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Abstract
Crop management decision support systems are specialized
tools for farmers that reduce the riskiness of revenue streams,
especially valuable for use under the current climate changes
that impact agricultural productivity. Unfortunately, small
farmers in India, who could greatly benefit from these tools,
do not have access to them. In this paper, we model an in-
dividual greenhouse as a Markov Decision Process (MDP)
and adapt Li and Li (2019)’s FOLLOW THE WEIGHTED
LEADER (FWL) online learning algorithm to offer crop plan-
ning advice. We successfully produce utility-preserving crop-
ping pattern suggestions in simulations. When we compare
against an offline planning algorithm, we achieve the same
cumulative revenue with greatly reduced runtime.

1 Introduction
Five out of six farmers in India are classified as small or
marginal, with two or fewer hectares of arable land (FAO
2022). In 2013, a survey by the government of India found
that two-thirds of the 100 million small farmers in India lose
money on average (NSSO 2013). Mishra (2008) attributes
the increasing incidence of farmers’ suicides to the ongo-
ing agrarian crisis: farmers’ livelihoods are dependent on a
sector that is declining in production and profitability, and
exposure to uncertain conditions increases their vulnerabil-
ity. Their cultivation choices, and by extension the diversity
of both staple and micro-nutrient rich produce available in
the local markets, have significant impacts on the diets of
their local communities (Pradhan et al. 2021).

Small Indian farmers are aware of climate risk and the
necessity to change their cropping pattern (Dhanya, Ra-
machandran et al. 2016). However, farmers do not have ac-
cess to software that supports their planning needs. Rather,
farmers’ adaptation strategies are mainly influenced by their
observations of seasonal climate onset and by their fellow
farmers’ choices (Jha and Gupta 2021). One way these farm-
ers could reduce the riskiness of their revenue streams is to
gain access to a crop management decision support system
(Fabregas, Kremer, and Schilbach 2019).

However, developing a crop management decision sup-
port tool is challenging. We believe that a joint research ef-
fort between the artificial intelligence and agronomy fields
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could help close this gap. Reinforcement learning (RL) is
a branch of artificial intelligence that deals with sequential
decision-making in uncertain or unknown environments via
a learning paradigm (Sutton and Barto 2018). While crop
planning is well studied and RL is a vast research area, pre-
vious work at the intersection of these two fields is limited
(Gautron et al. 2022).

We are uniquely positioned to investigate this problem.
We are working with Kheyti,1 an Indian startup that is pi-
oneering a “greenhouse-in-a-box” solution that saves water
via drip irrigation, reduces exposure to climate risks, and
increases yields by sevenfold. It has provided us with ex-
tensive domain expertise, data, and insights into the pref-
erences and perspectives of local farmers. Our goal is to
develop an optimization-based decision support algorithm.
The algorithm should ingest a range of input data and output
a suggested slate of actions. In this paper, we will mathe-
matically formalize the problem as a non-stationary environ-
ment. Then, we will adapt Li and Li (2019)’s FOLLOW THE
WEIGHTED LEADER algorithm. This work is a first step to-
wards understanding how to develop learning algorithms for
decision support in a low-resource agronomy setting.

We evaluate our algorithmic approach to our Markovian
model of an individual greenhouse. The slate of crops pro-
duced in our empirical results preserves utility. In addition,
sensitivity analysis with respect to the algorithm’s hyperpa-
rameters gives insight into the environment’s moderate non-
stationary qualities (smoothing parameter θ) and the stability
of an online policy (discount factor γ). Finally, comparisons
against its offline planning equivalent reveal approximately
equivalent performance and a significant reduction in com-
putational costs.

2 Related Work
Crop planning and rotation problems have received con-
siderable attention from the operations management and
agricultural economics communities (Dury et al. 2012).
Generally, the literature adopts optimization techniques
where they maximize an objective function in light of
some constraints using linear programming (Sarker and Ray
2009; Rasheed et al. 2021; Jothiprakash, Arunkumar, and
Ashok Rajan 2011). One critical problem with their ap-

1https://www.kheyti.com/
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proach is that the rewards are assumed to be constant while
the price of crops is highly variable in reality with respect
to many factors. Therefore, an algorithm that can learn from
past experience better suits the crop-planning purpose.

Sequential decision-making in uncertain environments is
central to the RL paradigm and, more generally, artificial in-
telligence (Sutton and Barto 2018). This suite of algorithmic
approaches has the potential for crop management support
(Gautron et al. 2022). RL has been studied for similar prob-
lems such as fertilization or water irrigation decision sup-
port (Overweg, Berghuijs, and Athanasiadis 2021; Sun et al.
2017). Like these papers, the value of our work is to explore
the specific research opportunities and challenges that face
the intersection of these two disciplines.

However, reinforcement learning can be expensive to
compute. For instance, Ashcraft and Karra (2021) utilized
proximal policy optimization (PPO) to optimize crop yields.
Similarly, CYCLESGYM requires training agents on sam-
ples, e.g. with PPO (Turchetta et al. 2022). Fenz et al. (2023)
trained a Deep Q-Network RL agent to generate crop rota-
tion sequences. These approaches are model-free, meaning
that training requires many samples. Resource constraints
make the adoption of these breakthroughs challenging.

To overcome the resource limitations, we instead uti-
lize the classic machine learning algorithm FOLLOW THE
LEADER (FTL). FTL uses a simple approach: it tracks the
performance of all actions taken over all previous steps and
selects the one action that has performed best (the “leader”).
In crop planning, fully exploring the state space by taking
actions to plant crops is unrealistic. Therefore, we consider a
variant that more efficiently explores the state space to iden-
tify an expert action (Li and Li 2019).

3 Methods
In this section, we formalize our methodological approach.
First, we provide background information about the inputs to
our system. We then outline the components of our model.
Finally, we introduce our variant of Li and Li (2019)’s FOL-
LOW THE WEIGHTED LEADER algorithm to solve the sys-
tem for a policy of actions.

3.1 Data Sources
The farmer and greenhouse data are provided by Kheyti. At
present, these farmers have eight crop options: beetroot, bot-
tle brinjal, cabbage, cauliflower, cucumber, French beans,
green capsicum, and tomato. For each crop, our partners in
India have provided to us with crop calendars, seasonality
data, and average harvest yields (in kilograms, assuming a
standard 361m2 greenhouse). Some crops may be harvested
multiple times. Crops belong to families; crops of the same
family may not be planted back to back in order to prevent
soil-borne pests and diseases.

The farmers have no storage capacity. At harvest time, the
farmers take their crops to market. Wholesale market prices
are published by the Directorate of Marketing and Inspec-
tion, Ministry of Agriculture and Farmers Welfare.2 The di-

2https://agmarknet.gov.in/

rectorate reports the daily price (|/kg) and quantity (kg) of
crop arrivals to each market in the country.

3.2 Markovian Model
Given the agricultural and economic data, we formulate a
Markov Decision Process (MDP) model (S,A, Pt, Rt). At
any moment, the state of the greenhouse s is an element of
the state space S. Sequentially, an agent (farmer) takes an
action a ∈ A, which transitions the MDP to state s′ ∈ S
according to the transition function Pt(s, a, s

′). Rt(s, a) is
a reward function to the agent if it takes action a in state s.
While the agent has the complete information for states, ac-
tions, and transitions, they only have access to market prices
up to the previous timestep.

State space The state of a greenhouse, s ∈ S , is de-
fined by the tuple (crop,maturity,expiry,flag).
crop ∈ C represents the current crop, e.g. tomatoes.
maturity ∈ {0, 1, 2, . . . ,max maturity} represents
how mature the crop is, from freshly-planted (1) to har-
vestable (max maturity). 0 represents a dead state. Sim-
ilarly, expiry ∈ {0, 1, 2, . . . ,lifespan}. A newly-
planted crop starts at lifespan and decrements until death
(0). Finally, we introduce the auxiliary Boolean variable
flag in order to denote a constraint violation.

Action space Let us define the action space A :=
{no act, harvest} ∪ {plant(c) | ∀c ∈ C}. no act
represents the instruction to tend to the current state of the
greenhouse. The harvest action attempts to harvest the
current crop and sell it at the current market price, without
removing the crop from the ground. Finally, plant(c) re-
moves whatever is in the greenhouse and plants the crop c.

Transition function Our transition function Pt : S ×
A × S → {0, 1} is deterministic. If the action is no act,
the crop stays the same, maturity increments by one
(up to a ceiling of max maturity), and expiry decre-
ments by one (down to a floor of 0). If the action is
plant(c), crop resets to c with maturity = 1 and
expiry = lifetime. If the action is harvest, the
maturity resets such that the crop will be harvestable in
harvest frequency timesteps (in the case of a repeat-
harvest crop), or to a value that will not reach the harvestable
state before the crop dies.

There are some cases that will flip the constraint satisfac-
tion flag bit. If crops c and c′ belong to the same family,
attempting to replace c with c′ will yield a constraint vio-
lation. Harvesting a dead or immature crop is also a viola-
tion of constraints. In the immature case, maturity will
increment. In the death case, maturity is set to zero. An
out-of-season crop transitions to a dead state. In addition,
attempting to plant a crop that will be out of season before
it is harvestable is a constraint violation. The violation of
constraints is memoryless: flag = False does not persist
between timesteps.

The seasonality aspect of constraint satisfaction (that
crops may be in or out of season at any given timestep)
is what makes the transition function Pt temporal. Some-
times the combination (s, a) will transition to an s′ with
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flag = True, and sometimes to flag = False.

Reward function The reward function is as follows:

Rt(s, a) :=


k if action yields a constraint violation
yt(s.crop) if action is harvest
0 otherwise

k ≪ 0 is a configurable constant to penalize constraint vio-
lations. When a farmer harvests a mature crop, they imme-
diately go to market and gain revenue based on the current
market price (recall that the farmers have no access to stor-
age systems at the present time). y represents a function that
outputs the revenue of a given crop under current market
prices. At any given timestep t, yt is unknown to the agent.
The reward function is sparse and there may be considerable
variation in R between timesteps.

Objective At present, we assume the objective of any in-
dividual farmer is to maximize total expected revenue over
a finite horizon T .

Therefore, our goal is to find a policy of actions π : S →
A such that under this policy π∗, the expected sum of reward
is maximized:

π∗ = argmax
π

E

[
T∑

t=0

γtRt(st, at)|π

]
(1)

γ ∈ [0, 1] is a discount factor to weigh the importance of
future rewards relative to immediate rewards.

3.3 Algorithmic Approach
Our goal is to solve a Markov Decision Process in a
non-stationary environment, as both the transitions and re-
wards change over time. To do so, we adapt Li and Li
(2019)’s FOLLOW THE WEIGHTED LEADER (FWL) algo-
rithm. Since the true reward matrix Rt is unknown at time t,
FWL approximates it with a weighted average of historical
rewards (a method also known as exponential smoothing).
In our case, Pt is also updated at each timestep. See Algo-
rithm 1 for the pseudocode of their algorithm, along with our
modification.

Algorithm 1: FWL with time-varying transition function Pt

Input: Smoothing parameter θ ∈ [0, 1), initial state s0,
transition matrices {Pt}

Initialization: R̂0 ← R−1

1: for t = 1 : T do
2: Update the weighted average of historical rewards:

R̂t = (1− θ)R̂t−1 + θRt−1

3: Solve the MDP (S,A, Pt, R̂t) for a policy:

πt ∈ argmax
π

gR̂t
(π)

4: Execute πt to transition from st−1 to st
5: end for

Output: πt at each timestep t ∈ {1, . . . , T}

The smoothing parameter θ governs how much weight
is placed on historical rewards. A larger value adjusts the
reward approximation more rapidly to a new environment,
which is important in a case such as ours with highly vari-
able market prices. While the exact prices fluctuate, the rela-
tive price differences between crops do not—the profitability
of one crop relative to another is stable. We could in the fu-
ture replace the estimate of R̂t with a different method that
incorporates (for example) seasonality for a better approxi-
mation.

To solve the MDP, we use the value iteration algorithm
and the Bellman equation (Equation 2):

V (s) = max
a

∑
s′

P (s, a, s′) [R(s, a) + γV (s′)] (2)

We reformulate the value iteration algorithm into a linear
programming problem:

max
∑
s

V (s)

s.t. ∀s ∈ S,∀a ∈ A :

V (s) ≥
∑
s′

P (s, a, s′) [R(s, a) + γV (s′)]

(3)

In this formulation, the optimization problem aims to find
the optimal value function that satisfies the Bellman equa-
tion and the associated MDP constraints.

4 Experimental Setup
We empirically evaluate the performance of the FWL al-
gorithm (Algorithm 1) on the MDP described in Section
3.2. All simulations simulate the greenhouse of one “experi-
enced” farmer in Telangana containing one randomly newly
planted crop. Unless otherwise noted, we set the smooth-
ing parameter θ = 0.5, the discount factor γ = 0.95, and
the constraint violation penalty k = −1e5. Each simulation
starts on January 1, 2022, and runs until December 31, 2022,
with 14 days per timestep t. Thus, the horizon T = 26. We
report results over 10 independent trials. We use the same
pseudo-random seeds in order to facilitate comparisons be-
tween simulations.

We evaluate the results of our simulations both qualita-
tively and on three qualities: dynamic regret, cumulative rev-
enue (

∑
t yt(s.crop|πt)), and runtime. Dynamic regret is

defined as the difference in the total reward between π and
the optimal offline policy π∗ (Li and Li 2019):∥∥∥∥∥E

[
T∑

t=0

Rt(st, at)|π∗

]
− E

[
T∑

t=0

Rt(st, at)|π

]∥∥∥∥∥
∞

(4)

The simulations are executed on two laptops without in-
tegrated or external GPUs. The laptop that runs all reported
runtime values operates MacOS 14.1.0 with 16 GB of RAM
and an M1 Pro computer processor. The other computer
is a Windows machine with 16 GB of RAM and a 12th-
generation Intel i7 CPU. We implement the code in Python
3.9 and use the optimization software Gurobi v10.0.1.
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Figure 1: Example progression of states and actions yielded by our simulations. This policy produces high revenue.

5 Results
5.1 Follow the Weighted Leader Performance
First, we investigate the performance of our algorithmic ap-
proach. To illustrate a typical output, let us look at the policy
produced by a simulation with smoothing parameter θ = 0.5
and discount factor γ = 0.95 (Figure 1). The greenhouse
starts with an initial state s0 of a newly planted green cap-
sicum. The policy produced by FWL is to tend to and then
fully harvest green capsicum (a repeat-harvest crop). Then,
the policy instructs the farmer to plant and harvest beetroot.
Finally, the policy plants green capsicum and the simulation
ends. Relative to the other crops, beetroot is highly prof-
itable. Recall, however, that our constraints preclude only
planting beetroot. The cumulative revenue of this policy is
|2,04,733 (2 lakh rupees).
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Figure 2: Middle values of θ yield the highest total revenues.

The smoothing parameter θ, which governs the weight
of past reward observations in the weighted average cal-
culation of R̂t at each timestep, is a key parameter choice
of FWL. We investigate the cumulative revenue yielded by
each policy over multiple values of θ (Figure 2). With the
same pseudo-random seed, all θ ∈ [0.3, 0.9] produce the
previously discussed (and highly profitable) green capsicum
- beetroot - green capsicum policy. At θ = 1.0, the policy
changes slightly to prematurely remove the green capsicum
in order for the beetroot to be harvestable at an earlier and
more profitable timestep. For θ < 0.3, the policy plants less-
profitable cucumber instead of beetroot. This example illus-
trates the importance of choosing a large θ in order to adapt
the policy because of changes in market prices. However, it

is possible to be over receptive to market price fluctuations
if the smoothing parameter is too large (θ ≥ 0.9, Figure 2).

There is one simulation at θ = 0.3 that produces unusu-
ally low total revenue. In that simulation, the policy instruc-
tions are to fully harvest the crop, and then delay planting
beetroot in order to time the market. Then, the policy in-
structs the farmer to plant cucumbers and then immediately
remove them in order to plant beetroot again, thus side-
stepping the crop rotation constraint. The delay in planting
beetroot and the fact that the simulation ends before the sec-
ond beetroot harvest contribute to the relatively low cumula-
tive reward of this simulation. For farmers, it is risky to rely
on one high-revenue harvest.

5.2 Learning versus Planning
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Figure 3: The dynamic regret of our online algorithm is
equivalent to its analogous offline variant.

In this section, we compare the online learning algo-
rithm against its offline planning equivalent, first proposed
by Prins, Herlihy, and Dickerson (2022). The offline variant
solves the MDP specified above, with one crucial change:
each combination of state and timestep t ∈ {1, 2, . . . , T} is
an element of the state space. Then, the transition function
P is stationary and known to the agent. The reward func-
tion R is also stationary, however, it is not known to the
agent. We approximate R̂ with a forecast of market prices
using single exponential smoothing and ten years of histori-
cal price data. We compare both models against an optimal
baseline that has perfect knowledge of the true reward ma-
trix R. The main focus of this experiment is to evaluate the
cost of learning versus planning in terms of a) dynamic re-
gret and b) computation complexity.
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Figure 4: Progression of states and actions yielded by changing the discount factor γ. The final plant actions are green capsicum.

Figure 3 shows the dynamic regret of the online and of-
fline outputs. Recall that a lower regret is more desirable. At
the end of the simulation, the difference in regret between
the two is 8,510 (approximately 2%). Figure 3 demonstrates
that the regret scales equally quickly for the two. On one
hand, this alleviates the concern that constantly updating the
policy in the online case introduces instability. On the other
hand, it demonstrates that one does not need a particularly
accurate forecast of reward in order to adequately plan a pol-
icy for multiple future timesteps (recall that in both cases,
the reward forecasting method is simple, with no seasonal-
ity coefficient).

The results in Figure 3 are for only one simulation with
a horizon T = 174. This is because the offline algorithm is
expensive to compute. The cardinality of our state space is
determined by
2|C|×max

c∈C
(c.max maturity)×max

c∈C
(c.lifespan) .

In the offline case, the state space increases by a multiple
of the finite horizon T . Recall that the number of timesteps
to reach the maximum maturity or lifespan of a crop scales
with step size. Unlike our other simulations, the number
of days per timestep is 21. Thus, the number of entries in
the state space (transition matrix) is 560 (3,136,000) for the
online model and 97,440 (94,945,536,000) for the offline
model.
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Figure 5: The runtime of the offline variant scales exponen-
tially with more granular timestep sizes.

The space complexity of the offline variant affects its

computational cost. To run the above simulations, it took two
hours and 43 minutes to run the offline variant and only 10
minutes to run Algorithm 1. Figure 5 shows a comparison of
runtimes over different timestep sizes (the simulation length
remains ten years). As timestep size decreases (and the gran-
ularity of the state space increases), the runtime of offline
simulations increases exponentially. In contrast, the online
system solves the MDP multiple times but on a smaller sys-
tem. Additionally, the offline system must know the (finite)
length of the horizon at planning time, while the online sys-
tem can run indefinitely.

5.3 Stability of an Online Policy
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Figure 6: Immediate versus delayed reward prioritization
yields different policies and cumulative revenues.

Finally, we discuss the impact of prioritizing long-term fu-
ture rewards over greedy short-term rewards. Since the on-
line policy updates at every timestep, it is helpful to take
a more myopic view than usual (Figure 6). Qualitatively,
we observe that the policy is very unstable for higher val-
ues of discount factor γ. The policies {πt} output by Algo-
rithm 1 change considerably between timesteps. At first, the
policies universally instruct the farmer to override the initial
state of the greenhouse by planting cucumbers or tomatoes.
However, at the beginning of August, the policies override
the current state of the greenhouse by planting bottle brin-
jal, and then override themselves again to plant green cap-
sicum. Ironically, large values of discount factor γ prevent



the learner from adequately maximizing future rewards be-
cause crops are replaced before they can be harvested. In
contrast, lower values of discount factor γ result in policies
that are more stable but that prioritize multi-harvest crops
that are generally less profitable such as cucumbers over
beetroot. Ultimately, lower values of γ result in a policy
that harvests cucumbers (a lower-value crop), medium val-
ues of γ result in a policy that successfully harvests beetroot
(a high-value but risky crop), and large values of γ eventu-
ally result in a harvest of green capsicum (Figure 4).

Interestingly, differences between simulations such as dif-
ferent initial conditions rarely result in a different policy of
actions. Thus, there is a low variance in the cumulative re-
ward for a given discount factor in Figure 6.

6 Conclusion
In this paper, we empirically investigate the performance of
an online learning algorithm in a highly non-stationary en-
vironment. The policy of actions produced by FWL are in-
tuitive, produce high cumulative revenues, and are approxi-
mately equivalent to a planning alternative.

Impact This research is the first of its kind for greenhouse-
in-a-box farmers in India. The potential impact of our work
is large. We are cognizant of the fact that we are working
on an AI tool that may be relied upon in the future to plan
out an entire group of people’s livelihoods. While the poten-
tial for improvement over the status quo is great, it is vital
to carefully impact the efficacy, robustness, trustworthiness,
and fairness of any proposed decision support tool.

Future Work Currently, we focus on producing optimal
suggestions for an individual farmer. However, carelessly
propagating this approach to all farmers will lead to poorer
outcomes overall. In India, unbalanced supply and demand
have led to extreme price fluctuations in the past, e.g., the
price of tomatoes this past summer (Sharma 2023). Farmer
features, such as crop portfolios and expected yields, tend to
be similar. Therefore, the recommendations produced by our
tool would be similar. Indeed, we see evidence of this in Sec-
tion 5.3. Local supply will greatly increase if many farmers
attempt to sell their harvest at the same time. The increased
supply will cause the market price to be lower than expected.
In future work, we will study the problem in a multi-agent
setting.

There are opportunities to further refine the follow-the-
leader approach for this specific decision-making problem
setting. For example, we could substitute a better prediction
algorithm for market prices on line 2 of Algorithm 1. As well
as analytical guarantees, we are interested in preference elic-
itation – the ability to adjust R to better reflect the goals of
the user, such as risk reduction, portfolio diversification, or
income maximization. Eventually, we would like to compare
the output of our tool against a control group of farmers (i.e.,
conduct a randomized control study in India).
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