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Abstract
Various molecular descriptors have been developed due to
their diverse roles and importance in material informatics.
However, they still have challenges in accurately captur-
ing the global relationship of intra-molecular substructures,
which significantly influence on the physical property. In this
paper, we introduced a novel molecular descriptor which can
extract topological distance between each pair of substruc-
tures within a molecule. Our evaluations reveal that the pro-
posed descriptor outperformed existing baselines in down-
stream tasks, including neural-network-based models. More-
over, this descriptor enables to acquire important chemical in-
sight into what substructure pairs need to be considered with
topological distance, which is crucial for advanced tasks such
as molecular generation.

Introduction
Machine learning (ML) has played a significant role in ac-
celerating material discovery aiming to reduce the time/-
cost and increase variability (Wei et al. 2019). ML mod-
els, specifically designed for predicting properties, are
trained using features that encapsulate the characteristics of
molecules, including molecular descriptors which capture
different facets of these molecules. Consequently, the ef-
ficiency with which structural features are extracted plays
a crucial role. Various molecular descriptors have been de-
veloped, ranging from Quantitative Structure-Property Rela-
tionships (QSPR) based descriptors (D and M 2010; Carhart
and Venkataraghavan 1985; Capecchi, Probst, and Rey-
mond 2020; Moriwaki et al. 2018), which basically enumer-
ate constituent elements, to neural-network-based descrip-
tors (Duvenaud et al. 2015; Ross et al. 2022a; Wang et al.
2022b; Ahmad et al. 2022). However, they still have limi-
tations in accurately capturing global relationship of intra-
molecular substructures. In addition, the interpretability of
prediction model is crucial, as it contributes to subsequent
tasks in material science, such as molecular generation.

Herein, we introduce a new molecular descriptor - Topo-
logical Distance of intra-Molecular Substructures (TDiMS),
which can extract topological distance between each pair of
substructures within a molecule. A topological distance be-
tween a substructure pair is approximately defined as the to-
tal mean of the shortest bond distances between atoms con-
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stituting each substructure, enabling long-distance interac-
tions capture and flexible fragment targeting. As the combi-
nation of substructure pairs tends to significantly increase
the dimensionality of the feature vector, TDiMS employs
duplicate feature handling and feature selection to reduce
it to a manageable size. Moreover, since the feature val-
ues represent structural pairwise distances, the TDiMS de-
scriptor preserves the interpretability typical of QSPR-based
methods. In this study, we not only demonstrated the strong
effectiveness of TDiMS in prediction tasks but also con-
firmed that valuable chemical insights into key substructure
pairs, where distance plays a crucial role, can be obtained
according to the specific task. This study also provides an
important direction for descriptor development including
neural-network models that combining topological distance
of intra-molecular substructures information can lead to fur-
ther improvement.

Related Works
Mordred (Moriwaki et al. 2018) is an advanced descriptor
calculation open-source software that primarily focuses on
counting substructures based on physical chemistry knowl-
edge, allowing the calculation of over 1800 types of two- and
three-dimensional descriptors. However, the substructure
counting method lacks global molecule information, such as
intra-molecular positional relations, which can significantly
influence the physicochemical properties of the molecule.
Thus, the Atom-Pair (Carhart and Venkataraghavan 1985)
descriptor is focused on capturing global molecular infor-
mation, which captures the atomic environments and the
shortest path separations between all pairs of atoms within
a molecule. Despite this improvement, focusing solely on
individual atoms brings its own challenges. To overcome
these issues, the MinHashed Atom-Pair fingerprint up to
four bonds (MAP4) (Capecchi, Probst, and Reymond 2020)
was proposed. MAP4 encodes pairs of atoms and their
bond distances, similar to the Atom-Pair fingerprint, but re-
places atomic characteristics with the circular substructures
surrounding each atom. Given the large number of possi-
ble substructure pairs, MAP4 employs MinHash values de-
rived from Locality Sensitive Hashing (LSH) to efficiently
represent a molecule. While MinHash values enable fast
similarity searches in very large databases, they results in
a trade-off with interpretability. More recently, latent vec-



Figure 1: Workflow of TDiMS for a target molecule in dataset.

tors derived from various neural-network models, includ-
ing Transformer-based chemical language models (CLMs)
and graph neural-network (GNN) models, have been em-
ployed as feature vectors for downstream tasks (Ross et al.
2022a; Wang et al. 2022b; Ahmad et al. 2022; Liu, Demirel,
and Liang 2019). These models are pretrained on molecular
structures from large standard datasets, for example, Pub-
Chem (Kim et al. 2023) and ZINC (Irwin et al. 2012), which
contain hundreds of millions or even billions of molecules.
CLMs and GNN models are capable of learning informa-
tion about atoms and their bonds. However, in GNN mod-
els, the technical limitation on the number of steps imposes
a restriction on the range of bond-path distances that can be
captured (Li, Han, and Wu 2018). In contrast, CLM mod-
els, with their attention mechanism, can potentially learn
relationships between atoms and bonds even at long dis-
tances. Nevertheless, they are directly impacted by the limi-
tations of molecule representations, for example, in the case
of SMILES strings, the sequence of characters does not nec-
essarily reflect the actual spatial arrangement of atoms in
the molecular structure (Xia et al. 2023; Jin, Barzilay, and
Jaakkola 2018). Furthermore, the feature vectors derived
from neural-network models, commonly referred to as latent
vectors, generally have no inherent meaning in each feature
value, leading to a lower level of interpretability.

Method
TDiMS algorithm
Figure 1 shows an algorithm workflow of TDiMS for an in-
put molecule. Canonical SMILES representations were used
as input. Substructure pairs within the target molecule are
first comprehensively explored. We targeted three types of
substructures in this study; (i) Hetero atoms, (ii) fragments
from BRICS method (Degen et al. 2008), and (iii) circu-
lar substructures from Morgan Fingerprint (Morgan 1965).
When substructures are extracted by Morgan Fingerprint or
fragments, a smaller substructure is often entirely encom-
passed by a larger superset substructure. Considering both
small and large substructures cause a duplicate count of
the same effect stemming from these substructures, TDiMS
eliminates pairs of smaller substructures if they are com-
pletely included in larger ones (Step2 in Fig. 1). The topo-
logical distance between substructure pair, is approximately
defined as the total mean of the shortest bond distances
between atoms constituting each substructure using Floyd-

Warshall Algorithm (Floyd 1962; Johnson 1977; Warshall
1962):

tdsubA,subB =

∑NA

i=1

∑NB

j=1 bdαiβj

NA ×NB
,

where tdsubA,subB is a defined topological distance between
subA and subB, NA and NB are the number of heavy atoms
in subA and subB, αi and βj denote the i-th and j-th heavy
atoms in subA and subB, and bdαiβj

is the shortest bond
distance between αi and βj . We aim to capture the dis-
tance with spread in order to be independent of the shape
of particular substructures. Additionally, using this calcula-
tion method enables to freely target any desired fragment.
The feature values are calculated as the inverse or inverse
square of this topological distance value to emphasize the
influence of shorter distances and to account for chemical
phenomenona such as Coulomb’s law (Step3 in Fig.1). If
a target substructure pair exists at multiple locations within
a molecule, the total of each feature value is calculated in
order to constrain feature number by grouping similar phe-
nomena. Then TDiMS calculates the set of the feature values
for all substructure pairs

⋃
k=1

Dk. Finally, feature vectors are

generated corresponding to the integrated set of substructure
pairs among whole molecules in the dataset. The number 0 is
stored if the corresponding substructure pairs are not in the
target molecules. Normalization was applied to the feature
vectors across the whole molecules in the dataset. As men-
tioned above, there are a number of possible combinations
of the features: substructure type combination, Hetero atom,
fragments, circular substructures, and feature value calcu-
lation, inverse or inverse square. We evaluated with every
combination of conditions and choose the best score in each
task.

Feature Selection
We have performed grid search for optimizing hyperparam-
eters while selecting features using the SelectFromModel
class in Scikit-learn (Pedregosa et al. 2011). Lasso Regres-
sion and RandomForestClassifier were used as estimators
for the prediction and classification tasks, respectively. The
hyperparameter α in Lasso Regression was searched within
the discrete set 10k| − 5 ≤ k ≤ 1, where k is an integer,
while the hyperparameter min samples split in Random-
ForestClassifier was searched in the range [2, 3].



Evaluation Tasks
To demonstrate the effectiveness of TDiMS, we bench-
mark the performance on multiple challenging regression
and classification tasks from MeleculeNet (Wu et al. 2018).
This allowed for a comprehensive comparison with baseline
models, especially for neural-network models, across vari-
ous tasks. We compared the performance of our proposed
method with prior works such as D-MPNN (Yang et al.
2019), (Hu et al. 2019), MGCN (Lu et al. 2019), GEM (Fang
et al. 2022), SchNet (Schütt et al. 2017), KPGT (Li, Zhao,
and Zeng 2022), GraphMVP-C (Liu et al. 2021), GCN (Kipf
and Welling 2016), GIN (Xu et al. 2018), MolCLR (Wang
et al. 2022a), ChemBERTa-2 (Ahmad et al. 2022), Mol-
Former (Ross et al. 2022b), RF (Ross et al. 2022b), SVM
(Ross et al. 2022b), N-Gram (Liu, Demirel, and Liang
2019), Galatica (Taylor et al. 2022), and Uni-Mol (Zhou
et al. 2023). For QSPR-based descriptors, Morgan Finger-
print, Mordred, Atom-Pair, and MAP4, the corresponding
packages were used to generate feature vectors (Moriwaki
et al. 2018; Capecchi, Probst, and Reymond 2020; RDKit-
Community 2024).

XGBoost (Chen and Guestrin 2016) was employed for the
tasks, with hyperparameter tuning performed using Optuna
(Akiba et al. 2019). The results based on the optimal hyper-
parameters are reported, with performance evaluated using
the RMSE and ROC-AUC metrics. Feature importance was
analyzed using XGBoost implemented method, identifying
the key features contributing to the prediction models. We
compared the performance of TDiMS with QSPR-based de-
scriptors as well as neural-network models, including CLMs
and GNN models. A feature vector derived from TDiMS
was evaluated both independently and in concatenation with
Mordred, aiming to comprehensively capture global and lo-
cal molecular information.

The details of the benchmarks used are illustrated in Table
1. We evaluate 3 datasets for regression tasks and 4 datasets
for classification tasks. To ensure a robustness and unbiased
evaluation, we followed the MoleculeNet benchmark by us-
ing the same train/validation/test splits across all tasks.

Dataset Description #Mol. Metric
Esol Water solubility prediction of

small molecules
1,128 RMSE

Freesolv Hydration free energy of
small molecules in water

642 RMSE

Lipo. Prediction of octanol-water
partition coefficient (logD)

4,200 RMSE

SIDER Drug side effect classification
for 27 types of adverse effects

1,427 ROC-AUC

ClinTox Binary labels on clinical tox-
icity data on FDA-approved
drugs

1,478 ROC-AUC

BACE Binary labels on β-secretase 1
(BACE1) binding properties

1,513 ROC-AUC

BBBP Binary labels on blood–brain
barrier permeability

2,039 ROC-AUC

Table 1: Description of the benchmark datasets used in the
evaluation of the proposed model. #Mol. and Lipo. stands
for Molecule numbers and Lipophilicity, respectively.

Results and Discussion
Table 2 shows the TDiMS performance compared to other
molecule descriptors derived from QSPR-based as well as
neural-network models. The TDiMS and Mordred combined
descriptors, which effectively capture both local and global
molecule information, outperformed in all regression tasks.
We also evaluated the TDiMS performance on classification
tasks, as shown in Table 3. The descriptors including TDiMS
achieved the best scores in all classification tasks.

Model ESOL FreeSolv Lipophilicity
D-MPNN 1.050 2.082 0.683
Hu et al. 1.220 2.830 0.740
MGCN 1.270 3.350 1.110
GEM 0.798 1.877 0.660
SchNet 1.050 3.220 0.910
KPGT 0.803 2.121 0.600
GraphMVP-C 1.029 - 0.681
GCN 1.430 2.870 0.850
GIN 1.450 2.760 0.850
MolCLR 1.110 2.200 0.650
ChemBERTa-2 - - 0.986
MolFormer 0.755 2.022 0.840
Morgan Fingerprint 0.769 1.756 0.691
Mordred 0.311 1.307 0.659
Atom-Pair 0.471 1.411 0.665
MAP4 0.962 2.595 0.837
TDiMS 0.423 1.325 0.649
TDiMS+Mordred 0.252 1.076 0.545

Table 2: RMSE scores (↓) of the evaluation on regression
tasks. Red and Blue indicates best and second-best perform-
ing model, respectively.

Model SIDER ClinTox BACE BBBP
RF 68.4 71.3 86.7 71.4
SVM 68.2 66.9 86.2 72.9
MGCN 55.2 63.4 73.4 85.0
Hu, et al. 65.2 78.9 85.9 70.8
N-Gram 63.2 85.5 87.6 91.2
MolCLR 68.0 93.2 89.0 73.6
GEM 67.2 90.1 85.6 72.4
ChemBerta-2 - 90.7 85.1 71.94
Galatica 120B 63.2 82.6 61.7 66.1
Uni-Mol 65.9 91.9 85.7 72.9
MoLFormer-XL 69.0 94.8 88.2 93.7
Morgan Fingerprint 68.2 82.8 88.5 93.0
Mordred 82.2 57.3 90.6 96.5
Atom-Pair 77.1 89.4 91.7 94.7
MAP4 75.4 92.9 91.4 92.9
TDiMS 84.4 99.0 92.0 96.2
TDiMS+Mordred 83.7 99.7 91.4 96.6

Table 3: ROC-AUC scores (↑) of the evaluation on classifi-
cation tasks. Red and Blue indicates best and second-best
performing model, respectively.

Interestingly, individual TDiMS outperformed Atom-Pair
and MAP4, both of which also target the topological dis-
tance of intra-molecule structure, across most regression and
classification tasks in this study. The best score of TDiMS
was mainly achieved when targeting heavy atoms and cir-
cular small substructures derived from Morgan Fingerprint



combinations in this study, which indicates targeting the
same substructure as MAP4. In general, enumerative de-
scriptors suffer from the number of structural patterns that
grows exponentially with respect to the maximum size of
the patterns. This issue is mitigated by either considering
the small patterns only (Atom Pair) or compressing the in-
formation (MAP4). MAP4 represents a molecule as a set
of so-called MinHash values derived from LSH; therefore,
it probabilistically represents molecules and lacks accuracy
and interpretability. In contrast, the feature set in TDiMS
was saved by handling substructure inclusion relationships
and integrating multiple pairs existence. Additionally, fea-
ture selection was applied to refine the key features. As
shown in Fig. 2, the number of substructure pair combina-
tions increases with the sample size and molecular diversity
within the dataset, leading to a large feature set. However, by
applying feature selection, the dimensionality is reduced to
a manageable level for XGBoost. These TDiMS approaches
effectively reduced the number of features while preserving
the information and the interpretability of the feature vector.
Indeed, our results indicate the importance of targeting sub-
structures composed of multiple atoms and reveal that the
method employed by TDiMS for capturing intra-molecular
substructure distances is more suitable than that of MAP4.

The fact that TDiMS outperformed neural-network mod-
els across all tasks is likely attributed to the limitations that
still exist in GNN and CLM models, as discussed in the
Related Works section. TDiMS achieved significantly better
performance compared to the baselines in SIDER and Clin-
Tox datasets, both of the top two were derived from TDiMS.
SIDER, followed by ClinTox, are the datasets that include
molecules with large structures in terms of the number of
atoms and aromatic rings compared to other datasets. By
analyzing the longest atom-pair band-path-based topologi-
cal distance within the target substructure pair feature and
the total absolute feature importance values of each feature,
we reveal that without the features with the bond-path-based
distance of five or greater, 64.2% and 65.7% of the predic-
tive capability of TDiMS were lost for SIDER and ClinTox
tasks, respectively. This result shows the strength of TDiMS,
which has no restrictions on the distances it can handle, over
current GNNs that are limited by layer size (Li, Han, and
Wu 2018).

Figure 2: Original and selected feature vector dimension of
TDiMS in each task.

Next, we further analyze the features that played impor-
tant roles in the regression task. As a representative exam-

ple, we demonstrate the results of concatenating feature vec-
tors derived from TDiMS and Mordred for the Lipophilicity
task in this study. The top 9 substructure pairs derived from
TDiMS features based on the Feature Importance scores
are illustrated in Figure 3. The Lipophilicity task targets
the prediction of the Log D value, which measures the
molecule’s distribution between octanol and water. The sub-
structure pairs in this figure appear to be closely related to
hydrophilicity, hydrophobicity, or polarity, indicating that
TDiMS successfully captured the structural features relevant
to the target property. Further analysis could lead to a deeper
and more precise understanding of the relationship between
these substructure pairs and the target property, providing
important chemical insights. Furthermore, when summing
the absolute values of the Feature Importance for the fea-
tures derived from TDiMS and Mordred, respectively, the
ratio was found to be 9:1, indicating that TDiMS features
played a more dominant role compared to those from Mor-
dred.

Figure 3: Substructure pairs of TDiMS features with high
feature importance in Lipophilicity task.

Conclusion and Feature Work
This paper presents TDiMS, a novel descriptor that effec-
tively captures and directly handles substructure-pair topo-
logical distances related to intra-molecular interactions. Ex-
periments show that TDiMS achieves significant improve-
ments across various benchmarks. Moreover, TDiMS suc-
cessfully captured reasonable features aligned with the char-
acteristics of each task. Further investigation into the rela-
tionships between these substructure pairs and their prop-
erties could yield deeper chemical insights. This study of-
fers a key perspective for the future development of neural-
network models, suggesting that combining topological dis-
tance information of intra-molecular substructures can drive
further advancements. In addition, the introduction of task-
specific fragments in TDiMS has potential to enhance per-
formance further and provide critical insights into molec-
ular design. Extending validation to datasets consisting of
molecules with larger structure, which are currently rec-
ognized as challenging tasks, is expected to highlight the
strengths of TDiMS more effectively. In parallel, we aim
to further explore the characteristics of TDiMS through an
empirical analysis of the computational costs of the Floyd-
Warshall algorithm, focusing on its scaling behavior with
respect to molecular size.
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