
Open-Source Fermionic Neural Networks with Ionic Charge Initialization

Shai Pranesh1, Shang Zhu2, Venkat Viswanathan3, Bharath Ramsundar1

1Deep Forest Sciences, California, USA
2Department of Mechanical Engineering, University of Michigan, Michigan,USA
3Department of Aerospace Engineering, University of Michigan, Michigan,USA

shai@deepforestsci.com, shangzhu@umich.edu, venkvis@umich.edu, bharath@deepforestsci.com

Abstract

Finding accurate solutions to the electronic Schrödinger
equation plays an important role in discovering important
molecular and material energies and characteristics. Con-
sequently, solving systems with large numbers of electrons
has become increasingly important. Variational Monte Carlo
(VMC) methods, especially those approximated through deep
neural networks, are promising in this regard. In this paper,
we aim to integrate one such model called the FermiNet,
a post-Hartree-Fock (HF) Deep Neural Network (DNN)
model, into a standard and widely used open source library,
DeepChem. We also propose novel initialization techniques
to overcome the difficulties associated with the assignment of
excess or lack of electrons for ions.

Introduction
The Variational Monte Carlo (VMC) technique is based on
the variational principle in quantum mechanics, which states
that the expected value of the energy of a trial wave function
is always greater than or equal to the ground state energy
of the molecule system. The expected energy is the average
energy of the sampled electrons.

Eground ≤ ⟨ψ | Ĥ | ψ⟩
⟨ψ | ψ⟩

≈ Eexpected =
1

N

∑
E(θ) (1)

where the energy is calculated by the equation

E(θ) = Ekinetic +Eel-el +Enuc-nuc +Enuc-el (2)

and where kinetic energy is calculated as follows:

Ekinetic = −1

2

∑
i

[(
∂ log(|ψθ|)

∂ri

)2

+
∂2 log(|ψθ|)

∂x2

]
(3)

Here ri is the electron coordinates in the i-th domain
(x, y, z) coordinates, and ψθ is the trial wavefunction de-
pending on parameters θ. Enuc-el, Enuc-nuc, Eel-el correspond
to the total potential energy between each nucleon with each
electron, each nucleon with other nucleons, each electron
with other electrons in the molecule system, respectively.

Traditional VMC techniques initialize and sample the
electron’s coordinates via the Monte Carlo algorithm and

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

move toward values that minimize the expected energy. The
general steps in a VMC algorithm are as follows:

• Initialize suitable parameters θ in a chosen trial wave-
function ψθ and initialize electron coordinates.

• Compute new trial coordinates of the electrons using a
suitable distribution.

• Employ the Metropolis algorithm to determine whether
to accept or reject the proposed new move, using the
square of the magnitude of the wavefunction as the elec-
tron’s probability.

• If the step is accepted, update parameters after a set num-
ber of steps.

• Conclude the calculation and compute the final averages
for expected energy calculation.

The results heavily depend on the quality of the trial
wavefunction ψθ. In this regard, DNN-based approaches
can help to approximate and optimize the trial wave
functions while running the VMC simultaneously. Certain
physics-based elements are built into the ansatz for better
convergence, with the training cost as to minimize the
expected energy function as low as possible.

DeepChem and Differentiable Physics
DeepChem (Ramsundar et al. 2021) is an open source
Python library for scientific machine learning and deep
learning on molecular and quantum datasets. DeepChem
offers a framework for tackling challenging scientific
problems in domains such as drug discovery, energy, and
biotechnology. This is achieved by standard workflows
constructed from fundamental components, including
data loaders, featurizers, data splitters, learned models,
metrics, and hyperparameter tuners. This systematic design
has allowed DeepChem to be part of a wide variety of
applications, like large-scale benchmarking for molecular
machine learning through the MoleculeNet benchmark
suite (Wu et al. 2018), protein-ligand interaction modeling
(Gomes et al. 2017), generative modeling of molecules
(Frey, Gadepally, and Ramsundar 2023), and more.

DeepChem aims to support open-source differentiable
physics (Ramsundar, Krishnamurthy, and Viswanathan

2021) infrastructure for scientific machine learning. Differ-
entiable density functional theory infrastructure has been
previously integrated into DeepChem for the same purpose
(Vidhyadhiraja et al. 2023). This work integrates FermiNet
(Pfau et al. 2020) as part of the ongoing efforts to facilitate
differentiable physics support and enable rapid physical cal-
culations via neural network approximations.

Implementation
The FermiNet model was split and implemented as the fol-
lowing major components, each dealing with a specific task:

• Electron Sampler
• Hartree-Fock Baselines
• Ionic Charge Initialization
• FermiNet Model (neural network layers)

Electron Sampler
The electron sampler was implemented into the DeepChem
utils subpackage using Numpy. The electron sampler can
initialize electron positions centered on each nucleon. The
number of electrons initialized depends on the atomic num-
ber of each nucleon, and in the case of ions, electrons are
either added or deleted according to Mulliken population
analysis (discussed briefly in the subsequent subsection).

After initialization, the trial electron coordinates are sam-
pled using Gaussian distribution centered around the present
electron’s coordinates, which are then accepted/rejected via
the Metropolis-Hastings algorithm using the log probabil-
ity of the wavefunction (2 · log(|ψ|)) calculated at the elec-
tron’s position. The difference between the log probabil-
ity of trial and original electrons gives the probability of
the jump or acceptance probability(A). A random value
u ∼ log(Uniform(0, 1)) is then generated, and if u ≤ A,
the trial coordinates are accepted (rt+1 = r′); otherwise,
it is rejected, and the Markov chain stays at the current state
(rt+1 = rt). This process is repeatedly done for a set number
of iterations, usually until the model gives converged results.

Hartree-Fock Baselines
At each epoch of the initial pretraining for the FermiNet
model, the HF baseline is computed using the STO-6G basis
function. This calculation is performed using the sampled
electron’s postion for that particular epoch, aiming to align
the models’s calculated orbitals with the HF baseline. This
aids in accelerating convergence during the actual training of
the model layers. The conventional HF calculation ignores
the electron-correlation term, which will be integrated into
the model training process itself. These calculations were
performed using the PySCF library (Sun et al. 2020).

Ionic Charge Initialization
In an ion, one or more of the nucleons has either an excess
or lack of electrons to accommodate the ionic charge. There
is no present initialization policy of ionic charges in Deep-
Mind’s implementation of the model (James S. Spencer and
Contributors 2020). We propose a novel initialization policy
based on Mulliken population analysis (Mulliken 1955).

Algorithm 1: Charge Initialization Policy
Input: Partial charge matrix from Mulliken population anal-
ysis.
Output: Electron number for each nucleon in the
ion

1: Let charge be the partial charge matrix.
2: Let electron be the array initialized with the atomic

number of each nucleon.
3: Let t = ionic charge of the system.
4: while t ̸= 0 do
5: if t < 0 then
6: index = argmin(charge)
7: electron[index] += 1
8: t += 1
9: charge[index] += 1

10: else
11: index = argmax(charge)
12: electron[index] -= 1
13: t -= 1
14: charge[index] -= 1
15: end if
16: end while
17: return electron

The Mulliken population charge matrix is calculated dur-
ing the HF calculations, which gives the partial electron
charges of each atom in a molecule based on the overlap
of atomic orbitals. This charge matrix can act as a heuris-
tic to add/remove electrons as per the ionic charge of the
molecule system. The nucleon with the most negative par-
tial charge is the most ideal candidate for excess electrons
and the one with the most positive partial charge will have a
lack of electrons.

The exact algorithm for the charge initialization policy
can be seen in Algorithm 1. The input for this algorithm
will be a matrix of partial charges computed via Mulliken
Population analysis. For example, in a LiH+ ion, the par-
tial charge matrix will be [0.88694, 0.11306], where the first
term corresponds to the Li partial charge and the other term
to the partial charge of H in the ionic system. We also use
another matrix for the calculation called the electron matrix
which consists of the electrons of each nucleon in an un-
charged system. For example in LiH+, the electron matrix
would be [3, 1] as Li has 3 electrons and H 1 electron in its
uncharged form.

FermiNet Model
The FermiNet architecture consists of two major feature lay-
ers: 1-electron and 2-electron feature layers which act as the
embedding layer for electron distance features to be used
to model the wavefunction ansatz. The 2-electron layer fea-
turizes each of the electron’s distance from the other elec-
trons whereas the 1-electron layer featurizes each electron’s
distance from each of the nucleons, using the value of 2-
electron features in the process.

The ansatz consists of an “envelope layer” which uses the
1-electron features to enforce the boundary condition of the

probability of the electron’s position tending to 0 when the
electron moves towards infinity from the nucleus. The enve-
lope layer of each electron j is modeled as:

∑
m

πi,m
k,α . exp(−σ

i,m
k,α |Rj,m|) (4)

where σ is a learnable 3 × 3 tensor parameter and π is a
learnable scalar parameter. There are a total of ikmα copies
of the σ and π parameters. m, k, i, j, and α correspond
respectively to the number of nucleons, the number of deter-
minants to be used in the ansatz, the number of orbitals, the
number of electrons, and the spin of the electron taken. The
term Rj,m corresponds to the 1-electron-distance vector of
the jth electron and mth nucleon.

The envelope layer along with the computed 1-electron
feature is used to model the ansatz’s orbital evaluated at
a specific electron. Using the slater-type determinants of
these orbitals, the wavefunction’s value can be computed at
the input electron’s position.

FermiNet Training FermiNet has 2 parts to the training:
supervised pretraining and unsupervised training. During
pretraining, orbital values calculated from the Hartree-Fock
method are used as labels, with FermiNet’s orbital values
trained to match the Hartree-Fock baseline. The loss func-
tion is:

Lpretrain =
1

N

∑
kij

(
Φkij − ΦHF

kij

)2
(5)

where Φ and ΦHF correspond to the calculated orbital val-
ues from the FermiNet model and the HF baseline respec-
tively. k, i, and j correspond to the number of determinants,
number of orbitals, and number of electrons respectively.

Next in the training phase, the model’s parameters are
tuned according to the modified gradients using the expected
energy. The parameters in the network are updated accord-
ing to the following gradient

∇θLtrain = 2Ep [(Ep − Ep(Ep))∇θ log |ψ|] (6)

where Ep is the expected mean over the sampled elec-
trons, Ep is the energy of sample p across all batches, and
∇θLtrain is the modified gradient with respect to the model
parameters θ, while ∇θ log |ψ| is the gradients with respect
to the log |ψ| term.

The gradients of the network are updated using the Py-
Torch hooks module. For the kinetic energy calculation,
functorch (Horace He 2021) (available from Pytorch 2.0.0)
is used to calculate the Hessian and the Jacobian.

Results
In Fig 1, we plot the ground state energies for Hydrogen
molecules with different internuclear distances and com-
pare them against the CCSD values calculated by PySCF.
The FermiNet’s ground state energy curve closely tracks the
CCSD curve. We also tested the model to estimate the LiH

Figure 1: H2 ground state energy - FermiNet vs CCSD. Plot-
ted using 21 different data points. The values obtained from
FermiNet can be seen to closely match that of the values cal-
culated via CCSD. Running the model with more MCMC
steps and iterations can give more reliable results.

molecule’s ionization potential, and compared them with the
CCSD and HF calculation values obtained from the NIST
database (National Institute of Standards and Technology
n.d.). The result can be found in Table 1. We used a batch

FermiNet CCSD HF
0.2481 0.2637 0.2387

Table 1: The ionization potential for LiH in hartrees obtained
from different methods, as stated, is given. The FermiNet’s
ionization potential can be seen to have improved upon the
values obtained from Hartree-Fock calculations and is closer
to the energy obtained using CCSD. This ionization poten-
tial was calculated using the ionic charge initialization pol-
icy that we proposed (and is not present in DeepMind’s im-
plementation.)

size of 8 and 10 steps between MCMC updates to get the
results. Using a larger batch size, more iterations, and more
MCMC steps will decrease the noise in the results at the cost
of increased training time.

Conclusion
From Figure 1 and Table 1, we observe that the model’s re-
sults closely match that of the CCSD method and improve
on top of the HF baseline for LiH ionization potential calcu-
lation. We anticipate integrating FermiNet into DeepChem
will lead to improved infrastructure for rapid experimen-
tation with the FermiNet model for calculating accurate
ground state energies of molecule/ion systems.

We aim to further improve the model by using Pytorch’s
JIT functionality to match the capabilities of DeepMind’s
JAX implementation (Spencer et al. 2020). Also, we aim to
integrate features from PauliNet(Schätzle et al. 2023), an-
other DNN-based VMC model. PauliNet has the advantage

of employing fewer parameters and achieving quicker train-
ing compared to FermiNet but with slightly lower accuracy.
This is because PauliNet has “physical conditions” built into
the ansatz whereas FermiNet aims to train and learn those
features. Thus, incorporating physical priors into FermiNet
can lead to faster convergence of the model with accurate re-
sults. The standardized DeepChem implementation we have
introduced will help facilitate such experimentation in future
work.

References
Frey, N. C.; Gadepally, V.; and Ramsundar, B. 2023. Fast-
flows: Flow-based models for molecular graph generation.
https://arxiv.org/abs/2201.12419. arXiv:2201.12419.

Gomes, J.; Ramsundar, B.; Feinberg, E. N.; and Pande,
V. S. 2017. Atomic Convolutional Networks for Predicting
Protein-Ligand Binding Affinity. arXiv:1703.10603.

Horace He, R. Z. 2021. functorch: JAX-like compos-
able function transforms for PyTorch. https://github.com/
pytorch/functorch.

James S. Spencer, D. P.; and Contributors, F. 2020. Fer-
miNet.

Mulliken, R. S. 1955. Electronic population analysis on
LCAO–Mo molecular wave functions. I. The Journal of
Chemical Physics, 23(10): 1833–1840.

National Institute of Standards and Technology. n.d. Com-
putational Chemistry Comparison and Benchmark DataBase
(CCCBDB).

Pfau, D.; Spencer, J.; de G. Matthews, A.; and Foulkes, W.
2020. Ab-Initio Solution of the Many-Electron Schrödinger
Equation with Deep Neural Networks. Phys. Rev. Research,
2: 033429.

Ramsundar, B.; Eastman, P.; MacBride, A.; and Trang, N. V.
2021. Making DeepChem a Better Framework for AI-
Driven Science.

Ramsundar, B.; Krishnamurthy, D.; and Viswanathan, V.
2021. Differentiable Physics: A Position Piece.

Schätzle, Z.; Szabó, P. B.; Mezera, M.; Hermann, J.; and
Noé, F. 2023. DeepQMC: An open-source software suite for
variational optimization of deep-learning molecular wave
functions. The Journal of Chemical Physics, 159(9):
094108.

Spencer, J. S.; Pfau, D.; Botev, A.; and Foulkes, W.
M. C. 2020. Better, Faster Fermionic Neural Networks.
arXiv:2011.07125.

Sun, Q.; Zhang, X.; Banerjee, S.; Bao, P.; Barbry, M.; Blunt,
N. S.; Bogdanov, N. A.; Booth, G. H.; Chen, J.; Cui, Z.-H.;
and et al. 2020. Recent developments in the PySCF program
package. The Journal of Chemical Physics, 153(2).

Vidhyadhiraja, A.; Thiagarajan, A. P.; Zhu, S.; Viswanathan,
V.; and Ramsundar, B. 2023. Open Source Infrastructure for
Differentiable Density Functional Theory. In 1st Workshop
on the Synergy of Scientific and Machine Learning Modeling
@ ICML2023.

Wu, Z.; Ramsundar, B.; Feinberg, E.; Gomes, J.; Geniesse,
C.; Pappu, A. S.; Leswing, K.; and Pande, V. 2018. Molecu-
leNet: A Benchmark for Molecular Machine Learning.
Chem. Sci., 9: 513–530.

