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Abstract

In this work, we propose a novel generative model for map-
ping inputs to structured, high-dimensional outputs using
structured conditional normalizing flows and Gaussian pro-
cess regression. The model is motivated by the need to char-
acterize uncertainty in the input/output relationship when
making inferences on new data. In particular, in the physi-
cal sciences, limited training data may not adequately char-
acterize future observed data; it is critical that models ade-
quately indicate uncertainty, particularly when they may be
asked to extrapolate. In our proposed model, structured con-
ditional normalizing flows provide parsimonious latent repre-
sentations that relate to the inputs through a Gaussian process,
providing exact likelihood calculations and uncertainty that
naturally increases away from the training data inputs. We
demonstrate the methodology on laser-induced breakdown
spectroscopy data from the ChemCam instrument onboard
the Mars rover Curiosity. ChemCam was designed to recover
the chemical composition of rock and soil samples by mea-
suring the spectral properties of plasma atomic emissions in-
duced by a laser pulse. We show that our model can generate
realistic spectra conditional on a given chemical composition
and that we can use the model to perform uncertainty quan-
tification of chemical compositions for new observed spectra.
Based on our results, we anticipate that our proposed model-
ing approach may be useful in other scientific domains with
high-dimensional, complex structure where it is important to
quantify predictive uncertainty.

Introduction
Physical systems can often be characterized by structured,
high-dimensional measurements with variation depending
on relatively simple system inputs. Supervised learning
models often successfully learn to predict system inputs
from observed data (e.g., in spectroscopic data (Sun et al.
2019; Ho et al. 2019; Castorena et al. 2021)). However, such
data-driven models are often trained using simulated or lab
experiment data that is intended to cover the space of pos-
sibilities that will be encountered in the wild – but what
happens in the likely case that new observed data deviates
from the training distribution? Unfortunately, predictive al-
gorithms often fail silently when asked to extrapolate to un-
observed regions of data space. In this paper, we develop a
novel generative model approach that addresses this issue by
capturing uncertainty in the relationship between system in-

puts and outputs. We demonstrate the utility of our approach
on a real spectroscopic data set.

Our proposed approach posits a Gaussian process (GP)
on the input space that predicts high-dimensional, complex
structure in the output space through a structured conditional
normalizing flow. That is, the GP model represents variation
in low-dimensional representations of the outputs as uncer-
tain functions of the inputs. We term the model a structured
normalizing flow Gaussian process (SNFGP). Importantly,
SNFGP models have the property that predictive uncertainty
increases when a query input is far from the training in-
puts, helping to indicate when the model is being asked to
extrapolate. We show on a real spectroscopic data set that
the SNFGP model performs well as a conditional gener-
ative model and that it provides a principled way to esti-
mate model inputs with uncertainty, even in the extrapola-
tion regime.

Specifically, we demonstrate our approach on experi-
mental ChemCam calibration data (Maurice et al. 2012).
ChemCam measures laser-induced breakdown spectroscopy
(LIBS), a type of atomic emission spectroscopy in which the
laser makes a small plasma on the target surface, causing
the atoms to emit light that is collected by high-resolution
spectrometers. The primary driver in variation across spec-
tra is the chemical composition of the target, so previous
works sought to predict the composition from the spectrum
using methods like linear regression, dimension reduction,
and deep neural networks (Wiens et al. 2013; Forni et al.
2013; Clegg et al. 2017; Anderson et al. 2017; Castorena
et al. 2021). However, these supervised learning approaches
are, out of necessity, trained on calibration data collected
from an instrument in the laboratory on Earth. When ap-
plied to data collected on Mars, there is a risk of extrap-
olation due to unanticipated compositions, suggesting that
estimates of uncertainty are crucial for interpretation of re-
sults. Our results indicate that in this data set, the SNFGP
model achieves good fit, generates accurate distributions
over ChemCam spectra conditional on an input, and pro-
vides an avenue for estimating system inputs (i.e., chemical
compositions) with meaningful uncertainties. We anticipate
that the SNFGP model could be useful in many scientific
areas with high-dimensional, structured features.



Related Work
Normalizing flows (NFs) have found success as generative
models compared to alternatives like generative adversarial
networks or variational autoencoders (VAEs) (Rezende and
Mohamed 2015; Papamakarios et al. 2019). Traditional nor-
malizing flows describe the data distribution, but do not con-
dition on inputs. Recently, (Winkler et al. 2019) presented
conditional NFs with a diagonal Gaussian distribution con-
ditional on inputs x which, unlike SNFGP, does not explic-
itly model correlation across observations (key for estima-
tion of extrapolation uncertainty). A separate recent line of
work in deep generative models uses GPs along with VAEs,
either by using the GP as a prior in the variational objec-
tive or using a structured approximate posterior incorporat-
ing the GP (Casale et al. 2018; Pearce 2020). However, be-
cause VAEs are not comprised of invertible transformations,
the exact likelihood is not available, complicating usage of
the model for inverse uncertainty quantification. Most sim-
ilar to our work is (Maroñas et al. 2021) which discussed
combining normalizing flows with Gaussian processes, but
focused on applying normalizing flows to the Gaussian pro-
cess prior rather than to the output of the Gaussian process.
In that sense, our work is more similar to warped GPs (Snel-
son, Rasmussen, and Ghahramani 2004) but with dimension
reduction and more flexible mappings. By including dimen-
sion reduction, our work rests on earlier work in the statis-
tics literature that used GPs in a principal components latent
space for uncertainty quantification (Higdon et al. 2008).

Background
ChemCam Spectroscopy Data
Since landing at Gale Crater in 2012, the ChemCam LIBS
instrument onboard the Mars rover Curiosity has obtained
spectral measurements of thousands of rock and soil analysis
targets (Maurice et al. 2016). In this work, we use calibration
spectra: LIBS spectra with corresponding known composi-
tions collected in the laboratory on Earth (using an instru-
ment very similar to ChemCam inside a chamber mimicking
Mars’ atmospheric pressure and composition). The Chem-
Cam spectral measurements come from three spectrometers
(UV, VIO, and VNIR ranges). We use data coming from
wavelength ranges of [246, 338], [382, 473], and [492, 849]
nanometers, respectively, resulting in a total of 5,205 mea-
sured wavelengths. To demonstrate our method, we focus on
the oxide weight percent of SiO2 as a simplified (though in-
complete) description of the composition of each material.
For each spectrum, we normalize the intensity values within
each spectrometer to the sum of all spectral values within
the spectrometer range. In total, we have a set of 2,442 cali-
bration spectra corresponding to 466 unique materials.

Gaussian Process Regression
Gaussian process regression models the distribution of ran-
dom variables Z conditional on X . For simplicity, we as-
sume D-dimensional observed input data vectors {x(i)}Ni=1

and corresponding univariate output data z = {z(i)}Ni=1. The

data are modeled as zero-mean Gaussian jointly with unob-
served function values z∗ associated with a new input x∗:[
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In Eq 1, σ2
ε represents the variance of additive Gaussian

white noise on the observed data. The covariance matrices
are parameterized through covariance functions dependent
on hyperparameters γ; in this work, we use a covariance
function that specifies entries of the covariance matrix as
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The log marginal likelihood of z (based on Eq 1) can be
used to tune the hyperparameters γ = [σ2, `1, ..., `D]. Us-
ing classic results on multivariate Gaussian distributions, the
distribution of z∗ conditional on the observed data provides
a predictive Gaussian distribution over z∗ given inputs x∗.

Normalizing Flows
Normalizing flow models seek to model the data probability
density function pY (y) through a function fφ applied to ran-
dom variates from a simpler density function pZ(z). Using
the change of variables formula:

pY (y) = pZ(fφ(y))

∣∣∣∣∂fφ(y)

∂y

∣∣∣∣ . (3)

In normalizing flows, the function fφ must be invertible; for
computational efficiency, both the inverse f−1φ and Jacobian
determinant should be simple to calculate. In this work, we
use RealNVP (Dinh, Sohl-Dickstein, and Bengio 2016).

Structured Normalizing Flow GP (SNFGP)
Structured Normalizing Flows
By construction, normalizing flows do not reduce the di-
mensionality of the input data. As in many scientific appli-
cations, the important variation across ChemCam spectra is
believed to lie in a lower dimensional manifold. Therefore,
we consider structured normalizing flows that rely on first
transforming the input data vector y ∈ RP to a lower di-
mensional representation w ∈ RK via a function gθ before
passing through a normalizing flow (Kontolati et al. 2021).
We assume that the transformation gθ is injective and has a
pseudo-inverse g†θ satisfying

y(i) ≈ (g†θ ◦ gθ)
(
y(i)
)
. (4)

Under this assumption (Cunningham et al. 2020), the change
of variables formula for the dimension-reduced data is

pY (y) = pW (gθ(y))
∣∣∣∂gθ(y)∂y

∂gθ(y)
∂y

T
∣∣∣− 1

2
. (5)

In this work, we let gθ be the K-dimensional princi-
pal components analysis (PCA) representation. As long as



enough principal components are retained, Eq 5 will approx-
imately hold. If we let gθ(y) = WTy where W ∈ RP×K

is an orthogonal basis, then ∂gθ(y)
∂y = WT so we have

pY (y) = pW (gθ(y)) 1√
|WTW|

. (6)

By orthogonality,
∣∣WTW

∣∣ =
∏K
k=1 wkk where wkk are the

diagonal elements of WTW.

SNFGP Model Specification
The SNFGP model is specified through the conditional den-
sity pY |X(y|x) which is written in terms of GP marginal
likelihoods via the structured normalizing flow as follows.
We presume that theK-dimensional normalizing flow latent
space can be modeled as a set of K independent univariate-
output GP models pZk|X(zk|x):

pZ|X(z|x) = pZ|X(z1, ..., zK |x) =

K∏
k=1

pZk|X(zk|x). (7)

Recalling that w = gθ(y) = WTy is the dimension re-
duction transform and z = fφ(w) the normalizing flow, we
obtain the density of y conditional on inputs x by applica-
tion of the change of variables formula Eq 5:

pY |X(y|x) = pZ|X(z|x)

∣∣∣∣∂fφ(w)

∂w

∣∣∣∣ 1√∏K
k=1 wkk

(8)

where w = gθ(y). Eq 8 can then be maximized with respect
to parameters γk for each individual Gaussian process, in
addition to the NF parameters φ.

Implementation Details
In this work, we first estimate gθ via PCA with K = 15
components (capturing over 96% of the variance in the
LIBS training set). We then learn the NF parameters φ
along with the GP parameters γ by maximizing the trans-
formed GP marginal likelihood in Eq 8. For the normaliz-
ing flow fφ, we use a RealNVP architecture with six cou-
pling layers. Note that pZ|X involves all of the data ex-
amples for evaluation; with a computational complexity of
O(N3), the GP can become prohibitive for large data sets
and will dominate the computational cost (since RealNVP
architectures are designed for efficient forward, backward,
and Jacobian evaluation). However, recent work suggests
that mini-batch training for Gaussian process models is com-
putationally efficient and accurate (Chen et al. 2020), so
we use batch sizes of 512 data points for each update (via
Adam optimizer, learning rate 0.0005). We implement the
model in Pytorch (Paszke et al. 2019) with some custom
layer functions from pytorch flows (https://github.com/
ikostrikov/pytorch-flows). We randomly select distinct ma-
terials for the training and test sets, but also select a set of
‘extrapolation regime’ test materials by including all mate-
rials with SiO2 composition greater than 0.9 in the test set
and using only materials with composition less than 0.8 in
the training set. This results in 2,109 unique spectra corre-
sponding to 422 unique materials in the training set, 150

spectra corresponding to 30 unique materials in the valida-
tion set, and 18 unique materials (disjoint from the train-
ing/validation sets) with a total of 90 spectra in the test set.

Model Evaluation
To demonstrate goodness of fit of the model, we investi-
gate the Gaussian process predictive accuracy in z space
on both the training and test data to determine whether the
model residuals indicate lack of fit. To assess generative
model performance, we sample from the fitted Gaussian pro-
cess conditional on the true test set composition values, then
propagate the samples through the inverse normalizing flow
and pseudo-inverse dimension reduction functions to obtain
samples in the LIBS spectral space. Across wavelengths for
each spectrum, we compute the root mean squared error
(RMSE), the R2, and the coverage. RMSE and R2 measure
how well the mean predicted spectra matches the true spec-
trum, while the coverage metric constructs nominal (1− α)
uncertainty intervals using the [α/2, 1 − α/2] quantiles of
the predicted spectral samples and estimates the proportion
of wavelengths for which the true spectrum fell within the
uncertainty intervals. Finally, we ask at whether, given a new
test spectrum, its latent representation z∗ can be used to infer
the corresponding composition x∗ using grid search to find
the maximum of the likelihood function (Eq 8) with respect
to unknown x∗ based on the GP predictive distribution and
likelihood intervals (Owen 1988) to describe uncertainty.

Results
Goodness of Fit
First, we investigate how well the GP model describes the
data in the latent space. Fig 1 shows, for three of the 15 to-
tal latent dimensions, scatter plots of the SiO2 composition
against the latent representation value. Black points repre-
sent training data while red points represent test data; rug
plots along the horizontal axis indicate the distributions of
test and training data, including the ‘extrapolation regime’
test set with SiO2 > 0.9. The GP predictive distribution is
shown as a function of composition, with the mean function
prediction as a blue line and 95% uncertainty intervals as
shaded blue areas. It appears that the GP models adequately
capture variation in the latent space conditional on the com-
position, and the uncertainty intervals capture the data dis-
tribution well. Some of the inherent variability in the data
(reflected by the spread around the mean prediction) comes
from uncontrollable sources (shot-to-shot variations for the
same target) while other variability may come from the un-
modeled influence of other elemental compositions.

Generative Model Performance
Across the test set, we evaluate how well the generative
model captures the characteristics of the spectra conditional
on the true composition. Table 1 gives the mean and stan-
dard deviation of the three performance metrics across all
test set spectra, divided into interpolation and extrapolation
regimes. In the interpolation regime, we note that the PCA
decomposition alone incurs average RMSE near 0.0001, so
our model introduces some additional error on average in



Figure 1: Gaussian process predictive distribution (mean line
with shading for 95% uncertainty interval) as a function of
SiO2 composition for three of the 15 normalizing flow latent
dimensions. The predictive mean describes the patterns in
the data accurately and the uncertainty intervals appear to
capture the majority of the data.

Interpolation Extrapolation
Metric Mean (SD) Mean (SD)
RMSE (×10−2) 0.04 (0.01) 0.15 (0.05)
R2 0.91 (0.07) -0.39 (0.70)
Coverage 0.95 (0.07) 0.89 (0.04)

Table 1: Generative model performance measured on the test
set via RMSE and R2 of the mean predicted spectrum and
coverage of a 95% uncertainty interval, split into interpola-
tion and extrapolation regimes.

reconstructing the spectra, but generally the R2 is high. In
the extrapolation regime, the RMSE and R2 indicate worse
performance (as expected, because no training data was seen
in this area of input space). For assessing coverage, we used
the 2.5% and 97.5% quantiles to obtain uncertainty inter-
vals (nominal 95% coverage). In the interpolation regime,
we achieve nominal coverage, with only a slightly lower
coverage in the extrapolation regime. This demonstrates an
important property of the model: while predictions may be
inaccurate when extrapolating, the uncertainty intervals ex-
pand and can therefore still contain the true data values.

Fig 2 shows generated spectral samples for a given in-
put composition (SiO2 oxide weight percent 44.6%) with a
test set spectrum corresponding to that composition shown
in black; for simplicity, we show results only for the UV
spectrometer. The generated spectral samples appear to cap-
ture the general shape of the true spectrum. Zooming in on
a key Si spectral line near 288.2 nm, we see some variation
across model samples, but the peak appears in all samples.

Inferring Generating Parameters
For a set of eighteen test set spectra representing distinct tar-
gets, we estimate the composition value corresponding to the
maximum likelihood estimator (MLE) and generate asym-
metric 95% confidence intervals for the MLEs using likeli-
hood ratio intervals. Fig 3 shows the MLEs (blue horizontal
bars) with the uncertainty intervals (blue vertical bars) com-
pared to the true compositions (black dots) for the different
test set materials. The intervals cover the true composition
value for most of the materials, and in many cases the inter-
vals are fairly tight. We note that the NCS-DC28041 mate-
rial appears to be an outlier in principal components space

Figure 2: Generated spectra samples compared to a test set
spectrum (target GBW07105) for the UV spectrometer, con-
ditional on the true composition. Inset panel zooms in to
show detail of an Si spectral line near 288.2 nm.

Figure 3: For the test set materials (named along the hori-
zontal axis), we use the SNFGP likelihood to infer the com-
position with uncertainty. Many uncertainty intervals cover
the true values. The rightmost four materials are the ‘extrap-
olation regime’ test set; as expected, the predictions are less
accurate, but with wider uncertainty intervals.

(prior to learning the SNFGP), indicating that this sample
may require further investigation. The four materials with
the largest compositions correspond to the ‘extrapolation
regime’; we note that while while the predictions are more
biased, the uncertainty intervals are larger.

Conclusions
In this work, we have presented SNFGP: a novel genera-
tive model that combines dimension reduction, normaliz-
ing flows, and Gaussian process regression. SNFGP condi-
tions on input values to generate complex, structured, high-
dimensional outputs. We demonstrate the model on LIBS
spectra from the ChemCam instrument, where the model
generates realistic spectra conditional on an input compo-
sition and provides a principled way to quantify uncertainty
in predictions of the input composition given a new spectral
observation. Importantly, we demonstrate that the SNFGP
model has good properties when extrapolating from the
training data, a property not shared by many machine learn-
ing models. In future work, we plan to compare our method
to related methods such as the GPVAE in terms of perfor-
mance and computational complexity and to expand the ap-
plication to include ChemCam data from Mars (including
modeling the Earth/Mars data discrepancy).
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