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Abstract

Co-crystallization is an accessible way to control physico-
chemical characteristics of organic crystals. However, design
of co-crystals with predefined properties is an extremely non-
trivial task, since it requires a large number of experiments to
select a suitable coformer. In practice, experimental screen-
ing is often focused on testing a limited number of candi-
date compounds to keep it feasible within a single study. Ar-
tificial intelligence has revolutionized the scientific method
and proposed alternatives to tedious experimental work in
many fields of science. In this work, for the first time we
present a pipeline for automated co-crystal screening in sil-
ico, which stands on three pillars: generation of candidates for
co-crystallization, evaluation of co-crystal properties and es-
timation of probability of formation. For that, we first trained
a GAN on the ChEMBL dataset of 1.75M molecular struc-
tures and then fine-tuned it on the state-of-the-art coformer
dataset. We then developed a novel approach to predict the
tabletability of co-crystals by training machine learning mod-
els to predict key properties of co-crystals reflecting powder
plasticity and integrating an existing solution to account for
the probability of co-crystallization. Finally, we added evolu-
tionary optimization of coformer molecules to reinforce de-
sired mechanical properties of the predicted co-crystals. The
resulting pipeline enables fast screening of co-crystals that
could reduce the lead optimization time in drug design from
several years to a few months including experimental test-
ing. We validated the pipeline by controlling the validity and
similarity of the generated coformers and by standard evalu-
ation protocol for machine learning problems. The proposed
pipeline is a promising tool for reducing costs in co-crystal
design by minimizing the number of necessary experiments.

Introduction
The use of multi-component crystals, specifically co-
crystals, have become increasingly popular in various indus-
tries including energy (Li et al. 2022), electronics (Wang and
Zhang 2020), optoelectronics (Zhu et al. 2015; Sun et al.
2018), food (Dias, Lanza, and Ferreira 2021), and especially
in pharmaceuticals (Guo et al. 2021; Duggirala et al. 2019;
Yousef and Vangala 2019). Pharmaceutical co-crystals are
defined as solids that are crystalline singlephase materials
composed of a drug molecule and an additional pharmaceu-
tically acceptable molecule (coformer) (Bolla, Sarma, and
Nangia 2022). Co-crystals have a different crystal structure

from the original components, leading to unique physico-
chemical properties. They are appealing because the result-
ing solid can exhibit better physicochemical properties com-
pared to either of the pure molecules (Karimi-Jafari et al.
2018). The formation of co-crystals has been shown to en-
hance characteristics such as bioavailability (Emami et al.
2018), solubility (Good and Rodrı́guez-Hornedo 2009; He
et al. 2017), stability (Babu, Sanphui, and Nangia 2012; Li
et al. 2019), pharmacokinetics (Shan et al. 2014), and me-
chanical properties (He et al. 2017; Karki et al. 2009). Plas-
ticity is a mechanical property that is particularly impor-
tant for the pharmaceutical industry. It is known that highly
plastic materials tend to produce stronger tablets compared
to those exhibiting elastic behavior (Bryant, Maloney, and
Sykes 2018). Therefore, it is essential to control for plastic-
ity while designing a tablet form of a therapeutic agent.

Despite all the robustness and versatility of co-crystals,
determining the combination of a coformer and parent com-
ponent with the desired property modification is an ex-
tremely non-trivial task, usually addressed by experimen-
tal high-throughput screening (Childs et al. 2008; Surov
et al. 2016). Due to the large amounts of time and effort
required, such studies remain targeted, focusing on rather
narrow classes of candidate compounds.

Artificial intelligence (AI) methods have recently found
their way into the field of chemistry (Cerchia and Lavecchia
2023; Baum et al. 2021; Gormley and Webb 2021; Chan
et al. 2019; De Almeida, Moreira, and Rodrigues 2019).
Since then, the accumulated experimental data has become
the basis for predictive models transforming the traditional
way science works. With big data and machine learning
(ML), it is now possible to consider a much larger set of
candidate molecules for a given problem, rather than being
satisfied with a limited number of experiments. Among the
pioneering works in the co-crystal domain are the studies
aimed at determining the probability of co-crystallization of
a particular molecular pair (Vriza et al. 2022; Jiang et al.
2021). However, the sole fact of co-crystallization with no
information about the properties of the resulting co-crystals
is not enough to inform decision making for a specific use
case. Accordingly, another direction of research investigated
co-crystal properties with AI methods (Gamidi and Rasmu-
son 2020; Guo et al. 2023). Still, prediction of most proper-
ties has been possible only in the case of already known co-



Figure 1: Pipeline for generative co-crystal design consisting of a GAN generating coformer candidates, a gradient boosting
(GB) classification model predicting the mechanical properties of co-crystals based on the generated coformers, evolutionary
algorithm, and a graph neural network (GNN) ranking co-crystals according to the probability of formation.

crystallising molecular pairs. De novo design of co-crystals
with predefined properties leveraging big data to cover a
large chemical space remains an actual task of great appli-
cation value.

Therefore, here for the first time we develop a pipeline
that generates coformer candidates based on the structure
of a drug molecule to form a co-crystal with predefined
mechanical properties. We trained a generative adversarial
network (GAN) on a dataset of 1.75M chemical structures
and then fine-tuned it on the state-of-the-art dataset of co-
formers. We then trained a Gradient Boosting (GB) ML
model to predict plasticity parameters of the generated co-
former candidates. We employed evolutionary optimization
leveraging the trained GB models to improve the tabletabil-
ity profiles of the generated coformers. Finally, we applied a
pretrained graph neural network (GNN) to rank the molecu-
lar pairs according to the probability of successful co-crystal
formation. The output of the proposed pipeline is a set of
coformers forming a co-crystal with improved tabletability
properties for a selected drug compound. Thus, the pipeline
can serve as a tool for selecting the best molecular combina-
tion of an active pharmaceutical agent and a coformer deliv-
ering the desired properties of the co-crystal.

To the best of our knowledge, our work makes two novel
contributions:

• We are the first to develop machine learning models pre-
dicting mechanical properties of co-crystals.

• Also, for the first time in the field, we present a generative
pipeline for de novo co-crystal design.

Related Work
Molecule generation
Traditionally, the process of discovering new molecules or
selecting chemical structures for a particular task relies on
existing experimental evidence and subjective research ex-
perience, both limiting the number and variety of possi-
ble compounds to consider. Generative models allow ef-
ficient exploration of the molecular space, which has al-

ready caused a rapid growth of molecular generative design.
Cutting-edge generative models use string (Blaschke et al.
2020; Hu et al. 2020), 2D (Li, Zhang, and Liu 2018; Jin,
Barzilay, and Jaakkola 2018) and 3D (Skalic et al. 2019;
Li, Pei, and Lai 2021) molecular graphs as molecular repre-
sentations. The most common way is the SMILES (Simpli-
fied molecular-input line-entry system) notation, as the other
approaches have not yet shaped the field to such an extent
(Martinelli 2022). Recurrent neural networks (Grisoni et al.
2020; Li et al. 2020), variational autoencoders (Kadurin
et al. 2017; Blaschke et al. 2018; Gómez-Bombarelli et al.
2018), generative adversarial networks (GANs) (Guimaraes
et al. 2017; Prykhodko et al. 2019; Bian et al. 2019), evo-
lutionary algorithms (Yoshikawa et al. 2018; Leguy et al.
2020a) and hybrid models using reinforcement learning
techniques (Putin et al. 2018; Zhavoronkov et al. 2019) have
been successfully applied for various problems in chemistry.
However, to our knowledge, generative approaches have not
yet been used to generate coformer structures. Our work ad-
dressed this problem in the context of co-crystal design by
training and fine-tuning a GAN model.

Co-crystal property prediction
Research in co-crystal property prediction is targeted at de-
termining various parameters, such as the lattice energy,
density, melting temperature, crystal density, enthalpy and
entropy of melting, as well as ideal mole fraction solubil-
ity of co-crystals (Gamidi and Rasmuson 2017; Rama Kr-
ishna et al. 2018; Fathollahi and Sajady 2018; Yue, Wang,
and Lu 2023). However, a limited number of samples is typ-
ically used in the training phase. For example, Gamidi and
Rasmuson trained an artificial neural network on the data
of 30 co-crystal systems for 8 different drugs (Gamidi and
Rasmuson 2020). Such models are likely to have very lim-
ited generalization power beyond the training data. The most
recent model predicting the co-crystal density (Guo et al.
2023) used a large training set of 4144 molecular pairs cov-
ering a much wider chemical space of possible co-crystals.
In this work, we predict several mechanical properties of co-



Figure 2: (a) Schematic representation of the mechanical properties of co-crystals. No slip plane is associated with low
tabletability. The other three properties positively correlate with tabletability and are predicted in this work. (b) Schematic
representation of the particle deformation during powder compression. (c) Number of coformer samples of each category per
mechanical property.

crystals for the first time and we do that based on an even
larger amount of data (6029 samples), which makes our ap-
proach more versatile and better generalizable for different
pharmaceutical applications.

Co-crystallization possibility prediction
Determining the possibility of co-crystallization by molec-
ular pairing is an important step in the co-crystal design.
For this reason, many works attempted to solve this prob-
lem with AI (Yang et al. 2023; Vriza et al. 2022; Wicker
et al. 2017). Most works that are closely related to our prob-
lem do not provide code to reproduce or reuse their results
(Mswahili et al. 2021; Wang et al. 2020; Devogelaer et al.
2020). In our pipeline, we employed CCGNet, which was
trained on a set of molecular data with 6819 positive and
1052 negative examples (Jiang et al. 2021). Unlike many of
the previous works, CCGNet achieves state-of-the-art per-
formance predicting co-crystal formation while being 100%
open-source and easily reproducible.

Results
We present the pipeline for generative co-crystal design with
improved tabletability properties. The pipeline consists of
four key components, as depicted on Figure 1.

First, a trained and fine-tuned GAN model generates
SMILES representations of coformer-like chemical struc-
tures. The generated molecules are then fed into the
trained ML models along with the therapeutic compounds,
where the mechanical properties of co-crystals are pre-
dicted. In addition, an evolutionary algorithm is used in
combination with the ML models to further improve the
tabletability of the generated coformers. Finally, co-crystals
with the desired properties are selected for the next step,

where CCGNet (GNN) scores and ranks molecular pairs
of drugs and coformers according to the probability of co-
crystallization. Thus, the pipeline outputs a list of potential
coformers with the desired mechanical properties of the co-
crystal, ranked according to the probability of successful co-
crystallization. In the following sections, we describe the in-
dividual components of the pipeline in more detail.

Data
Datasets of molecules and coformers. In order to train
a generative model capable of suggesting reasonable chem-
ical structures, a dataset of molecules from the ChEMBL
database was collected. From the large variety of molecular
structures available in the database, 1.75M samples were
selected according to the following criteria:

• Structural type: molecule.
• Class: small molecules.
• Molecular weight of each component <600 Da.
• Number of hydrogen bond donors (HBD) less than 3 and

hydrogen bond acceptors (HBA) less than 8.
• Number of rotatable bonds up to 9.
• Polar surface area up to 138 nm.
• Number of heavy atoms in molecular structure up to 39.

The aforementioned criteria are based on the distributions
of relevant parameters in the known coformers and ensure
that the GAN is trained on molecules capable of forming
co-crystals. However, chemical structures in the ChEMBL
database are still substantially different from the structures
composing co-crystals. Coformers most often have more ba-
sic chemical structures and a smaller variety of functional
groups. Therefore, we used an open dataset of 6819 two-
component co-crystals (Jiang et al. 2021), which contains



4227 unique chemical structures of the co-formers, for fine-
tuning.

For the mechanical properties of co-crystals, we used the
Cambridge Structural Database (CSD) and a recently pro-
posed protocol for geometric analysis of co-crystalline ma-
terials available with a CSD Python API (Bryant, Maloney,
and Sykes 2018). For each of the 6819 available co-crystals,
we used the API to query additional experimental data from
the CSD and calculate the following binary parameters of
plasticity: presence of non-overlapping Miller planes (Unob-
structed Planes), presence of orthogonal planes (Orthogonal
Planes), and presence of hydrogen bonds between the planes
(H-bond bridging). Since some of the co-crystals were miss-
ing in CSD, this process yielded a total of 6029 records. This
data was then used for training ML models to predict each
of the three plasticity parameters.

The obtained mechanical properties of the co-crystals de-
termine their viscoelastic nature. The presence of unob-
structed planes and additional slip planes orthogonal to the
stacked layers lead to the improved plasticity (Sun 2009).
There is also evidence that the lack of hydrogen bonding
between the layers has a positive effect on the plasticity of
the crystal (Krishna et al. 2015; Reddy et al. 2006). There-
fore, an ”ideal” co-crystal in terms of plasticity should have
a non-overlapping slip planes, the presence of additional or-
thogonal planes and the absence of hydrogen bonding be-
tween the planes (Figure 2a). The compaction properties of
many pharmaceutical powders depend on their viscoelastic
nature. The closer the material to a perfectly plastic body, the
larger the bonding area after compaction of the powder and
the denser (less porous) the compressed tablet (Figure 2b).
Therefore, accurate prediction of the plasticity parameters is
essential for data-driven co-crystal design.

We analyzed the number of samples for each plasticity
parameter in the collected dataset (Figure 2c). In the case
of orthogonal planes, we observed a dramatic difference be-
tween the two groups. When training the corresponding ML
model, we accounted for this disproportion by adjusting a
threshold probability for predicting a positive class.

Representation of molecules. Traditionally, molecules
are represented as structural diagrams with bonds and atoms,
but such representations are not well suited for efficient com-
putation. Alternatively, molecules can be represented with
SMILES and molecular fingerprints, which have been ex-
tensively used for various applications, including the gener-
ative models (David et al. 2020). SMILES notation is often
used to describe the composition and structure of a chemi-
cal molecule by means of short strings (Figure 3a). Whereas
molecular fingerprints is a way of representing molecules in
the vectorized form (Figure 3b). Therefore, molecular fin-
gerprints enable comparing different structures by calculat-
ing similarity measures.

Feature selection. We used RDKit to generate 43 molecu-
lar descriptors for each coformer with its SMILES represen-
tation (Figure 3c). Since co-crystals consist of two coformer
components, each one was described by 86 numerical fea-
tures in total. Before training ML models for the prediction
of mechanical properties, we applied a set of preprocess-

Figure 3: Molecular representation using the chemical struc-
ture of caffeine as an example in the form of SMILES,
molecular fingerprints, and molecular descriptors.

ing steps. We engineered new features by aggregating the
molecular features of the co-formers of the same co-crystal
with summation and averaging. To reduce redundancy in the
feature space, we investigated the feature importances using
embedded methods and the degree of linear association with
target variables through correlation coefficients. After fea-
ture engineering and filtering, the datasets for the prediction
of non-overlapping planes, orthogonal planes, and hydrogen
bonding contained 29, 24, and 30 features, respectively.

Generation of coformers
Methods. We used the generative adversarial network
(GAN) architecture as one of the most advanced generative
approaches. GANs typically consist of two neural networks,
a generator and a discriminator, playing an adversarial game
against each other while learning the data distribution p∗(x).
The generator network receives a random input signal and
generates data distribution pθ(x), while the discriminator
network Dϕ(x) evaluates the generated data and tries to dis-
tinguish it from the real training examples (Killoran et al.
2017). In the original formulation, both networks are im-
proved by competing with each other following a min-max
optimisation procedure:

min
θ

max
ϕ

Ep∗(x)[logDϕ(x)] + Epθ(x)[log(1−Dϕ(x))]

Goodfellow et al. proposed alternate generator losses pro-
viding better gradients for the generator (Goodfellow et al.
2014):

Epθ(x)[−log(Dϕ(x))]

Since 2014, GANs have been successfully used for nu-
merous applications, including modeling of astronomical
phenomena (Schawinski et al. 2017), experiments in par-
ticle and high-energy physics (De Oliveira, Paganini, and



Nachman 2017), medical imaging (Wang et al. 2021), and
molecule generation (Guimaraes et al. 2017; Prykhodko
et al. 2019). Here, we use an open-source GAN implemen-
tation2 inspired by the work of (d’Autume et al. 2020). The
GAN takes SMILES representations of molecular structures
as input. In the training process, the generator network cre-
ates molecular representations from the Gaussian noise and
the discriminator network tries to differentiate those from
the tokenized SMILES of the real chemical compounds. As
a result, the generator learns to output new molecular struc-
tures similar to those in the training set.

Implementation details. Performance of GANs is known
to strongly depend on hyperparameters and random restarts
(Lucic et al. 2018). Therefore, we implemented a grid search
to select such hyperparameters as batch sizes and learning
rates and performed several repetitive trainings for the best
combination. In total, we evaluated 35 different hyperparam-
eter sets by training the GAN for 10,000 steps and calculat-
ing validity of the generated molecular structures. Validity
refers to the ratio of predicted molecules deemed chemi-
cally plausible, it is estimated by RDKit taking into account
the valence of atoms in the molecule and the consistency
of bonds in aromatic rings. The model showing the steep-
est increase in the number of valid molecular structures was
considered the best and retrained for 30,000 steps.

Ultimately, the generative model was targeted at gener-
ation of coformer-like chemical structures. Therefore, af-
ter pretraining on the ChEMBL dataset, the GAN was fine-
tuned on the dataset of coformers, described in the data sec-
tion. At this stage, we tested 125 different sets of hyperpa-
rameters including learning rates, batch sizes, and the num-
ber of additional training steps. We evaluated the validity
and percent of unique chemical structures to select the final
fine-tuned GAN model.

Finally, we used the Tanimoto index, also known as Jac-
card index, to quantify structural similarity of the gener-
ated molecules (Bajusz, Rácz, and Héberger 2015). For
that, we obtained fingerprint representations of the generated
molecules with RDKit and calculated the Tanimoto index as
follows:

SA,B =
c

a+ b− c
,

where S denotes similarities, a is the number of on bits in
molecule A, b is the number of on bits in molecule B, while
c is the number of bits that are on in both molecules. We
assessed the distribution of this metric for the predicted co-
formers to control for GAN overfitting and ensure the rich
variety of the generated molecules.

Results. The GAN trained on the ChEMBL dataset with
batch size of 512 and learning rate of 0.001 consistently pro-
duced molecules with validity >75 % after 25,000 training
steps. After 30,000 steps, this model was fine-tuned on the
coformer dataset with a smaller batch size of 256 for addi-
tional 1,000 steps (Figure 4a).

To illustrate the importance of fine-tuning in this case, we
employed the t-distributed stochastic neighbor embedding

2https://github.com/urchade/molgen

Figure 4: GAN training results on ChEMBL datasets and
coformers: (a) plot of the growth of the percentage of valid
chemical structures in a batch, (b) t-SNE visualization of
molecules from the ChEMBL dataset and coformers, (c)
Distribution of the Tanimoto index between the trained
GAN-generated molecules and the structures from the train-
ing dataset.

(t-SNE) technique and plotted samples of the correspond-
ing datasets in 2D (Figure 4b). The t-SNE analysis reveals
that the molecular space of coformers is considerably more
constrained compared to that of ChEMBL. Therefore, fine-
tuning was critical to shift chemical compound generation
towards the molecular space of coformers. The final model
was able to produce >95 % of valid and >86 % of unique
chemical structures molecules in the test generation of 1000
molecules at 5 times repetition.

To verify the diversity of the predicted molecules, we
plotted the distribution of the maximum Tanimoto similar-
ity measure calculated for each predicted molecule against
the entire training set (Figure 4c). We observed the median
value of 0.56 indicating that the generated molecules were
only moderately similar to those in the training data. This
suggests that the final GAN does not suffer from overfitting
and is perfectly capable of predicting unique and valid co-
former structures.

Prediction of mechanical properties of co-crystals
Methods. Since the number of training examples available
for prediction of mechanical properties was only 6,029, we
resorted to the classical machine learning algorithms. We
formulated a binary classification problem for each of the
mechanical properties and implemented a number of ML
models as a first screen, including logistic regression, k-
nearest neighbors classifier, support vector machines, deci-
sion trees, multilayer perceptron, as well as ensemble mod-



Figure 5: Accuracy and F1 score metrics for the ML models predicting three mechanical properties of co-crystals. (a) Unob-
structed planes. (b) Orthogonal planes. (c) H-bonds bridging. The performance of each model is shown before (“Raw data”)
and after (“Processed data”) the feature engineering and feature selection steps.

Task Property Data points Best metric Generative
design Ref

Regression Crystal density 26 R2 = 0.993 No (Fathollahi and Sajady 2018)
Regression Melting temperature

30

R2 = 0.992 No

(Gamidi and Rasmuson 2020)
Regression Melting enthalpy R2 = 0.999 No
Regression Melting entropy R2 = 0.997 No
Regression Ideal solubility R2 = 0.953 No
Regression Melting temperature 61 RSD = 2.89% No (Gamidi and Rasmuson 2017)
Regression Lattice energy

61
RSD = 2.40% No

(Rama Krishna et al. 2018)Regression Crystal density RSD = 1.77% No
Regression Melting temperature 84 R2 = 0.998 No (Yue, Wang, and Lu 2023)
Regression Crystal density 4144 R2 = 0.985 No (Guo et al. 2023)
Classification Unobstructed planes

6029
Accuracy = 0.731

Yes Our workClassification Orthogonal planes Accuracy = 0.785
Classification H-bonds bridging Accuracy = 0.734

Table 1: Comparative table with model metrics on prediction of various co-crystals properties

els, such as random forest (RF) and gradient boosting (GB).

Implementation details. The preprocessed dataset was
randomly split into train and test sets in proportion 4:1. The
train set was used to optimize hyperparameters of the models
with a grid search using the 10-fold cross-validation (CV).
The random grid size was 500 and concerned the following
parameters: learning rate, number of estimators, subsample,
maximum depth of the individual estimators. The test set
was used only once, to evaluate and report the performance
of the optimized models. We calculated accuracy and F1
score during the CV to select the best hyperparameter set.
The use of the two metrics was important given the imbal-
anced nature of the “Orthogonal planes” and “Unobstructed
planes” target variables (Figure 2c).

To account for the disproportion, we also adjusted the
threshold for the probability of the positive class by calcu-
lating precision and recall metrics. When plotted against the
threshold values, the intersection of the two curves repre-
sents the optimal point for balancing the number of false

positives and false negatives.
Finally, we employed SHapley Additive exPlanations

(SHAP) to interpret model predictions. SHAP is a model-
independent method based on sensitivity analysis investi-
gating the effect of systematic changes in feature values on
the model output (Lundberg and Lee 2017). Such analy-
sis serves as an additional validation of the trained models
by inspecting the set of the most important features in the
decision-making process and putting it into the context of
the original domain. But also, it enables domain-specific hy-
pothesis generation while contributing to the explainability
of the predictive model, which is a huge benefit for potential
applications.

Results. Overall, the GB model showed the best accuracy
and F1 score compared to the other models across all tasks
(Figure 5). Despite the high accuracy for the orthogonal
planes parameter, we obtained a moderate F1 score suggest-
ing that the final model is more likely to predict the absence
of the orthogonal planes. This is attributed to the dispro-



portion in the training examples discussed earlier. Although
we demonstrated a significant improvement in metrics by
introducing the probability threshold evaluating the model
trained on the processed data, it was not enough to entirely
resolve this issue.

We optimized the hyperparameters of the Gradient Boost-
ing (GB) model, which resulted in the performance met-
rics outlined in Table 1. Furthermore, we conducted a thor-
ough review of the existing research on the prediction of
co-crystal properties to compare with our results. Notably,
we are the first to develop predictive models for the plas-
ticity parameters, so our metrics set the state of the art. In
addition, our work clearly stands out by the number of data
points used for training.

With SHAP analysis, we learned that the number of atoms
among the molecular pairs forming a co-crystal is a decisive
factor in the prediction of non-overlapping and orthogonal
planes. In both cases, the decrease in the number of atoms in
the coformer molecules significantly contributed to the pres-
ence of non-overlapping and orthogonal planes. The descrip-
tors associated with the number of hydrogen bond donors
(HBD) also had a high degree of importance. As expected,
an increase in the number of HBD resulted in the hydrogen
bonds forming between planes of the co-crystal.

Evolutionary optimization of coformers
Methods. To increase the quality of coformer generation,
we apply a graph-based evolutionary algorithm to struc-
tures produced by the GAN. The software implementation is
obtained from self-developed GOLEM1 library. The fitness
function is designed to reinforce the mechanical character-
istics of the molecules being optimized based on predictions
of the classification models described above:

f(x) = (1− pup(x), 1− pop(x), phbb(x))
T
,

where x is an evaluated molecule of coformer, pup(x) is
the probability of the positive class for unobstructed planes,
pop(x) is the same probability for orthogonal planes, and
phbb(x) - for H-bond bridging. Therefore, minimization
of the fitness function f leads to generation of coformer
molecules having an improved tabletability profile.

Implementation details. The multi-objective optimiza-
tion algorithm used in this work considers molecules as
undirected graphs and follows the generational evolution-
ary scheme SPEA2 (Zitzler, Laumanns, and Thiele 2001).
First, a population of individuals is evaluated with the fit-
ness function. Then, SPEA2-based selection is applied to
pick individuals from the population to undergo mutation.
After the variation by mutation is done, the inheritance op-
erator is used to form the new population of individuals to
proceed to the next iteration.

The initial population of coformer structures (obtained
with GAN) were varied by the set of mutation operators (in-
spired by (Leguy et al. 2020b)). The set of mutations in-
cludes simple operations (add, delete, or replace an atom,
delete or replace a bond) and more complicated, multi-step

1https://github.com/aimclub/GOLEM

Figure 6: Comparison of probability distributions for the key
mechanical properties of coformers generated by the GAN
and further optimized with the evolutionary algorithm.

Metric type Median probability p-value
Generated Optimized

Unobstructed planes 0.82 0.87 (+6.1%) 2.415e-31
Orthogonal planes 0.37 0.46 (+24.3%) 1.144e-51
H-bond bridging 0.61 0.75 (+23.0%) 2.705e-84

Table 2: Results and statistical significance of the evolution-
ary optimization.

actions (delete or move a functional group, insert carbon,
remove an atom if it has only two neighbors).

More than 128,000 new molecules with suboptimal char-
acteristics were generated after 20 independent runs of op-
timization. For each run of evolution, we used 1000 ran-
dom structures generated by the GAN as the initial popula-
tion. Analyzing the dataset of known coformers (Jiang et al.
2021), we estimated the maximal number of heavy atoms to
be 50 and the available elements to be C, N, O, F, P, S, Cl, Br,
and I. Population sizes were set to 200, number of iterations
to 200 and timeout to 60 minutes.

Evolutionary algorithms tend to produce redundantly
complicated structures due to overfitting (Gonçalves and
Silva 2011). To avoid unrealistic molecules, synthetic ac-
cessibility score (SA) (Ertl and Schuffenhauer 2009) was
calculated for all obtained molecules. Only coformers with
SA ≤ 3 were selected for further consideration.

Results. To evaluate results of the evolutionary search, we
extracted the best molecules from the Pareto frontiers of the
independent runs and compared them to the best molecules
produced by the GAN. The results are presented in Figure 6
and described in Table 2. We observed a significant increase
in probabilities of generated co-crystals to have the desired
mechanical properties after the evolutionary optimization,
assessed by the non-parametric one-sided Mann-Whitney
test. Notably, the median probability for the desired prop-
erties of H-bond bridging and orthogonal planes increased
by 23.0% and 24.3%, respectively.

Estimation of probability of co-crystal formation
To account for the probability of co-crystallization, we
applied an existing GNN-based deep learning framework,
called CCGNet (Jiang et al. 2021). With an average bal-
anced accuracy of 98.6%, CCGNet efficiently scores and



ranks coformer candidates according to the probability of
co-crystal formation. Since CCGNet was originally trained
on the same database of coformers, we did not perform any
fine-tuning and simply integrated the model from the open
GitHub repository3 into the pipeline.

The pipeline for de novo co-crystal design
To demonstrate the functionality of the pipeline, we gen-
erated a set of coformers for Theophylline, a well-known
drug against respiratory diseases that has recently been pro-
posed as an adjuvant in the treatment of COVID-19 patients
(Montaño et al. 2022). The pipeline produced 760 candidate
molecules with good tabletability properties, of which 225
coformers received high scores for the co-crystallization po-
tential with Theophylline (162 produced by the GAN and 63
by the evolutionary optimization). Figure 7 presents eleven
high-score molecules picked at random.

Based on our observations, the GAN produces molecules
with a higher likelihood of co-crystallization compared to
the evolutionary algorithm. On the other hand, molecules
refined through the evolutionary algorithm exhibit the de-
sired mechanical properties with higher probability. Thus,
coformer generation with the proposed pipeline necessitates
a trade-off between the desired properties and the potential
for co-crystallization, given the critical importance of both
of these parameters.

One of the common functional groups in the generated
chemical structures is carboxyl. Notably, this functional
group often forms the hydrogen bonding synthons in the
Theophylline co-crystals (Kakkar et al. 2018). Moreover,
3,4-dichlorobenzoic acid, which differs by only one halo-
gen group from the generated compound (molecule with
Score=20.5 in Figure 7) is now a confirmed coformer of
Theophylline, while its tabletability properties were not dis-
cussed in the original study of Kakkar et al.

The evidence presented above looks very promising for
the practical applications of our pipeline. However, a com-
prehensive experimental validation is required to confirm its
utility. It involves organic synthesis of coformers and co-
crystal formation followed by a tablet compression experi-
ment. This work is currently in progress.

Based on our empirical results, we anticipate the follow-
ing limitations of the proposed pipeline:

• The molecular space of the generated coformers may be
too narrow for some of the applications. This is the con-
sequence of the small sample size of the coformer dataset
used for fine-tuning the GAN.

• As discussed earlier, the GB model is biased towards pre-
dicting the absence of the orthogonal planes, which in-
evitably results in an increased number of false negatives
in the predicted set of coformers. In this case, we recom-
mend considering an alternative set of coformers selected
by the other two mechanical properties but not all three
of them.

• Low-scale screening may still produce coformers failing
to form co-crystals, especially those produced by the evo-

3https://github.com/Saoge123/ccgnet

Figure 7: Predicted coformers for Theophylline with good
tabletability properties, scored and ranked according to the
probability of co-crystallization. “Generated” refers to a set
of coformers produced by the GAN. “Optimized” is a set
of generated coformers that were further improved with the
evolutionary algorithm. “Both” represents the intersection of
the two sets.

lutionary optimization. Although the generated coform-
ers are ranked according to the probability of formation,
there is currently no method to precisely estimate this
probability. Therefore, the more coformers are screened
for a particular therapeutic agent, the higher the chance
to obtain molecular pairs forming co-crystals.

Most of the limitations of the proposed pipeline can be
solved with more data available for training. Data availabil-
ity remains the major challenge for AI applications in co-
crystallization.

Conclusion
In this work, for the first time we developed a generative
pipeline for de novo co-crystal design. The pipeline consists
of a GAN generating coformer molecules for a given thera-
peutic agent, a gradient boosting model predicting mechani-
cal properties associated with tabletability and a GNN-based
model ranking coformer candidates according to the prob-
ability of forming co-crystals. In addition, an evolutionary
optimization step allows to explore an even wider space of
molecules while reinforcing the desired mechanical proper-
ties. We validated the pipeline by predicting coformers for
Theophylline, a drug against respiratory diseases. Despite
limitations associated with data availability, the pipeline en-
ables fast generation of unique and valid chemical structures
of coformers with predefined tabletability properties and
high probability of co-crystallization. This research paves
the way for more efficient co-crystal design benefiting phar-
maceutical industry and beyond.
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