio was set to 1:3. Following Jiao et al. (2023), thresholds 

for matching rate were set with stol=0.5, angle_tol=10, and 

ltol=0.3. 

Results The matching rates for each dataset are presented in 

Table 3. As shown, matching rates improved moderately in 

Perov-5, significantly in Carbon-24, and slightly in MP-20 

and MPTS-52. The highest matching rate for Carbon-24 is 

due to the fact that this is the only dataset composed of a 

single element. In the second experiment, it was observed 

that lighter atoms with smaller scattering factors tend to 

stagnate in motion during generation. In these datasets all 

atoms seem to move to the correct position in the same way, 

result in better structures. 

 From the detailed analysis in the Appendix, it was ob-

served that datasets with fewer atoms in the unit cell exhibit 

higher matching rates, and that matching rates tend to de-

crease as the number of atoms increases. As this was ob-

served both with and without conditions, it is considered a 

characteristic of the diffusion model. The number of ran-

domly generated initial structures can be predicted from the 

entropy of the ideal gas mixture. The number of initial struc-

tures increases exponentially with the number of atoms. 

Moreover, as the number of atoms increases, the diffraction 

intensity becomes less sensitive to the movement of the at-

oms, making position adjustment more difficult. 

Conclusion 

The diffusion model, which has achieved great success in 

image generation, is now being applied to the field of sci-

ence, such as structure generation of materials and crystals. 

The powerful ability of the diffusion model to learn empiri-

cal prior is expected to be applied to scientific inference. In 

the field of conventional X-ray crystallography, the empiri-

cal prior and the physical theory of diffraction are used in 

combination to determine the structure from experimentally 

observed diffraction intensities. As an example of the adap-

tation of the diffusion model to such scientific reasoning, 

this paper proposes a method for generating crystal struc-

tures given X-ray diffraction intensities. Such conditional 

Table 3: Comparison of generation accuracy between 

DiffCSP and our method across the four datasets. 

Method Perov- 

5 

Carbon- 

24 

MP- 

20 

MPTS- 

52 

DiffCSP 48.24% 8.47% 52,21% 9.62% 

Ours 61.56% 50.05% 52.58% 10.76% 

 

Figure 3: The left column shows the sampled crystal 

structures, and the right show the corresponding X-ray dif-

fraction intensities (h=0). 
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generation has been accomplished in image domain by 

learning a large amount of image and text prompt pairs. 

However, the measured structure is not included in the train-

ing data; only the physical theory that determines the dif-

fraction intensity is known.  
 Using the torus-based diffusion process and the newly-

derived Tweedy formula on it, we derived analytically the 

conditional score, or the guidance, for the crystal generation 

without label learning by leveraging a pre-trained diffusion 

model. We applied this method to several systems and 

showed that structures that reproduce diffraction intensities 

are preferentially generated. At the same time, it was found 

to be difficult when the unit cell contains many atoms or 

when heavy and light atoms are mixed. The former may be 

related to the lack of sufficient empirical prior. Since the 

crystal structure is a stable structure, the unconditional score 

is expected to be close to the force field of the material. 

Some of the generated samples had chemically invalid struc-

tures, such as very close atomic contact, which a force fields 

never generates. 

 The latter may be due to the fact that the light atom has 

only a small diffraction intensity and enough guidance does 

not work. We need to design an appropriate loss function or 

guidance scale. In fact, the guidance scale (score ratio) sig-

nificantly affecting generation accuracy, as demonstrated in 

Appendix D. These advancements will help refine the pro-

posed method and broaden its applicability to more complex 

structures, improving its effectiveness in X-ray diffraction-

based structure determination. 
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Appendix 

A. Solving Periodic Tweedy Formula and Calculating Conditional Score 

During the reverse diffusion process we have to solve Eq. (36) and Eq. (38) to determine 𝑚(𝑥𝑡) and 𝑐(𝑥𝑡). The analytical 

solution is not known and we used the following numerical procedure. First, since the transition probability 𝑞(𝑥𝑡|𝑥0) only 

depends on 𝑥𝑡 − 𝑥0, we write log 𝑞(𝑥𝑡|𝑥0) = 𝑔(𝑥𝑡 − 𝑥0). This is a periodic function 

𝑔(𝑦, 𝑡) = log (
1

√2𝜋𝜎𝑡
2

∑ exp (−
(𝑦 + 𝑍)2

2σ𝑡
2 ) 

+∞

𝑍=−∞

) (𝐴1) 

and we examine it in the domain 𝑘 −
1

2
≤ 𝑦 ≤ 𝑘 + 1/2 for 𝑘 ∈ 𝑍.When σ𝑡 is large, this 𝑔 is a smooth function which is suita-

ble for numerical analysis. However as σ𝑡 → 0+ it may become singular and require separate analysis. In fact, at this limit only 

𝑍 = −𝑘  term remains and 𝑑𝑔/𝑑𝑦 ≈ −(𝑦 − 𝑘)/σ2 , meaning 𝑔  becomes a sawtooth wave. Below we denote 𝑔′ =
𝑑𝑔(𝑥𝑡 − 𝑥0)/𝑑𝑥𝑡. The LHS of Eq. (36) is  

(𝐿36) = ∫ 𝑔′
1

√2𝜋𝑐𝑡

∑ exp (−
(𝑥0 − 𝑚𝑡 + 𝑍)2

2𝑐𝑡

)

+∞

𝑍=−∞

𝑑𝑥0

1

0

=
1

√2𝜋𝑐𝑡

∫ 𝑔′(𝑥0) exp (−
(𝑥𝑡 − 𝑥0 − 𝑚𝑡)2

2𝑐𝑡

) 𝑑𝑥0

∞

−∞

(𝐴2) 

In the generation process, 𝜎𝑡  gradually approaches 0+ and the sample becomes progressively clearer and sharper. We specu-

late that conditioning is most important at this later stage. Replacing 𝑔′ with its limit, we have 

(𝐿36) = ∑
−1

𝜎2√2𝜋𝑐𝑡

∫ (𝑥 − 𝑘) exp (−
(𝑥𝑡 − 𝑥 − 𝑚𝑡)2

2𝑐𝑡

)
𝑘+

1
2

𝑘−
1
2

𝑑𝑥

+∞

𝑘=−∞

= ∑ 𝐽𝑘
(1)

+∞

𝑘=−∞

(A3) 

𝜎2𝐽𝑘
(1)

= √
𝑐𝑡

2π
(𝑒−𝐾+

2
− 𝑒−𝐾−

2
) +

1

2
√

𝑐𝑡

2
(𝐾+ + 𝐾−)(erf(𝐾+) − erf(𝐾−)) (𝐴4) 

Here, the symbol is defined as 𝐾± = (𝑘 + 𝑚𝑡 − 𝑥𝑡 ± 1 2⁄ )/√2𝑐𝑡. Similarly, using the asymptotic formula 

𝜕2 log 𝑞 + (𝜕 log 𝑞)2 ≈
1

𝜎2
∑ 𝛿 (𝑦 − 𝑙 +

1

2
)

𝑙

−
1

𝜎2
+

(𝑦 − 𝑘)2

σ4
(A5) 

we have 

(𝐿38) = ∑
1

𝜎4√2𝜋𝑐𝑡

∫ (𝑥 − 𝑘)2 exp (−
(𝑥𝑡 − 𝑥 − 𝑚𝑡)2

2𝑐𝑡

)
𝑘+

1
2

𝑘−
1
2

𝑑𝑥

+∞

𝑘=−∞

= ∑ 𝐽𝑘
(2)

+∞

𝑘=−∞

(A6) 

𝜎4𝐽𝑘
(2)

= √
𝑐𝑡

2𝜋
(−

1

2
(𝑒−𝐾+

2
+ 𝑒−𝐾−

2
) + √

𝑐𝑡

2
(𝐾+ + 𝐾−)(𝑒−𝐾+

2
− 𝑒−𝐾−

2
)) +

𝑐𝑡

4
(2 + (𝐾+ + 𝐾−)2)(erf(𝐾+) − erf(𝐾−)) (𝐴7) 

We truncated the sums of Eqs. (A3) and (A6) in the range −10 ≤ 𝑘 ≤ 10. The RHS of Eq. (38) contains the derivative of the 

score, which is very difficult to approximate, and we simply ignore it as in previous study. Given RHS of Eqs. (36) and (38) 

we find 𝑚𝑡 and 𝑐𝑡 that satisfy the equation by the table search.  

 As shown in Eq. (44) the conditional score involves 𝜕𝐼𝑐𝑎𝑙𝑐 = (𝜕𝐼𝑐𝑎𝑙𝑐/𝜕𝑚𝑡)𝜕𝑚𝑡  + (𝜕𝐼𝑐𝑎𝑙𝑐/𝜕𝑐𝑡)𝜕𝑐𝑡. We first derive formulas 

of  𝜕𝐼𝑐𝑎𝑙𝑐/𝜕𝑚𝑡 and 𝜕𝐼𝑐𝑎𝑙𝑐/𝜕𝑐𝑡. 

𝐼𝑐𝑎𝑙𝑐

𝜕𝒎𝝂

= −4𝜋𝒉𝑓𝜈 ∑ 𝑓𝜉 sin(2𝜋(𝒎𝜈 − 𝒎𝜉) ⋅ 𝒉) 𝑒−2𝜋2(𝒄𝜈+𝒄𝜉)⋅(ℎ2,𝑘2,𝑙2)

𝝃

(𝐴8) 

𝐼𝑐𝑎𝑙𝑐

𝜕𝒄𝝂

= −4𝜋2(ℎ2, 𝑘2, 𝑙2)𝑓𝝂 ∑ 𝑓𝜉 cos(2𝜋(𝒎𝝂 − 𝒎𝜉) ⋅ 𝒉) 𝑒−2𝜋2(𝒄𝝂+𝒄𝜉)⋅(ℎ2,𝑘2,𝑙2)

𝜉

(𝐴9) 

Here, 𝒎𝝂 = (𝑚𝝂𝒙, 𝑚𝝂𝒚, 𝑚𝝂𝒛) ∈ 𝑅3 represents the mean of each of the three-dimensional coordinates for the v-th atom at time 

𝑡, 𝒄𝝂 = (𝑐𝝂𝒙, 𝑐𝝂𝒚, 𝑐𝝂𝒛) ∈ 𝑅3 the corresponding variance, and 𝒉 = (ℎ, 𝑘, 𝑙) ∈ 𝑅3. 



 To calculate ∂𝑚𝑡 and ∂𝑐𝑡, we take the variation of the Tweedy formulas with respect to 𝑥𝑡. With the variation δ𝑥𝑡 RHS of 

Eq. (36) changes by (∂2 log 𝑝 (𝑥𝑡))δ𝑥𝑡, and RHS of Eq. (38) changes by (∂3 log 𝑝 (𝑥𝑡) + 2 ∂2 log 𝑝 (𝑥𝑡) ∂ log 𝑝 (𝑥𝑡))δ𝑥𝑡 . On 

LHS, δ𝑐 = ∂𝑐δ𝑥𝑡 and δ𝑚 = ∂𝑚δ𝑥𝑡. Then, 

𝛿(𝐿36) = (
𝜕(𝐿36)

𝜕𝑐
𝜕𝑐 +

𝜕(𝐿36)

𝜕𝑚
𝜕𝑚 +

𝜕(𝐿36)

𝜕𝑥𝑡

) 𝛿𝑥𝑡 (A10) 

𝛿(𝐿38) = (
𝜕(𝐿38)

𝜕𝑐
𝜕𝑐 +

𝜕(𝐿38)

𝜕𝑚
𝜕𝑚 +

𝜕(𝐿38)

𝜕𝑥𝑡

) 𝛿𝑥𝑡 (A11) 

Thus, ∂𝑚𝑡 and ∂𝑐𝑡 are the solution of the following system of equations. 

(

𝜕(𝐿36)
𝜕𝑚

𝜕(𝐿38)
𝜕𝑚

𝜕(𝐿36)
𝜕𝑐

𝜕(𝐿38)
𝜕𝑐

) (
𝜕𝑚

𝜕𝑐
) = (

𝜕2log𝑝𝑡 +
𝜕(𝐿36)

𝜕𝑚

𝜕3log𝑝𝑡 + 2(𝜕2log𝑝𝑡)(𝜕log𝑝𝑡) +
𝜕(𝐿38)

𝜕𝑚

) (𝐴12) 

Here we used ∂(𝐿36)/ ∂𝑥𝑡 = − ∂(𝐿36)/ ∂𝑚, derived from (A2). Other derivatives in these equations are given as, 

𝜎2
𝜕(𝐿36)

𝜕𝑚
=

−1

2√2𝜋𝑐
∑ (𝑒−𝐾+

2
+ 𝑒−𝐾−

2
)

+∞

𝑘=−∞

+
1

2
(A13) 

𝜎2
𝜕(𝐿36)

𝜕𝑐
=

1

8𝑐√2𝜋𝑐
∑ ((1 + 4𝑐)(𝑒−𝐾+

2
− 𝑒−𝐾−

2
) +

1

2
√

𝑐𝑡

2
(𝐾+ + 𝐾−)(𝑒−𝐾−

2
+ 𝑒−𝐾+

2
))

+∞

𝑘=−∞

(A14) 

𝜎4
𝜕(𝐿38)

𝜕𝑚
=

1

2𝑐√2𝜋𝑐
∑

8𝑐 + 1

4

1

√2𝜋𝑐
(𝑒−𝐾−

2
− 𝑒−𝐾+

2
) + 2𝑘(erf(𝐾+) − erf(𝐾−))

+∞

𝑘=−∞

+ 𝑚 − 𝑥𝑡 (A15) 

𝜎4
𝜕(𝐿38)

𝜕𝑐
=

−1

4𝑐√2𝜋𝑐
∑

8𝑐 + 1

4
(𝑒−𝐾+

2
+ 𝑒−𝐾−

2
) +

1

2
√

𝑐𝑡

2
(𝐾+ + 𝐾−)(𝑒−𝐾+

2
− 𝑒−𝐾−

2
)

+∞

𝑘=−∞

+
1

2
(A16) 

  

  



B. Hyper-parameters and Training Details 

In all experiments, the model was configured with 6 layers 

and 512 hidden states. The dimension of the Fourier embed-

ding was set to k = 256. We applied a cosine scheduler 

with  s = 0.008  to control the variance of the DDPM process 

on  𝐿𝑡 , and an exponential scheduler with  σ1 = 0.005 

and  𝜎𝑇 =  0.5  to control the noise scale of the score match-

ing process on  𝑋𝑡 . The diffusion step was set to T = 1000. 

In the first and the second experiments and experiment [D], 

training was conducted for 40,000 epochs. In the third ex-

periment, the number of epochs varied depending on the da-

taset: 3500, 4000, 1000, and 1000 epochs for Perov-5, Car-

bon-24, MP-20, and MPTS-52, respectively. The optimizer 

used was Adam with an initial learning rate of  1 × 10−3, 

along with a Plateau scheduler with a decay factor of  0.6 

and a patience of 30 epochs. In the first three experiments, 

both the lattice vectors L and the atomic coordinates X were 

considered as targets for generation, and the score network 

was trained to optimize both scores. In Experiment [D], 

however, to exclude the influence of lattice vectors L, they 

were not considered as targets for generation. Instead, the 

training focused solely on the atomic coordinates X, and as 

a result, the score network did not learn the score for lattice 

vectors. The inputs to the score network, ℳ𝑡, were defined 

as [𝐿0, 𝑋𝑡 , 𝐴], where 𝐿0 represents the initial lattice vectors. 

For sampling, the step size  γ was set to  1 × 10−5  for all 

cases. For reproducibility, the variance in the reverse diffu-

sion process, which introduces randomness, was set to zero 
for both lattice vectors L and atomic coordinates X for all 

cases.  

 

C. Additional Results of the 3rd Experiment 

This section describes the details of the third experiment for 

each dataset. The matching rate was analyzed for each com-

position formula in the Perov-5 dataset, while in other da-

tasets, it was analyzed based on the number of atoms. 

C-1. Details of Perov-5 sampling 

Using composition formula we divide the test data into six 

groups: ABN₃, ABO₃, ABN₂O, ABNO₂, ABNOF, and 

ABO₂F. Here, A and B can be any metal atoms. We meas-

ured the matching rate for each group, and the results are 

shown in Table C1. Accuracy improves across all groups. 

 

Table C1: matching rate of each formula group in Perov-5. 

#-sample represents the number of samples. 

Group #-sample DiffCSP Ours 

ABN3 550 48.00% 63.64% 

ABO3 

ABN2O 

553 

530 

50.27% 

46.42% 
65.82% 

58.87% 

ABNO2 539 44.90% 63.64% 

ABNOF 574 51.39% 58.36% 

ABO2F 515 49.13% 59.81% 

ABSO2 524 47.33% 60.69% 

  

C-2. Details of Carbon-24 sampling 

With our learned weight and the matching tolerance the un-

conditional generation did not work, but condition by dif-

fraction intensity saves this failure: a significant improve-

ment in generation accuracy is observed for crystals with 6 

atoms. As the number of atoms in the unit cell increases, the 

matching rate decreases. No matching crystal structures 

were obtained for 14 or more without condition, and 20 or 

more with the condition.  

 

Table C2: matching rate dependence on the number of at-

oms (#-atoms) in Carbon-24 dataset. 

#-atoms #-sample DiffCSP Ours 

6 705 14.75% 73.62% 

8 

10 

526 

317 

10.27% 

2.84% 
57.41% 

38.49% 

12 200 1.50% 16.50% 

14 110 0.00% 22.73% 

16 84 0.00% 11.90% 

18 37 0.00% 13.51% 

20 24 0.00% 0.00% 

22 17 0.00% 0.00% 

24 10 0.00% 0.00% 

 

C-3. Details of MP-20 sampling 

Unconditional generation nicely worked on this dataset, es-

pecially samples with small number of atoms, as shown in 

Table C3. Conditional generation sometimes improves but 

sometimes not. As the number of atoms increases and the 

problem becomes more difficult, conditional generation be-

gins to show superior results.  

 

Table C3: matching rate of MP-20 dataset. 

#-atoms #-sample DiffCSP Ours 

1 30 66.67% 66.67% 

2 198 80.30% 86.36% 

3 181 77.35% 91.71% 

4 1,443 81.64% 93.21% 

5 390 85.90% 81.54% 

6 771 61.22% 61.48% 

7 192 54.69% 51.04% 

8 732 53.28% 46.45% 

9 305 58.69% 37.05% 

10 926 63.61% 52.48% 

11 116 32.76% 23.28% 

12 846 37.00% 36.29% 

13 193 31.61% 33.68% 

14 573 31.24% 34.21% 

15 135 15.56% 25.93% 

16 594 19.36% 26.60% 

17 82 31.71% 39.02% 

18 474 20.04% 26.58% 

19 78 26.92% 25.64% 



20 787 36.47% 0.00% 

22 17 0.00% 0.00% 

24 10 0.00% 0.00% 

    

  

C-4. Details of MPTS-52 sampling 

MPTS-52 is an extension of MP-20 dataset, and similar 

trends is observed in Table C4. For crystals with 33 or more 

atoms, no matching samples were obtained using DiffCSP, 

but our method successfully produced some matching sam-

ples.  

 

Table C4: matching rate of MPTS-52 dataset. 

#-atoms #-sample DiffCSP Ours 

1 6 66.67% 66.67% 

2 6 33.33% 33.33% 

3 26 42.31% 65.38% 

4 80 46.25% 53.75% 

5 136 56.62% 58.09% 

6 216 41.20% 37.04% 

7 64 28.12% 14.06% 

8 289 21.80% 21.80% 

9 168 31.55% 23.21% 

10 434 41.01% 22.58% 

11 104 9.62% 13.46% 

12 414 18.60% 26.09% 

13 66 6.06% 18.18% 

14 212 7.55% 8.02% 

15 51 3.92% 7.84% 

16 260 2.69% 10.77% 

17 74 17.57% 20.27% 

18 281 7.83% 8.90% 

19 35 5.71% 8.57% 

20 596 3.86% 14.60% 

21 80 1.25% 1.25% 

22 319 0.63% 3.45% 

23 52 0.00% 0.00% 

24 577 9.53% 12.82% 

25 30 0.00% 0.00% 

26 167 0.00% 0.60% 

27 37 2.70% 2.70% 

28 463 2.38% 3.89% 

29 23 0.00% 0.00% 

30 217 0.00% 0.00% 

31 19 0.00% 0.00% 

32 321 0.31% 1.56% 

33 10 0.00% 0.00% 

34 139 0.00% 0.00% 

35 16 0.00% 6.25% 

36 380 0.00% 1.05% 

37 16 0.00% 0.00% 

38 134 0.00% 1.49% 

39 16 0.00% 0.00% 

40 323 0.00% 0.93% 

41 10 0.00% 0.00% 

42 152 0.00% 0.66% 

43 7 0.00% 0.00% 

44 266 0.00% 0.38% 

45 19 0.00% 0.00% 

46 109 0.00% 0.00% 

47 5 0.00% 0.00% 

48 294 0.00% 0.34% 

49 10 0.00% 0.00% 

50 96 0.00% 0.00% 

51 2 0.00% 0.00% 

52 269 0.00% 0.00% 

    

 

D. Generation of Superlattice Structures  

In Experiment 1, one of two toy structures was generated 

based on diffraction intensity. This experiment extends the 

scope to the realistic material, the Cu3Au alloy, which ex-

hibits the low-temperature phase of the superlattice structure, 

and the solid solution alloys. The former is a periodic ar-

rangement of atoms in which certain positions are preferen-

tially occupied by minor atomic species. In this case one of 

four Cu atoms in the base FCC lattice is replaced with Au to 

make the unit cell, and this cell is periodically repeated. The 

experiment aims to generate the superlattice structure con-

ditioned with the diffraction intensities. Additionally, we in-

vestigate how the score ratio affects generation accuracy. 

Dataset Crystal structure was created as a supercell, con-

necting two FCC unit cells of Cu3Au (Figure D1). Hence, 

each sample contains 6 Cu atoms and 2 Au atoms. Choosing 

2 locations from 8, there are 28 different Au arrangements, 

of which 4 combinations (14% of total) form superlattice 

structures. Gaussian noise 𝒩(0, 0.012) was added to each 

coordinate to augment the dataset, resulting in a total of 

10,000 samples.  

Sampling Three score ratios, 1:3, 1:5, and 1:7, were selected. 

To ensure reproducibility, the variance in the reverse diffu-

sion process, which introduces randomness, was set to zero. 

Thresholds for matching rate were set with stol=0.05, an-

gle_tol=10, and ltol=0.3. 

Results The results of matching rate are shown in Table D1, 

and sampled structures (with a score ratio of 1:3) are shown 

in Figure D2. The score ratio of 1:3 exhibited the best 

matching rate among all. In Addition, as shown in Figure 

D2, the unphysical structure with overlapped atoms were 

obtained, which were not observed in DiffCSP. Using Struc-

tureMatcher class in pymatgen (Ong et al. 2013), we ana-

lyzed the percentage of atoms occupying the correct position 

in the FCC lattice. Thresholds were set at stol=0.05, an-

gle_tol=10, and ltol=0.3. The regular arrangement rate was 

95.42% for DiffCSP, while it was 90.27% with a score ratio 



of 1:3, indicating more samples without regular atomic ar-

rangement. 

The highest matching rate was achieved with a score ratio 

of 1:3, emphasizing the importance of 𝜎𝑦 for better accuracy. 

However, in contrast to DiffCSP, the proposed method also 

produced invalid structure of overlapped atoms. Similar to 

the second experiment, the Au atoms, having more electrons 

and larger scattering factors than Cu atoms, exhibited 

greater mobility in the generation process. This likely led to 

cases where Au atoms moved fast, while Cu atoms stagnate, 

resulting in such invalid structure. 

 

 

 

 

 

 

 

Figure D2: Sampling Results. The left images show the 

crystal structure obtained from the sampling results, 

and the right images show the corresponding X-ray dif-

fraction intensities. 

 

 

Crystal-4 Crystal-5 

  

  

 

Figure D1: Crystal-4 is a superlattice structure, while 

Crystal-5 is not. In the superlattice structure, Au atoms 

are never adjacent to each other and are only surrounded 

by Cu atoms. The top two images show the crystal 

structures of each (with arrows indicating Au atoms), 

and the bottom two images display the X-ray diffraction 

intensities for each, with k = -1 shown as it highlights 

the differences most clearly. 

 

Table D1: The results of the matching rates for 

DiffCSP and Ours (with three different ratios). Ours 

(1:3) indicate results from the score ratio = 1:3. 

DiffCSP Ours 

(1:3) 

Ours 

(1:5) 

Ours 

(1:7) 

11.64% 31.52% 14.47% 14.21% 

 


