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Abstract
Multimodal conversational agents allow the user to commu-
nicate through natural language and visual information. In e-
commerce, this type of agents have the potential to lead to
realistic and dynamic shopping experiences, where the cos-
tumer finds the desired products more efficiently with the help
of an agent. A common approach in this scenario is to build
a representation space where both the textual and visual in-
formation of a product are close. Then, it is possible to search
and retrieve products with queries from any of the modalities.
This work proposes to generate this joint representation space
by also taking into account prior knowledge about the fash-
ion domain, to ensure that the retrieved products comply with
the target type of products. Combining label relaxation with
a taxonomy-based regularization, the proposed approach di-
minishes the penalization of the contrastive loss by assigning
a smaller loss to other acceptable matches. Our results show
that the proposed approach significantly reduces gross errors,
like retrieving pants when the costumer is looking for t-shirts,
while simultaneously achieving good retrieval performances.
Additionally, this approach allows multimodal queries, where
specific attributes can be modified by manipulating a visual
query with text.

Introduction
Nowadays, with e-commerce rising in completely different
areas, the need to incorporate the in-store physical experi-
ence in online shopping rapidly emerged. One of the ways
to accomplish this is through conversational agents capable
of searching and retrieving the products desired by the user
from the store’s catalog. For an efficient interaction, especial
attention has been given to multimodal conversations, where
the user and the agent communicate through both textual and
visual data. This type of interaction leads to realistic, fast,
and dynamic experiences, with the potential to revolutionize
e-commerce (Magalhaes et al. 2021).

This work aims to provide a conversational agent the abil-
ity to perform product retrieval based on a query given dur-
ing the conversation The query can be given in a textual or
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Figure 1: Right and wrong examples of product retrieval.

visual format, to allow taking advantage of all the different
types of data that fully characterize fashion items. A diffi-
culty that immediately arises is the challenge of represent-
ing different objects that contain the same or similar infor-
mation.

Within the fashion domain, products are characterized not
only by their visual aspect and style, but also by its cate-
gory, attributes, brand, etc. Capturing all this information in
a single representation is crucial for the success of product
retrieval (Li et al. 2021), in particular to prevent critical fail-
ures, as suggested in Figure 1.

Thereupon, arises the need to create a common space
where both modality instances coexist in the form of the rep-
resentations generated from the information extracted from
the products. This work proposes a new label relaxation
strategy to train a retrieval model based on a structured mul-
timodal space. Instead of minimizing the contrastive loss be-
tween the corresponding textual and visual embeddings, as
in (Radford et al. 2021), our approach relies on prior knowl-
edge extracted from the products to impose additional con-
straints on the organization of the representation space.

Our proposed approach assumes that multiple valid
matches may exist between the textual and visual instances.
Namely, products that share a similar path in the fashion tax-
onomy are assumed to be close matches and are, therefore,
less penalized in the loss function. This new approach orig-
inates a structured representation space, represented in Fig-
ure 2, that captures the nuances of product retrieval, while
minimizing critical errors.

Related Work
Several works have been developed on product retrieval. In a
general way, these works extract features from the different



Sweat Classics Men  

adidas Trefoil Hoodie Scotch & Soda Double  
Faced Sweatshirt

Tie Shirt Dress

Dress red women

Contrastive Loss Contrastive Loss with Prior Knowledge

Men navy suit

Beige formal suit

Sweat Classics Men  adidas Trefoil Hoodie

Scotch & Soda  
Sweatshirt

Tie Shirt Dress

Red dress women
Men navy suit

Beige formal suit

Figure 2: Spatial organization with a contrastive loss versus the proposed relaxed contrastive loss with prior knowledge.

objects, and learn to match queries with the corresponding
products through metric learning. Van Gysel, de Rijke, and
Kanoulas (2016) introduced a latent vector space model that
learns representations of words, e-commerce products (that
are associated with its respective textual description and at
least one user review), and a projection between the two of
them. This latent representation enables retrieval based on
conceptual content instead of exact word matching. Rasi-
wasia et al. (2010) used Canonical Correlation Analysis to
study the correlations between two modalities in multime-
dia documents in order to find a projection to connect them
and enable cross-modal document retrieval, i.e, fetching the
text that reflects a given image, or fetching the image that
reflects a textual query. Gong et al. (2013) extended the pre-
vious approach in order to overcome some weaknesses of
this method, such as the incapacity to integrate additional in-
formation that would lead to a supervised learning approach
and a space structuring by introducing a third dimension.
Different works have also tried to solve some computer vi-
sion tasks using NL, by connecting the representation of
images and text. In one of the first approaches of trying
to label images, Hironobu, Takahashi, and Oka (1999) pro-
posed a method that creates relationships between images
and words. The ambition is the ability to detect words (nouns
and adjectives that would describe or summarize the image)
in paired images. DeViSE (Frome et al. 2013) is another ar-
chitecture that ends up bridging visual and textual represen-
tations. The goal is to, again, transfer textual semantics into
a model trained for visual object recognition by connecting
two modalities, but this time by introducing a convolutional
neural network and with the ambition of achieving the abil-
ity to perform zero-shot transfer. Considering a dataset of
both labeled image data and raw unannotated text, the au-
thors concluded that semantic information demonstrated to
be useful to make predictions about thousands of image la-
bels not observed during training. Focusing on image cap-
tioning, Li et al. (2017) extended the task of predicting in-
dividual words present in the image’s caption into a much

more complex task: predicting phrase n-gram that can be
seen as a caption with length n using the same dataset as
before. In particular, the authors considered for this assign-
ment images and respective user comments excluding la-
beled data. For this, visual n-grams models that can formu-
late random phrases relevant to the content of an image are
built.

Baltrušaitis, Ahuja, and Morency (2017) proposed two
categories of multimodal representation such that it is possi-
ble to distinguish different ways of connecting different ob-
jects. One of them, a coordinated representation, generates
a coordinated space by creating similarity constraints that
combine the individual modality’s signals after being indi-
vidually processed. For the generation of this coordinated
representation, a visual and textual encoders are used to gen-
erate the visual and textual representations, respectively, that
are later approximated with the cosine-similarity.

Recently, CLIP (Radford et al. 2021) has surpassed the
previous works by considering a contrastive approach in
which the goal is to match raw captions with images. The
model is able to perform zero-shot transfer to downstream
tasks by using Natural Language as a supervisor that ex-
presses an enormous number of visual concepts and has
shown to be competitive with fully-supervised baselines.

Nevertheless, due to its contrastive loss, the previous ap-
proaches do not consider other case scenarios where there
might be various instances that bear resembles to the con-
trastive objective. The proposal of this work focuses on
adding information about the instances to relax the con-
trastive loss, such that fashion items do not only get their
visual and textual representation closer, but similar products
are not forced to be apart, resulting in a spatial structuring
inspired on the fashion taxonomy.

Structured Multimodality - Catalog
Organization

In this section, a model capable of creating a structured mul-
timodal representation is presented considering two modali-
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Figure 3: Training process. The image encoder is a Vision
Transformer (Dosovitskiy et al. 2021); The text encoder a
Transformer (Vaswani et al. 2017). Adapted from (Radford
et al. 2019).

ties, visual and textual data, and prior knowledge.

Multimodal Representation
To learn a joint representation space for the two modalities,
we follow a training process that has been previously ex-
plored in other works (Sohn 2016; van den Oord, Li, and
Vinyals 2019; Radford et al. 2021). It consists of using mini-
batches of N (image, text) pairs, corresponding to an image
and a description of a product in the dataset. Each pair is
processed by the model through an image and text encoders,
which results in a latent vector for each modality instance,
denoted by Ii and Ti, respectively. The similarity between
each possible pair is then computed, using the cosine simi-
larity, sim(Ii, Tj), i = 1, . . . , N , j = 1, . . . , N , leading to
an N ×N matrix, as shown in Figure 3

Since the target pairs of instances are known, the typi-
cal approach is to minimize some variant of a contrastive
loss. For instance, Radford et al. (2021) use the normalized
temperature-scaled cross entropy (Chen et al. 2020), defin-
ing the loss of a positive pair (Ii, Ti) as

ℓ(Ii, Ti) = −log
exp (sim(Ii, Ti)/τ)∑N

k=1 exp (sim(Ii, Tk)/τ)
, (1)

where τ is the temperature parameter. The global loss is then
given by

L =
1

2N

N∑
i=1

(
ℓ(Ii, Ti) + ℓ(Ti, Ii)

)
. (2)

The drawback of this approach is that it assumes only one
of the possible visual and textual embedding pairs is correct,
forcing the model to approximate these and to push all other
combinations farther apart. However, some of the incorrect
pairs are often acceptable from the customer point of view,
especially when the product description is not very specific.
As such, the contrastive loss above is often too harsh on pair-
ings that are not necessarily incorrect.

Prior Knowledge
In order to overcome this limitation, we propose to relax the
loss function, reducing the penalization assigned to accept-
able pairs. To achieve this, label relaxation is applied to the
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Figure 4: Adding Prior Knowledge to the Contrastive Loss.

target pairs, so that the loss function is less strict with respect
to which instances should paired.

Label Relaxation Label relaxation was originally pro-
posed as a strategy to reduce overfitting (Lienen and
Hüllermeier 2021). In this technique, the target is a set
of probabilities represented in terms of an upper probabil-
ity distribution, diminishing the chance of getting a biased
model. The goal is to reproduce a similar form of regular-
ization to our model such that when close instances belong
to the same batch, the probability of the correct match will
not be concentrated only on the exact pair, but this value is
divided by the remaining elements that are not totally wrong,
but are not the correct match.

From possibility theory (Dubois and Prade 2007), let π
be the distribution that defines upper bounds on the prob-
ability of events, also called possibility distributions, such
that π : Y → [0, 1], χ is an instance space, Y = {y1, ..., yk}
a set of class labels that, in our approach, represent the im-
ages/text intended to match, and P(Y) the space of proba-
bility distributions over χ. The intention with this approach
is to keep having the correct answer, that is, π(yi) = 1 for
one case yi ∈ Y . Additionally, by permitting a certain de-
gree π(y) > 0 of plausibility to the other classes, it is possi-
ble to express that these classes are not totally wrong either
through a parameter α ∈ [0, 1].

As a result, Qα
π is, at this point, given by the set of prob-

ability distributions p, that assign the probability mass of at
most 1 (and at least 1− α) to the correct pair, and at most α
to the remaining acceptable pairs,

Qα
i = {p ∈ P(Y) |

∑
yi ̸=y∈Y

p(y) ≤ α} (3)

By introducing this label relaxation, the different views of
one product and other acceptable matches are allowed to be
closer in space. The objective is that when a batch with these
instances is given to the model, the loss does not penalizes
so much these pairings, and allowing the model to assign
high probability to another view of the same product or to
other pairs other than the intended match.

Figure 5 illustrates the effect the proposed label relaxation
strategy has on the organization of the representation space,
through the manipulation of the distribution. For illustrative
purposes, a batch of N instances is considered and there are
C additional pairs that are close enough to be considered ap-
propriate for the image I1, and being α the constant that lim-
its the maximum probability mass attributed to these cases,
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Figure 5: Example of the probabilities assigned to the each
pair (I1, Ti) in a batch of N = 6 samples, where T4 and T5

are two incorrect but acceptable pairs (C = 2).
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Figure 6: Different Views and Similar Instances.

Figure 5 presents the batch of assigned probabilities to those
N textual instances being the pair of image I1.

To accommodate this new target distribution, we replace
the cross-entropy loss in (1) with the Kullback-Leibler (KL)
Divergence, which has no computational overhead.

When using the contrastive loss with the KL divergence
on batches that do not contain other acceptable pairs, the loss
will be equal to the previous scenario. For the other cases,
the gradients based on the optimization of the KL divergence
will group attract all possible pairs, while only pushing apart
unacceptable pairs.

Defining Acceptable Pairs The proposed label relaxation
strategy requires the establishment of a definition of accept-
able pairs. We leverage prior knowledge about the fashion
domain to determine which pairs of product images and
descriptions are acceptable. Specifically, the fashion taxon-
omy, typically used to categorize a product, allows us to
determine which products share a similar root. Addition-
ally, multiple views of a product are often part of a cata-
log and share a common product description. Therefore, two
instances are considered close, and they should indeed be
closer in the multimodal space, if they are:

1. different views of the same product;
2. categorically identical.
Examples of product images and descriptions that are con-
sidered acceptable are illustrated in Figure 6.

Experimental Setup
Dataset
In fashion, there is a wide range of datasets that focus on
computer vision tasks, namely detection of multi-class la-
bels and attributes. In multimodal retrieval, in which prod-
ucts are represented by images and textual descriptions,
there is a lack of fashion datasets that allow accomplish this

goal. The fashion domain dataset used in this work is MMD
(Saha, Khapra, and Sankaranarayanan 2018), and is consti-
tuted by simulations of domain-aware in-store conversations
and respective fashion products mentioned during those con-
versations. The dataset can be split into two relevant and
different parts: the dialogues and the products. Only the lat-
ter will be used. The products are represented by different
views and it is imperative that the retrieving model knows
how to interpret the various points of view of an article and
knows that, for instance, a photograph of the back of a dress
represents the same dress as the front view, although the in-
formation extracted by the visual encoder differs. Moreover,
and considering the products’ categories defined by the hier-
archical taxonomy, it is also possible to measure how close
items are categorically. These two points are key aspects that
our approach focuses on solving. Hence, the dataset is con-
stituted by:
• Images (different views/angles), Text (titles) and Taxo-

nomic paths (labels) from all products;
• A total of 100K fashion items, represented by 460K (im-

age, title, taxonomy) instances.
Given the motivation of this work, there are two scenar-

ios for the store’s catalog: it can be a fixed set of products
known by the system, or can be extended by new unknown
instances introduced in this space, either by an increase of
the catalog, or by the user’s queries. For this reason, and
given the lack of benchmarking datasets, the proposed solu-
tion will be assessed considering different evaluation metrics
on the:
• Static catalog - simulation of the store’s catalog. Com-

posed by a fixed amount of instances (80% of the original
data).

• Dynamic catalog - simulation of the store’s catalog with
known instances (80%) and new unknown ones (20% of
the original data).

Furthermore, and to simulate the results in specific environ-
ments, special cases for the dataset and queries were also
considered:
• Manipulation of the size of the catalog, aiming at testing

the lack and abundance of products in a subset with 60%
of the original data: MMDsmall;

• Queries with different characteristics and categories to
test the retrieval of unique and common products.

Evaluation Metrics
Considering that this proposal aims at structuring the multi-
modal space to guarantee meaningful results, the following
metrics were defined to evaluate the generated catalogs:
• Visual inspection of the retrived items (qualitative as-

sessment);
• The distance between embeddings of items of the same

category;
• The percentage of same-category products in the top
K closest instances;

• The distance between different product views;
• Real Pairs: Recall@K.



Implementation Details
Regarding the implemented model, the pre-trained CLIP
(Radford et al. 2021) was used, consisting of an image and
text encoders. The first is a Vision Transformer (Dosovitskiy
et al. 2021) that surpasses the performance of state-of-the-
art convolutional neural networks. The latter a Transformer
(Vaswani et al. 2017) with a few modifications introduced in
(Radford et al. 2019).

Optimizer SGD
learning rate
1× 10−4

momentum
0.9

Scheduler: OneCycleLR total steps
36750

Batch size: 750 # Epochs: 30

Table 1: Implemented model hyperparameters

The model was fine-tuned on the MMD dataset using
SGD with momentum, with the hyperparameters defined in
Table 1. The learning rate was initially set to 10−4 and up-
dated with the 1 cycle policy (Smith and Topin 2019). More-
over, and with respect to the relaxation parameter that de-
fines the upper bounds of the distribution, α = 0.25.

Results
The following section focuses on the experiments that were
conducted for evaluating the proposed solution. A qualita-
tive assessment of the results is considered initially for the
models with and without the introduction of prior knowl-
edge. Then, the multimodal catalogs generated with the dif-
ferent models are evaluated in a quantitative way using the
metrics previously defined.

Retrieval: Visual Evaluation
In order to evaluate the system’s performance, some cases
were first defined. In these tests, the aim is to understand
how the model behaves when a textual, visual or multimodal
query is inserted. One very important aspect to highlight is
that these tests consider real scenarios, that is, the visual
and textual queries do not belong to the dataset and were
never seen by the architectures. Given the subjectivity of
this evaluation, the results obtained are analyzed based on
factors such as the category of products presented and their
attributes, compared to what was expected.

Considering a query with textual information, Figure 7
represents the results obtained when performing product re-
trieval on MMDsmall. The first row presents the instances re-
trieved by the architecture with the proposed relaxation, and
the second the products obtained by the model with the cross
entropy. It is possible to conclude that the outlier retrieved
by the latter does not exists in the first’s top 5.

Considering a query with textual information, Figure 8
represents the results when performing product retrieval of
a non-existent product. Firstly, and regarding the instances
retrieved by the architecture without prior knowledge, there
are 3 items that not only do not have the intended category,
but also have a very distant one (suit and pajamas). This oc-
currence can be justified given the existent visual similarities

Query: Red formal dress - using cross entropy on loss

1 2 3 4 5

Query: Red formal dress - using prior knowledge and KL Divergence on loss

1 2 3 4 5

Figure 7: Top 5 closer items when trying to retrieve a
”Red formal dress” with and without prior knowledge, on
MMDsmall.

between the first three images and a suit. On the other hand,
the structure established by the proposed loss ensures that
the returned products are more appropriate.

Query: Pink Suit for Woman  - using prior knowledge and KL Divergence on loss

Query: Pink Suit for Woman  - using cross entropy on loss

1 2 3 4 5

1 2 3 4 5

Figure 8: Top 5 closer items when trying to retrieve a ”Pink
suit for woman” with and without prior knowledge.

In a multimodal scenario, and with the objective of find-
ing a product similar to an image, but with modifications
that are introduced in the form of text, Figure 9 presents the
outcome of the tests to the linearity of this space and the
capacity of navigating in it. The figure shows the obtained
results when performing both addition and removal of fea-
tures from the image through textual information. Conse-
quently, the textual embedding related to the color ”black”
has been subtracted from the embedding of the provided im-
age (a dress), and the one related with the color ”red” was
summed. The results obtained after these operations are red
long-sleeved dresses with the same attributes as before, but
with the desired color.

Figure 10 shows the products obtained when performing
both addition and removal of three adjectives in textual form
from a base representation. The results achieved after these
operations show the obtained contrast when retrieving op-
posite instances with respect to one attribute. Regarding the
retrieved top, considering a visual analysis given the sub-
jectivity of these adjectives and an evaluation as a whole,
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most of the results seem adequate given the baseline and
subsequent modification. Even when comparing with other
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Figure 10: Results for the top 4 closer items when trying to
retrieve products with a manipulated embedding.

Static Catalog
To evaluate the models in a quantitative way on the static
catalog, the previously defined metrics are considered and
its results presented:
1. Distance between embeddings of items of the same

category:

The analysis of Table 2 allows concluding that there is
greater proximity between the instances of the same sub-
category in the catalog generated by the model in which
prior knowledge is introduced. Moreover, the smaller
variance demonstrates that the increase in this proxim-
ity is in the various sub-categories existing in the dataset
and not just in some.

model mean variance
Original Model 0.7886 0.0069

Fashion Fine-Tuned
without taxonomy 0.8410 0.0034

Fashion Fine-Tuned
with taxonomy 0.8760 0.0020

Table 2: Proximity (cosine-similarity) between instances of
the same subcategory: mean and variance.

2. Percentage of same-category products in the top K
closest instances:
The neighborhood of a product is given by the instances
closest to it in terms of vector similarity. By checking
which is the sub-category of the products that are in the
neighborhood of each instance, it is possible to evaluate if
the addition of prior knowledge places products with the
same sub-category in the neighborhood of each other.
Table 3 shows that the increase in the percentage of
neighbors is visible when the model is fine-tuned, but
even more notorious when it is fine-tuned and prior
knowledge is introduced. This increase is verified for the
various values of K tested.

Top K Original Model
Fashion Fine-Tuned
without taxonomy

Fashion Fine-Tuned
with taxonomy

1 0.4831 0.4873 0.4883
10 0.3531 0.3564 0.3665
25 0.3142 0.3198 0.3291
50 0.2883 0.2951 0.3013

Table 3: Percentage of same sub-category top K neighbors.

3. Distance between different product views:
Items that must be close are not only those that share
a common sub-category, but also the various views of
a given product. Table 4 shows that for the models to
which prior knowledge is added, the similarity between
the views of all products is now higher. The reduction
in the variance is significant when comparing the Origi-
nal Model model and the Fashion Fine-Tuned with Prior
Knowledge, in which it dropped to half, making the
views of all products, in general, closer.

Real Pairs The previous results measure the influence of
the different architectures on the spacial distancing and posi-
tioning of instances of equal sub-categories and views. The
focus now is on the retrieval task, that is, measuring the in-
fluence of prior knowledge increases on the retrieval perfor-
mance. Table 5 presents, for each model, the Recall@K on
the static catalog when matching all the 460K images with



Original Model
Fashion Fine-Tuned
without taxonomy

Fashion Fine-Tuned
with taxonomy

mean 0.8604 0.9079 0.9289
std 0.1020 0.0680 0.0536
min 0.2440 0.4858 0.5820
25% 0.8168 0.8803 0.9077
50% 0.8803 0.9213 0.9399
75% 0.9331 0.9550 0.9653
max 1.0000 1.0000 1.0000

Table 4: Statistics of the cosine-similarity between all views
for every product.

the respective title. The results obtained show that although
the new loss emphasizes less the real pairs, the matches as-
signed are, for all K, more correct when prior knowledge is
introduced.

Recall
@K

Original Model
Fashion Fine-Tuned
without taxonomy

Fashion Fine-Tuned
with taxonomy

1 0.0290 0.0379 0.0401
10 0.1060 0.1501 0.1615
25 0.1631 0.2350 0.2524
50 0.2207 0.3196 0.3418

Table 5: Recall@K for K = {1, 10, 25, 50} when retrieving
the pair of an image/title on the static catalog.

model
real pairs mean

probability
real pairs mean
cosine-similarity

Original Model 0.1597 0.3071
Fashion Fine-Tuned
without taxonomy

0.2159 0.4375

Fashion Fine-Tuned
with taxonomy

0.1813 0.5300

Table 6: Probability and cosine-similarity between the real
pairs from different modalities, for each model.

Regarding the similarity between embeddings calculated
using the cosine-similarity, and when using CLIP and intro-
ducing prior knowledge, contrary to the trend of the proba-
bility of matching, an approximation of the embeddings that
represent a match is verified. This contrast can be explained
by the increase in density and spatial agglomeration of the
categories, which reflects on a greater number of possible
pairs when calculating all the probabilities, and a more re-
duced one for the real pair. In fact, this also shows that the
prior knowledge is approximating same-category instances.

Dynamic Catalog: Generalization
So far, the quantitative results presented have focused on the
structure of the catalog, which is static. Therefore, it was not
necessary to make any considerations about the existence of
never seen instances by the system, and, subsequently, its
generalization capacity on a test set.

Considering the two cases in which the system receives
new unknown data, two of the metrics previously used will
now measure:

• Similarity between different views, considering that a
new one, unknown to the system, is introduced in the
catalog:
Table 7 shows that when measuring the similarity be-
tween the views in the referred conditions, the proxim-
ity between them increases when the loss is regularized
with prior knowledge, as it was previously seen for the
different views in the static catalogue.

Original Model
Fashion Fine-Tuned
without taxonomy

Fashion Fine-Tuned
with taxonomy

mean 0.8534 0.8988 0.9012
std 0.1015 0.0644 0.0636
min 0.3321 0.5390 0.5117
25% 0.8095 0.8745 0.8737
50% 0.8746 0.9130 0.9130
75% 0.9238 0.9427 0.9423
max 1.000 0.9912 0.9956

Table 7: Statistics of the cosine-similarity between the views
added to the static catalog - dynamic catalog.

• Percentage of same-category neighbors for new in-
stances added to the static catalog:
This metric focuses on measuring the influence of the
introduction of prior knowledge when an unknown in-
stance is surrounded by other known ones that may
share the same sub-category through the percentage
of k-Nearest same-category neighbors. Table 8 shows
that when instances are brought together to the base-
line space, the ones created with the architecture trained
with prior knowledge have higher percentage of same-
category neighbors. In this case, Original Model globally
outperformed the results of the Fine-Tuned model with-
out prior knowledge, but not the one with it.

Top K Original Model
Fashion Fine-Tuned
without taxonomy

Fashion Fine-Tuned
with taxonomy

1 0.5559 0.5526 0.5568
10 0.3733 0.3645 0.3686
25 0.3174 0.3081 0.3232
50 0.2904 0.2758 0.2911

Table 8: Percentage of same sub-category top K neighbors:
instance from the dynamic catalog.

Real Pairs Focusing on the retrieval task, the Recall@K
measures the correct pairwise matches on the dynamic cat-
alog, in which never seen instances images and captions are
surrounded by other known ones when retrieving. Table 9
presents, for each model, the Recall@K on the dynamic cat-
alog when matching all the 460K images with the respective
title. The results obtained show that although the new loss
emphasizes less the real pairs, the matches assigned are, for
all K, more correct when prior knowledge is introduced out-
performing the remaining models.

Conclusions
This paper introduced a new loss function for multimodal
product retrieval that takes into account prior knowledge



Recall
@K

Original Model
Fashion Fine-Tuned
without taxonomy

Fashion Fine-Tuned
with taxonomy

1 0.0307 0.0406 0.0417
10 0.1101 0.1572 0.1643
25 0.1683 0.2446 0.2554
50 0.2272 0.3306 0.3448

Table 9: Recall@K for K = {1, 10, 25, 50} when retrieving
the pair of an image/title on the dynamic catalog.

about the fashion domain. The proposed approach learns a
joint representation space for images and their correspond-
ing textual descriptions, similarly to other contrastive-based
strategies. However, the incorporation of prior knowledge
works as a regularizer, alleviating the inflexibility of the
popular contrastive loss by not penalizing wrong but accept-
able matches between image and descriptions. The learned
representation space is, thus, restructured such that products
with the same taxonomical path are spatially closer. Conse-
quently, products retrieved in this new space are less likely to
be from other categories, a type of error that severely dam-
ages the quality of the results. Our results show that these
improvements allowed the model to obtain better overall re-
sults, reducing the number of mistakes in which it returns
products that are categorically distant and are, therefore, in-
appropriate. Moreover, the spatial clusters of the categories
are better defined, and the views of the same product are
closer together, both of which demonstrate that the system
improved the structure of its representation space, leading to
better performance in the product retrieval task.
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