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Abstract

The importance of designing proteins to improve their inter-
actions, such as designing high affinity monoclonal antibod-
ies, has become ever more apparent as of late. Computational
Protein Design, or CPD, can cast such design problems as
an optimization problem with the objective of maximizing
K*, an approximation of binding affinity based on a compu-
tational protein model. We introduce AOBB-K*MAP, a new
branch-and-bound algorithm over AND/OR search spaces for
solving the K*MAP problem. In addition to formulating CPD
as a graphical model for K* optimization and providing an
new efficient algorithm, we also introduce a statically com-
piled heuristics for K*MAP not previously used in CPD. As
AOBB-K*MAP is inspired by algorithms from the well stud-
ied task of Marginal MAP, in addition to the algorithm it-
self, this work provides a framework for continued adapta-
tion of existing state-of-the-art mixed inference schemes over
AND/OR search spaces to the problem of protein design.

1 Introduction
Graphical models provide a powerful framework for reason-
ing about conditional dependency structures over many vari-
ables. The well known Marginal MAP (MMAP) query asks
for the optimal configuration of a subset of variables (MAP
variables) that have the highest marginal probability. We de-
fine a new related task, K*MAP, which instead asks for the
configuration of MAP variables that maximizes a quotient of
the marginalization of conditionally disjoint subsets of the
remaining variables, this ratio known as K*. In context of
computational protein design (CPD), K* estimates binding
affinity between subunits. Thus, maximizing K* corresponds
to maximizing the likelihood that the subunits will associate
(Hallen and Donald 2019).

Like MMAP, K*MAP distinguishes between maximiza-
tion variables (MAP variables) and summation variables
(SUM variables). Moreover, the SUM variables are further
partitioned into a subset whose marginal corresponds to the
numerator of the K* ratio and a subset corresponding to the
denominator. Like MMAP, the K*MAP problem is a mixed
inference task and more difficult than either pure max- or
sum- inference tasks as its summation and maximization op-
erations do not commute. In terms of processing of variables
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for inference, this forces constrained variable orderings that
may have significantly higher induced widths (Dechter and
Rish 2002; Dechter 2019). This in turn also implies larger
search spaces when using search algorithms or larger mes-
sages when using message-passing schemes. Even the easier
case of MMAP is NPPP-complete and it can be NP-hard even
on tree structured models (Park 2002). In terms of bounded
approximations, bounding the K* ratio requires both upper
and lower bounding of marginals, producing an additional
challenge over bounding of a MMAP value.

Nevertheless, over the last several years, there have been
several advances in algorithms for solving the MMAP task
(Marinescu et al. 2018), many of which have potential for
being adapted for the K*MAP query. In order to set the
framework for leveraging these advances for K*MAP, this
work presents three main contributions:

1. Two formulations of K*MAP as a graphical model
2. A statically compiled Weighted Mini-Bucket Elimina-

tion K*MAP heuristic, wMBE-K*MAP
3. A branch-and-bound algorithm, AOBB-K*MAP, for

solving CPD formulated as a K*MAP problem

2 Background
Computational Protein Design. Computational Protein
Design (CPD) is the task of mutating a known protein’s
amino acid sequence in hopes of achieving a desired ob-
jective such as improving the protein’s energetics, improv-
ing protein-ligand interactions, or reducing interactions of a
protein with inhibitors. In CPD, certain residues of a protein-
of-interest are deemed as mutable - these are amino acid po-
sitions (or residues) where different amino acid mutations
will be considered - and through a computational process, a
preferred sequence is determined.

Throughout the computational process, various sets of
mutations are explored, each comprising a particular amino
acid sequence. Given a particular sequence (or in some
methods, even partial sequence) an estimate of the resulting
protein’s goodness can be determined. This goodness is de-
termined by considering the possible conformations of the
resulting protein, namely considering possible positioning
of its backbone and side-chains. The state space for these
conformations is continuous (and even when discretized, is
extremely large) leading to an intractable problem.



As such, many simplifications can be made to allow a
more tractable problem:
• Select Mutable Residues: consideration of only a subset

of the residues involved in the interactions as mutable.
• Predetermined Side-Chain Rotamers: discretization of

side-chain conformations as rotamers.
• Fixed Backbone Structure: assumption of a fixed pro-

tein backbone conformation.
With these simplifying assumptions, many algorithms have
been designed to find mutations that can potentially result
in improved protein functionality (Hallen and Donald 2019;
Zhou, Wu, and Zeng 2016).

K* and K*MAP. The affinity between two interacting pro-
tein subunits P and L is correlated to an equilibrium of the
chemical reaction forming their complexed state PL:

P + L ⇀↽ PL (1)

This said equilibrium is associated with a constant, Ka, and
can be determined in vivo by observing the persisting con-
centrations of each species as follows (Freiser 1962),

Ka =
[PL]

[P ][L]
(2)

However, in order to compare Ka values of various designs
in vivo, it is necessary to synthesize the interacting subunits
through molecular processes that are both timely and costly.
Ka can also be approximated as
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where Z
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PL, Z

∫
P , and Z

∫
L are partition functions of the bound

and unbound states that capture the entropic contributions of
their various conformations C. (Eγ(c) represents the energy
of a particular conformation c of state γ ∈ {PL,P, L} = ϕ,
R is the universal gas constant, and T is temperature (in
Kelvin). We can further use a model that discretizes the con-
formation space. This computed estimate is denoted as K*

(Ojewole et al. 2018):

K∗ =
ZPL
ZPZL

, Zγ =
∑
C
e−

Eγ (c)

RT (4)

Due to the independence between residues across the disso-
ciate subunits, we can generalize further expressing K* as:

K∗ =
ZB
ZU

, (5)

whereB respresents the bound (complexed) state andU rep-
resents the unbound (dissociate) states. (For the two-subunit
system described earlier, B = PL and U = P ∪ L). This
more generalized representation, can be used directly for K*

computations involving more than two subunits.
A common task in protein design is to maximize protein-

ligand interaction. K*MAP is a formalization of this task us-
ing the K* objective,

K∗MAP = argmax
R

K∗(r) (6)

where we look for amino acid assignments R= r that max-
imize K*. Thus, using efficient algorithms for computing
K*MAP, one can predict a small set of promising sequences
to experiment on in vivo, saving great time and cost.

Graphical Models. A graphical model, such as a
Bayesian or a Markov network (Pearl 1988; Darwiche 2009;
Dechter 2013), can be defined by a 3-tupleM=(X,D,F),
where X={Xi : i∈V } is a set of variables indexed by a set
V and U={Di : i∈D} is the set of finite domains of values
for each Xi. Each function fα ∈ F is defined over a subset
of the variables called its scope, Xα, where α ⊆ V are the
indices of variables in its scope and Dα denotes the Carte-
sian product of their domains, so that fα : Dα→ R≥0. The
primal graph G = (V,E) of a graphical model associates
each variable with a node (V =X), while arcs e ∈ E con-
nect nodes whose variables appear in the scope of the same
local function. Graphical models can be used to represent a
global function, often a probability distribution, defined by
Pr(X) ∝

∏
α fα(Xα).

AND/OR Search Space for Mixed Inference A graph-
ical model can be transformed into a weighted state space
graph. In an OR search space, which is constructed layer-
by-layer relative to a variable ordering, paths from the root
to the leaves represent full configurations - or assignments
to all variables - where each successive level corresponds to
an assignment of the next variable in the ordering. A more
compact AND/OR search space can also be constructed by
capturing conditional independencies, thus facilitating more
effective algorithms (Dechter and Mateescu 2007).

An AND/OR search space is defined relative to a pseudo
tree of a primal graph which can capture conditional inde-
pendences. A pseudo tree T = (V,E′) of a primal graph
G = (V,E) is a directed rooted tree that spans G such that
every arc of G not in E′ is a back-arc in T connecting a
node to one of its ancestors (Figure 1(a),(b)). For mixed in-
ference problems where a subset of variables are to be max-
imized (MAP variables) and the remaining variables (SUM
variables) marginalized, the pseudo tree must be constrained
such that the MAP variables precede SUM variables in the
variable ordering (Lee et al. 2016; Marinescu et al. 2018).

Figure 1: A full AND/OR tree representing all 16 solutions.

Given a pseudo tree T of a primal graph G, the AND/OR
search tree TT guided by T has alternating levels of OR
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(a) A primal graph.

(b) Bucket elimination example

Figure 2: (a) A primal graph of a graphical model with 7 variables.
(b) Illustration of BE with an ordering A B C E D F G.

nodes corresponding to variables, and AND nodes corre-
sponding to assignments from its domain with edge costs
extracted from the original functions (Dechter and Mateescu
2007). Each arc into an AND node n has a cost c(n) defined
to be the product of all factors fα inM that are instantiated
at n but not before.

A solution tree is a subtree of TT satisfying: (1) it con-
tains the root of TT ; (2) if an OR node is in the solution tree,
exactly one of its AND child nodes is in the solution tree;
(3) if an AND node is in the tree then all of its OR children
are in the solution tree. (Dechter and Mateescu 2007).

Bucket Elimination. Given a variable ordering d, Bucket
Elimination (Dechter 1999), or BE, is an inference scheme
that processes variables one by one with respect to the re-
verse of d. For any next variable Xp, all the functions in
bucket Bp - namely the original functions in the graphical
model and any messages passed to Bp from previous buck-
ets - are processed by marginalizing Xp from the product of
the functions. This generates a new bucket function or mes-
sage, denoted λp→a, or λp for short.

λp→a =
∑
Xp

∏
fα∈Bi

fα (7)

where Xa is the latest variable in λ’s scope along d. The
λ function is placed in the bucket of Xa, Ba. Once all the
variables are processed, BE outputs all the messages and
the exact value of Z by taking the product of all the func-
tions present in the bucket of the first variable. Figure 2a
shows a primal graph of a graphical model with variables
indexed from A to G with functions over pairs of vari-
ables that are connected by an edge. In this particular ex-
ample F = {f(A), f(A,B), f(A,D), f(A,G), f(B,C),
f(B,D), f(B,E), f(B,F ), f(C,D), f(C,E), f(F,G)}.

Bucket-Elimination can be viewed as a 1-iteration
message-passing algorithm along its bucket-tree (bottom-

up). The nodes of the tree are the different buckets. Each
bucket of a variable contains a set of the model’s functions
depending on the given order of processing. There is an arc
from bucket Bp to a parent bucket Ba, if the function cre-
ated at bucket Bp is placed in bucket Ba. We illustrate BE
message flow on our example problem in Figure 2b.

Complexity. Both the time and space complexity of BE
are exponential in the induced-width, which can be com-
puted as a graph parameter based on the ordered primal
graph (Dechter 2019). The induced width is the size of the
largest number of variables, in the scope of any message.
BE becomes impractical if the induced-width is large and
approximation schemes have been developed to address this
(Dechter and Rish 2002; Liu and Ihler 2011).

3 Graphical Model for K*MAP Computation
As the first main contribution of this work, we describe two
formulations of CPD problems as graphical models for use
in computing K*MAP. These build upon previous work from
MMAP (see Marinescu et al. (2018)) and CPD graphical
model formulations for optimizing a weaker objective called
the GMEC (Zhou, Wu, and Zeng 2016).

3.1 Formulation 1 (F1)
Formulation 1 distinguishes itself by using an indexing
scheme for identifying residue rotamers. For any amino acid
assignment to a residue i, Ri = aa, the assignment to its as-
sociated conformation variable, Cγ(i) = c, indexes the par-
ticular rotamer of amino acid aa that is being considered.
We elaborate below.

Variables and Domains We introduce a set of residue
variables, R = {Ri | i ∈ {1, 2, ..., N}}, representing the N
different residues (ie. positions) of the proteins. Each Ri has
corresponding domain DRi = {aa | aa is a possible amino
acid assignment to residue i}. For residues that are being
considered for mutation (mutable residues), each Ri con-
siders one of ∼20 possible amino acid assignments. These
are the MAP variables maximized over in the K*MAP task.

We also introduce a set of conformation variables, Cγ =
{Cγ(i) | i ∈ {1, 2, ..., N}}, each indexing discretized spacial
conformations (ie. rotamers) of the amino acid at residue
Ri when the protein is in state γ ∈ {B,U}. Each Cγ(i)
has corresponding domain DCγ(i) = {1, 2, ...,Mi}, where
Mi is the maximum number of rotamers for any possible
amino acid assignment to Ri in state γ ∈ {B,U}. Since
each amino acid assignment to Ri has a different side chain
with different possible rotamers, the assignment toCγ(i) acts
as an index to the possible side chain conformations of the
amino acid assigned to Ri. These are the SUM variables
which we marginalize over.

Functions There are two sets of functions in F1.
Esbγ = {Esbγ(i)(Ri, Cγ(i)) | i ∈ {1, 2, ..., N}} is a set

of functions that captures the energies of interaction of the
amino acid at each residue i with itself and the surrounding
backbone. For any assignment to Cγ(i) (which corresponds
to an index for the rotamers of the amino acid assigned to
Ri) that is out of range of the assigned amino acid’s possible



rotamers, an infinite energy value is assigned as an implicit
constraint.
Epwγ = {Epwγ(ij)(Ri, Cγ(i), Rj , Cγ(j)) | for i, j s.t.Ri and

Rj interact} is a set of functions that captures the pair-wise
energies of interaction between the amino acids of residues
that are in close spacial proximity. For any assignment to
Cγ(i) (which corresponds to an index for the rotamers of the
amino acid assigned to Ri) that is out of the range of its
residue’s assigned amino acid’s possible rotamers, an infi-
nite energy value is assigned as an implicit constraint.

Objective Function The K* objective can be expressed as
K∗(R1...RN ) = ZB(R1...RN )

ZU (R1...RN ) , where we assume tempera-
ture T in Kelvin and Universal Gas Constant R where

Zγ(R1...RN ) =
∑

Cγ(1),...,Cγ(N)

∏
Esb
γ(i)
∈Esbγ

e−
Esb
γ(i)

(Ri,Cγ(i))

RT

·
∏

Epw
γ(ij)
∈Epwγ

e−
E
pw
γ(ij)

(Ri,Cγ(i),Rj,Cγ(j))

RT

(8)

3.2 Formulation 2 (F2)
Formulation 2 was inspired by the works of Viricel et al.
(2018) and Vucinic et al. (2019) and distinguishes itself by
using explicit constraints to restrict invalid amino acid - ro-
tamer combinations. For each corresponding residue - con-
formation variable pair, there exists a constraint to ensure the
assignment to the residue variable matches the rotamer as-
signment of its conformation variable. We elaborate below.

Variables and Domains As in F1, we introduce a set of
residue variables,R = {Ri | i ∈ {1, 2, ..., N}}, representing
the N different residues (ie. positions) of the proteins. Each
Ri has corresponding domain DRi = {aa | aa is a possible
amino acid assignment to residue i}. For mutable residues,
each Ri considers one of ∼20 possible amino acid assign-
ments. As before, these are the MAP variables maximized
over in the K*MAP task.

We also introduce a set of conformation variables, C =
{Cγ(i) | i ∈ {1, 2, ..., N}}, this time each representing the
specific amino acid and conformation of the N different
residues. Namely, each each Cγ(i) has corresponding do-
main DCγ(i) = {c | c is a rotamer for one of the possible
amino acids of residue Ri}. Since each amino acid (ie. as-
signment toRi) has a different side chain with different pos-
sible rotamers, the amino acid assignment to Ri will act as
a selector into the possible assignments to Cγ(i). These are
the SUM variables which we marginalize over.

Functions There are three sets of functions in F2.
C = {Cγ(i)(Ri, Cγ(i)) | i ∈ {1, 2, ..., N}, γ ∈ B ∪ U }

is a set of constraints ensuring that the assigned rotamer to
Cγ(i) belongs to the amino acid assigned to Ri.
Esbγ = {Esbγ(i)(Cγ(i)) | i ∈ {1, 2, ..., N}} is a set of func-

tions that captures the energies of interaction of the amino
acid at each residue i with itself and the surrounding back-
bone.

Epwγ = {Epwγ(ij)(Cγ(i), Cγ(j)) | for i, j s.t. Ri and Rj
interact} is a set of functions that captures the pair-wise en-
ergies of interaction between the amino acids of residues that
are in close spacial proximity.

Objective Function As before, the K* objective can be ex-
pressed as K∗(R1...RN ) = ZB(R1...RN )

ZU (R1...RN ) , where we assume
temperature T and Universal Gas Constant R where

Zγ(R1...RN ) =
∑

C1,...,CN

∏
Cγ(i)∈C

Cγ(i)(Ri, Cγ(i))

·
∏

Esb
γ(i)
∈Esbγ

e−
Esb
γ(i)

(Cγ(i))

RT ·
∏

Epw
γ(ij)
∈Epwγ
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E
pw
γ(ij)

(Cγ(i),Cγ(j))

RT

(9)

4 wMBE-K*MAP
As the next contribution of this work, we describe a new stat-
ically compiled weighted mini-bucket heuristic for bound-
ing the K*MAP value, wMBE-K*MAP (Algorithm 1).

wMBE-K*MAP operates similarly to wMBE-MMAP
(Ping, Liu, and Ihler 2015). Two key similarities are that
(1) it takes a variable ordering that constrains buckets of
MAP variables to be processed last (line 4) for which max-
imization (instead of summation) occurs, and (2) for any
bucket that has a width larger than a provided i-bound, a
bounded approximation is made by partitioning the bucket
functions into mini-buckets (line 5) and taking the product
of their power-sums over the bucket variable (lines 11-15,
16-20), leveraging Holder’s Inequality (Hardy, Littlewood,
and Pólya 1988). The power sum is defined as follows:

w∑
x

f(x) = (
∑
x

f(x)
1
w )w (10)

The power sum reduces to a standard summation when w =
1 and approaches max when w → 0+.

Proposition 4.1 (Holder inequality) Let fi(x), i = 1..r be
a set of functions and w1, ..., wr be a set of positive weights,
s.t., w =

∑r
i=1 wi then,

w∑
x

r∏
i=1

fi(x) ≤
r∏
i=1

wi∑
x

fi(x) (11)

In order to adapt wMBE-MMAP for K*MAP, two key in-
novations are required: (1) buckets corresponding to vari-
ables in CU , whose marginal belongs to the denominator of
the K* expression, are lower-bounded (to lead to an upper
bound on K*) by using a modification to Holder’s inequal-
ity that incorporates negative weights (Liu and Ihler 2011)
(lines 16-20), and (2) when messages are passed from buck-
ets corresponding to variables in CU to that of R, the mes-
sages are inverted to accommodate being part of the denom-
inator (line 22).

Although details are omitted here, wMBE-K*MAP can
also employ cost shifting to tighten its bounds (see Liu and
Ihler (2011)).



Complexity. Like wMBE-MMAP, wMBE-K*MAP is ex-
ponential in both space and time in the provided i-bound
parameter or induced width of the constrained ordering -
whichever is smaller.

5 AOBB-K*MAP
We present the final contribution of this work: AOBB-
K*MAP (Algorithm 2), an AND/OR branch-and-bound
scheme for solving the K∗MAP task. With state-of-the-art
K* optimizers employing memory intensive best-first search
(Ojewole et al. 2018; Hallen et al. 2018), branch-and-bound
algorithms provide a search methodology linear in space al-
lowing for solving problems unable to be solved by best-first
methodologies due to memory (Zhou, Wu, and Zeng 2016).

At a high level, AOBB-K*MAP adapts AOBB-MMAP
(Marinescu, Dechter, and Ihler 2014) for the K∗MAP task
for CPD by (1) guiding search via wMBE-K*MAP, (2) com-
puting ratios corresponding to K* computation, (3) incorpo-
rating a biologically relevant constraint that lower-bounds
the partition function of each protein subunit Zγ , and (4) us-
ing MiniSAT (Eén and Sörensson 2004) to avoid searching
provably invalid amino acid - rotamer configurations.

The algorithm begins with a two-step initialization. First,
constraint literals are generated by MiniSat after full con-
straint propagation of the constraints inM (line 3). Second,
DFS search is initialized to start at a dummy AND node that
roots the AND/OR search space corresponding to T (line 4).

Throughout search, each node n maintains a progressive
upper bound ubK∗(n) on the K*MAP of the sub problem
it roots. For the dummy node, this value is initialized to
the global upper bound on K*MAP based on the K* upper-
bounding heuristic function hubK∗(.) (line 5). As search pro-
gresses, ubK∗(n) converges to the K*MAP of the sub prob-
lem rooted at n.

Each node n maintains four quantities per protein subunit
γ ∈ ϕ - A×Zγ (n), g(n), ubZγ (n), and A+

Zγ
(n) (lines 8-12)

- that are instrumental in computing an upper bound on the
partition functions of each subunit Zγ(n) consistent with the
path to n viaUBZγ (n) = A×Zγ (n)·g(n)·ubZγ (n)+A

+
Zγ

(n).
A×Zγ (n) captures an upper bound on the multiplicative por-
tion of Zγ(n) due to OR branchings off of n’s AND an-
cestors, g(n) is the path cost to n, ubZγ (n) is a progres-
sive upper bound on the Zγ(n) sub problem rooted at n,
and A+

Zγ
(n) is an upper bound on the summation contribu-

tion from AND branchings off of n’s OR ancestors. At each
point in the algorithm, UBZγ (n) is computed to ensure it is
greater than the inputted threshold(γ) in order to enforce
biologically relevant solutions (Ojewole et al. 2018).

The algorithm traverses the underlying AND/OR search
tree guided by T expanding nodes in a depth-first manner
(line 13), pruning whenever one of three conditions occurs:
(1) the current assignment violates a constraint established
by MiniSat (ie. constraint-propagation pruning, or CPP)
(line 14), (2) the subunit-stability threshold is provably vio-
lated (ie. subunit-stability pruning, or SSP) (line 16), or it (3)
can be asserted that an amino acid configuration cannot pro-
duce a K* better than one previously found (ie. upper-bound

pruning, or UBP) (line 19). When the algorithm backtracks
from a node (line 22), the stored bounded values of the par-
ent node are tightened accordingly. (Details are omitted for
brevity, but can be found in the supplemental materials1).

The algorithm progresses in this manner until it finally re-
turns to, and updates, the dummy root of the tree with the
maximal K* value corresponding to an amino acid configu-
ration that also satisfies the subunit-stability thresholds.

Complexity. The algorithm is linear in space and expo-
nential in time with respect to the height of T . (However a
powerful guiding heuristic can lead to UBP, potentially re-
ducing time greatly in practice).

6 Empirical Evaluation
6.1 Methods
Algorithms. Experiments were run using AOBB-K*MAP
with constraint propagation, implemented in C++. For com-
parison, problems were also tested against state-of-the-art
BBK* (implemented in Java) (Ojewole et al. 2018) with
rigid side chains and an epsilon of 1 × 10−12. Experiments
were run for a maximum of 12hrs on a 2.66 GHz processor
with 4 GB of memory with the same subunit-stability thresh-
old as BBK* of threshold(γ) = Z∗γ ·e−

5
RT where Z∗γ is the

partition function given the wild-type amino acid sequence.

Heuristics. For AOBB-K*MAP, the statically compiled
wMBE-K*MAP heuristic was used for guiding and bound-
ing search, as well as wMBE-MMAP heuristics for upper-
bounding the partition function of each subunit.

Benchmarks. We experimented on 41 protein design
benchmark problems, 29 of which encoded two mutable
residues (denoted ”small”) and 12 of which were harder with
three mutable residues (denoted ”expanded”). The bench-
marks were generated using OSPREY 3.0 (Hallen et al.
2018) and formulated into both F1 and F2 in UAI format for
AOBB-K*MAP to be run on. (BBK* was run via OSPREY
and used its native formulation).

Performance Measure. We verified AOBB-K*MAP’s
correctness by comparing the returned K*MAP value to that
of BBK* and its performance by comparing elapsed time.
For diagnostic purposes, we also report the initial heuristic
bound for the K*MAP value, the number of nodes traversed,
and number of nodes pruned.

6.2 Analysis
Data Tables. Figures 3-6 show results for AOBB-K*MAP
on both sets of benchmarks for both formulation F1 and
F2. iB denotes the best performing i-bound used, |X| are
the number of mutable residues and conformation variables,
Dmax is the maximum domain size, w* is the induced width
due to the generated constrained variable ordering, UB is the
wMBE-K*MAP bound, OR and AND display the number
of each type of node visited, CPP are the number of nodes
pruned due to MiniSat constraint propagation, UBP are

1https://www.ics.uci.edu/∼dechter/publications/r268-
supplemental.pdf



Problem iB |X| Dmax w* d UB OR AND CPP UBP SSP EH time K*MAP BBK* t BBK* sln
1a0r_00031 5 16 34 8 8 inf 3E+05 1782040 1242234 0 122 1 262 7.88 13 7.88
1gwc_00021 6 12 34 6 6 10.28 41049 158841 378716 76 0 6 89 9.79 35 9.79
1gwc_00033 5 18 35 9 9 inf 46660 183409 321999 0 47 1 39 10.48 33 10.48
2hnu_00026 6 14 34 7 7 15.18 20896 104681 72450 77 37 5 25 13.18 63 13.18
2hnv_00025 6 16 34 8 8 14.97 1E+05 332754 87628 78 0 4 46 13.65 69 13.65
2rf9_00007 7 18 34 9 9 inf 1E+05 380720 453549 0 410 1 75 14.08 23 14.08
2rf9_00013 6 16 34 8 8 14.57 4074 19034 15979 61 0 3 9 13.25 4 13.25
2rf9_00018 8 18 34 9 9 16.68 19927 84823 98124 39 0 4 76 15.79 18 15.79
2rf9_00042 7 22 34 11 11 inf 5E+05 2342453 1816775 0 77 1 353 22.65 41 22.65
2rfd_00035 7 16 34 8 8 18.14 1E+06 5390146 4229817 142 0 7 817 17.27 199 16.77
2rfe_00012 5 14 34 7 7 15.23 4930 15982 26937 72 0 4 5 13.93 6 13.93
2rfe_00014 5 14 34 7 7 15.66 6821 22109 37197 72 0 4 6 14.36 11 14.36
2rfe_00017 7 14 35 7 7 10.96 13061 54335 292185 82 2 6 25 10.52 9 10.52
2rfe_00030 6 14 35 7 7 11.56 19405 160026 391901 101 37 7 60 10.50 40 10.50
2rfe_00041 8 18 34 9 9 inf 2E+06 5246734 2.9E+07 0 552 1 2473 22.73 245 22.73
2rfe_00043 5 16 35 8 8 inf 3E+05 1146880 8281137 0 614 1 232 18.04 9 18.04
2rfe_00044 7 16 35 8 8 19.06 2E+05 625979 6568520 222 5 16 283 18.19 8 18.19
2rfe_00047 5 18 34 9 9 inf 3E+05 1106761 1516836 0 37 1 189 22.70 42 22.70
2rfe_00048 6 20 34 10 10 inf 4E+05 1668173 2542598 0 102 1 299 22.81 71 22.81
2rl0_00008 5 10 34 5 5 11.60 2385 43767 1978 40 0 2 6 11.16 28 9.46
2xgy_00020 5 14 35 7 7 12.34 58141 350035 986465 55 111 5 35 10.60 33 10.60
3cal_00032 8 16 34 8 8 47.77 3E+05 1220353 8408660 71 47 4 757 11.62 17 11.62
3ma2_00016 5 14 34 7 7 13.82 21915 64035 91516 62 223 10 11 8.38 6 8.38
3u7y_00009 6 12 34 6 6 4.96 33137 212545 134394 232 6 24 38 4.51 32 4.51
3u7y_00011 5 12 34 6 6 12.72 5714 16064 34855 96 0 5 5 11.85 13 11.85
4hem_00027 5 16 34 8 8 inf 5347 12346 47544 0 61 1 5 15.48 17 15.48
4hem_00028 5 16 34 8 8 inf 3266 10885 22106 0 54 1 4 15.27 18 15.27
4kt6_00023 7 16 34 8 8 18.24 17300 58100 363924 168 28 3 40 12.69 31 12.69
4wwi_00019 7 14 34 7 7 15.43 8046 30726 16164 40 0 2 60 14.99 8 14.99

Figure 3: F1 on problems with two mutable residue (ie. MAP) variables.

Problem iB |X| Dmax w* d UB OR AND CPP UBP SSP EH time K*MAP BBK* t BBK* sln
1a0r_00031 3 16 203 6 8 inf 3E+05 1798801 937451 0 52 1 94 7.88 13 7.88
1gwc_00021 4 12 203 4 6 10.29 28766 134930 77823 55 2 5 16 9.79 35 9.79
1gwc_00033 3 18 203 7 9 inf 56498 193247 178597 0 19 1 12 10.48 33 10.48
2hnu_00026 4 14 203 5 7 15.08 22010 105458 76657 38 0 4 7 13.18 63 13.18
2hnv_00025 4 16 203 6 8 15.04 1E+05 297138 84882 39 0 3 16 13.65 69 13.65
2rf9_00007 6 18 205 7 9 14.52 4264 11559 9772 36 5 1 5 14.08 23 14.08
2rf9_00013 5 16 205 6 8 14.12 1691 7851 7275 41 0 2 2 13.25 4 13.25
2rf9_00018 6 18 205 7 9 16.68 20137 85033 87306 78 0 4 15 15.79 18 15.79
2rf9_00042 6 22 205 9 11 inf 4E+05 1835478 1320278 0 162 1 151 22.65 41 22.65
2rfd_00035 6 16 205 6 8 17.70 9E+05 4253159 3273123 40 0 4 381 17.27 199 16.77
2rfe_00012 4 14 205 5 7 14.80 3126 10002 21164 37 0 3 1 13.93 6 13.93
2rfe_00014 4 14 205 5 7 15.23 4086 13086 26801 37 0 3 2 14.36 11 14.36
2rfe_00017 5 14 203 5 7 10.96 13148 54422 300675 49 4 6 7 10.52 9 10.52
2rfe_00030 4 14 203 5 7 11.53 20393 164126 359007 87 40 7 19 10.50 40 10.50
2rfe_00041 5 18 205 7 9 inf 2E+06 5483503 3336192 0 533 1 402 22.73 245 22.73
2rfe_00043 6 16 203 6 8 18.48 15390 40297 422357 34 43 4 80 18.04 9 18.04
2rfe_00044 6 16 203 6 8 18.62 37887 99927 1047107 30 3 6 86 18.19 8 18.19
2rfe_00047 3 18 205 7 9 inf 3E+05 1099600 1056935 0 121 1 88 22.70 42 22.70
2rfe_00048 4 20 205 8 10 inf 5E+05 1933600 1813547 0 219 1 159 22.81 71 22.81
2rl0_00008 4 10 203 3 5 11.16 2 3 0 40 0 3 3 11.16 28 9.46
2xgy_00020 4 14 203 5 7 11.47 43643 262523 743860 40 0 2 14 10.60 33 10.60
3cal_00032 6 16 203 6 8 13.38 1E+05 1067419 531976 32 6 4 125 11.62 17 11.62
3ma2_00016 4 14 205 5 7 13.39 12471 37071 57964 16 21 6 4 8.38 6 8.38
3u7y_00009 5 12 203 4 6 4.51 2 3 0 40 0 3 6 4.51 32 4.51
3u7y_00011 3 12 203 4 6 12.72 5757 16107 37892 36 0 5 2 11.85 13 11.85
4hem_00027 3 16 205 6 8 inf 4467 11460 18378 0 45 1 2 15.48 17 15.48
4hem_00028 3 16 205 6 8 inf 3177 11537 13051 0 41 1 2 15.27 18 15.27
4kt6_00023 4 16 203 6 8 14.80 38186 101546 23877 16 19 4 7 12.69 31 12.69
4wwi_00019 5 14 203 5 7 15.43 8094 30774 17888 40 0 2 7 14.99 8 14.99

Figure 4: F2 on problems with two mutable residue (ie. MAP) variables.

Problem iB |X| Dmax w* d UB OR AND CCP UBP SSP EH time K*MAP BBK* t BBK* sln
1gwc_00021 6 13 34 7 7 inf 15545642 81923965 446455833 0 34816 1 69088 11.92 113 11.72
2hnv_00025 6 17 34 9 9 inf 15597590 45361875 34618109 0 23995 1 17373 16.18 96 13.65
2rf9_00007 9 19 34 10 10 inf 6037876 35285773 56583854 0 8124 1 13287 14.73 137 14.73
2rf9_00013 6 17 34 9 9 inf 4804048 23029900 20157331 0 9614 1 7389 15.03 11 15.03
2rfe_00012 4 15 34 8 8 inf 22301 77935 133262 0 579 1 29 13.93 8 13.93
2rfe_00014 4 15 34 8 8 inf 33721 112331 202496 0 620 1 40 14.36 15 14.36
2rfe_00017 6 15 35 8 8 inf 4339838 20401558 110555327 0 18750 1 10810 10.86 22 10.80
2rfe_00030 6 15 35 8 8 inf 1632268 7396607 47354556 0 12412 1 6224 11.12 41 10.97
2xgy_00020 6 15 35 8 8 12.28 425512 2552281 7259396 652 226 30 774 10.96 42 10.96
3u7y_00009 6 13 34 7 7 5.39 221684 1419747 921627 1792 175 208 577 4.51 40 4.51
3u7y_00011 5 13 34 7 7 inf 23893 81707 183381 0 939 1 45 11.85 18 11.85
4wwi_00019 6 15 34 8 8 16.93 1257591 4864928 2446418 2672 865 152 1493 14.99 13 14.99

Figure 5: F1 on problems with three mutable resiude (ie. MAP) variables.



Problem iB |X| Dmax w* d UB OR AND CPP UBP SSP EH time K*MAP BBK* t BBK* sln
1gwc_00021 4 13 203 4 7 12.51 33881 590621 473189 388 6 8 205 11.92 113 11.72
2hnv_00025 4 17 203 6 9 18.38 215171 550559 220825 77 0 4 153 16.18 96 13.65
2rf9_00007 4 19 205 7 10 inf 137 14.73
2rf9_00013 6 17 205 6 9 15.47 11 15.03
2rfe_00012 5 15 205 5 8 14.36 3127 10003 32610 57 0 3 85 13.93 8 13.93
2rfe_00014 5 15 205 5 8 14.79 4087 13087 39411 57 0 3 85 14.36 15 14.36
2rfe_00017 5 15 203 5 8 11.46 245894 1063198 6389737 227 25 43 333 10.86 22 10.80
2rfe_00030 4 15 203 5 8 13.61 256957 1327425 2816050 726 83 77 274 11.12 41 10.97
2xgy_00020 5 15 203 5 8 11.39 398102 2383318 7422285 42 0 20 360 10.96 42 10.96
3u7y_00009 4 13 203 4 7 4.95 36760 228568 564654 204 7 28 99 4.51 40 4.51
3u7y_00011 4 13 203 4 7 12.29 5758 16108 68579 50 0 5 86 11.85 18 11.85
4wwi_00019 5 15 203 5 8 16.05 22945 87485 91677 176 75 5 180 14.99 13 14.99

Figure 6: F2 on problems with three mutable resiude (ie. MAP) variables.

nodes pruned due to bounding, SSP are the nodes pruned due
to subunit-stability constraint violation, EH counts the num-
ber of times an exact heuristic was used instead of search,
time is the elapsed algorithm time (in seconds), K*MAP is
the highest K* value found that does not violate subunit sta-
bility constriants (in log10), BBK* t is BBK*’s runtime (in
seconds), BBK* sln is BBK*’s highest valid K* value found
(in log10). Highlighted in red are values that are significantly
suboptimal, and highlighted in bright green under UB, time,
and K*MAP are when an exact wMBE-K*MAP bound is
used, when AOBB-K*MAP performs faster than BBK*, and
when AOBB-K*MAP’s reported K*MAP value is greater
than that of BBK*, respectively.

K*MAP Value. AOBB-K*MAP outputted the same
K*MAP value as BBK* for the majority of the problems
(both F1 and F2, small and expanded) with the exception of
two problems in the small set (2rfd 00035 and 2rl0 00008)
and 4 problems (1gwc 00021, 2hnv 00025, 2rfe 00017, and
2rfe 00030) in the expanded set. Each exception resulted
in a greater K*MAP value than that outputted by BBK*.
Through further analysis, the solutions were verified to be
valid based on the F1 and F2 problem formulations, how-
ever BBK* was unable to be used to obtain the K* value for
the corresponding configurations as confirmation.

wMBE-K*MAP Heuristic. For small problems F1,
wMBE-K*MAP was able to compute an exact K*MAP so-
lution for five problems (not explicitly shown), however, the
elapsed time was faster when a lower i-bound was used. For
six of the problems, a bounded heuristic could not be com-
puted even with the highest i-bound (not explicitly shown).
For expanded problems, the heuristic on F1 was unable to
produce bounds on half of the problems. Analysis of the
heuristic showed that in the cases that it was unable to pro-
duce global bounds, the heuristic was also universally un-
informative, namely unbounded for all MAP variables. This
was found to be to due to lower bounding of the CU buckets
to zero values likely due to the implicit constraints found in
the functions. In contrast, the heuristic applied to small F2
was able to determine finite bounds on the K*MAP value for
all but two problems (not explicitly shown). Furthermore,
an exact heuristic was able to be computed for 17 of the 29
small problems. The better performance of the heuristic on
F2 is believed to be due to the reduced induced width of the
F2 as compared to F1 (compare w* across Figures 3 and 4
and Figures 5 and 6) and explicit, rather than implicit, con-

straints.

Time. Under time in Figures 3-6, highlighted in bright
green, we see when AOBB-K*MAP finds a solution faster
than BBK*, and, in red, when its runtime is more than ten
fold slower than BBK*. We see that for small problems (Fig-
ure 4), AOBB-K*MAP on F2 did particularly well outper-
forming BBK* 20 out of 29 times. Under EH we can see
that, in many of these cases, an exact value computed by the
heuristic was used instead of search showing the value of the
statically compiled heuristic. However, AOBB-K*MAP per-
formed worse on the expanded problems, believed to be due
to weaknesses in the heuristic (to be addressed as described
in Future Work).

7 Conclusion and Future Work
Conclusion. This work provides three contributions to
the advancement of CPD algorithms. First, a new graph-
ical model framework of two distinct problem formu-
lations is presented for which state-of-the-art algorithms
over AND/OR search spaces can be adapted to address
CPD as a K*MAP task. Second, a new statically com-
piled wMBE-K*MAP heuristic is presented which can guide
K*MAP search over AND/OR search spaces. And finally,
an AND/OR branch-and-bound algorithm for optimizing
K*, AOBB-K*MAP, was presented with experiments show-
ing promise outperforming state-of-the-art BBK* on small
benchmark problems, yet leaves room for advancement to
address shortcomings on larger benchmarks.

Future Work. Future directions include: (1) adaptation of
advanced state-of-the-art MMAP algorithms such as Recur-
sive Best-First AND/OR Search (Marinescu et al. 2018) to
solving the K*MAP query, including anytime approxima-
tion schemes such as Learning Depth-First or Stochastic
Best-First AND/OR Search (Marinescu et al. 2018), and in-
corporating state-of-the-art sampling methods such as Dy-
namic Importance Sampling (Lou, Dechter, and Ihler 2019)
or Abstraction Sampling (Kask et al. 2020); (2) addressing
challenges of wMBE-K*MAP heuristic, particularly during
lower bounding, such as by incorporating constraints into
the heuristic generation, using an alternate bucket elimina-
tion methods such as Deep Bucket Elimination (Razeghi
et al. 2021), or using a mix of statically compiled and dy-
namic heuristics; (3) analysis of the trade-offs between the
two problem formulations presented and exploration of how
to exploit their strengths and mitigate their weaknesses.



Algorithm 1: wMBE-K*MAP
input : Graphical model M = {X,D,F };

evidence e; constrained variable order
o = [X1, ..., Xn] with MAP variables first; a
partition of X into R, CB , and CU ; an
i-bound i

output: upper bound on the K*MAP value
1 begin
2 Condition each f ∈ F according to the provided

evidence e and remove the corresponding
variables from the scopes of the functions.

3 Partition each conditioned f into buckets
Bn, ..., B1 s.t. each F is placed in the greatest
bucket corresponding to a variable in its scope.

4 foreach k = n...1 do
5 Generate a mini-bucket partitioning of the

bucket functions
MBk = {MB1

k, ...,MBTk } s.t. the number
of variables in the scopes of the functions of
any mini bucket MBtk ∈MBk is ≤ i

6 if Xk ∈MAP then
7 foreach MBtk ∈MBk do
8 λtk ← maxXk

∏
f∈MBtk

f

9 end
10 else
11 if Xk ∈ CB then
12 Select a set of positive weights

w = {w1, ..., wT } s.t.∑
wt∈w wt = 1

13 foreach MBtk ∈MBk do
14 λtk ← (

∑
Xk

∏
f∈MBtk

fwt)1/wt

15 end
16 else if Xk ∈ CU then
17 Select a negative weight for w1

18 Select a set of positive weights
w = {w2, ..., wT } s.t.∑
wt∈w wt = 1

19 foreach MBtk ∈MBk do
20 λtk ← (

∑
Xk

∏
f∈MBtk

fwt)1/wt

21 if scope(λtk) ∩CU = ∅ then
22 λtk ← 1/λtk
23 end
24 end
25 end
26 end
27 Add each λtk to the bucket of the

highest-index variable in its scope.
28 end
29 return λ1
30 end

Algorithm 2: AOBB-K*MAP
input : CPD graphical modelM; pseudo-tree T ;

K∗ upper-bounding heuristic function
hubK∗(.); Zγ upper-bounding heuristic
function hubZγ (.); and subunit stability
threshold threshold(γ) for each subunit
γ ∈ ϕ

output: K∗MAP (M)

1 begin
2 Initialize MiniSat with constraints fromM
3 and generate literals via constraint propagation
4 π ← dummy AND node nD
5 ubK∗(nD)←

∏
m∈chT (nD) hK∗(m)

6 lbK∗(nD)← −inf
7 g(nD)← 1
8 foreach γ ∈ ϕ do
9 A×Zγ (nD)← 1

10 A+
Zγ

(nD)← 0

11 ubZγ (nD)←
∏
m∈chTγ (nD) hZγ (m)

12 end
13 while nX ← EXPAND(π) do
14 if MiniSat(π) = false then
15 PRUNE(π)

16 else if ∃γ ∈ ϕ s.t.
UBZγ (nX) < threshold(γ) then

17 PRUNE(π)

18 else if X ∈ R then
19 if ∃a ∈ ancOR(n) s.t.

ubK∗(a, π) < lbK∗(a) then
20 PRUNE(π)
21 end
22 else if chunexpT (n) = ∅ then
23 BACKTRACK(π)
24 end
25 return

ubK∗(nD) = lbK∗(nD) = K∗MAP (M)
26 end
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