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Abstract
The trend of using machine learning techniques to improve the
mathematical programming solvers has recently drawn lots of
attention. Most previous work focuses on replacing key com-
ponents within the solvers using machine learning techniques.
Empirically, practitioners observed that the solving efficiency
of the solver is highly sensitive to the formulation of inputted
mathematical programming models, such as the appearing
order of variables (one of performance variability of solvers).
In other words, an inappropriate formulation might harm the
performance robustness of the solver. Instead, we exploit this
type of performance variability, proposing a novel approach
for accelerating linear programming solving via reinforcement
learning-based reformulation. We implemented the proposed
approach with three reputable solvers, i.e., Gurobi, SCIP, and
CLP. We conducted extensive experiments over two public
LP datasets from NeurIPS 2021 ML4CO competition and one
large-scale LP dataset collected from a real-life production
planning scenario. Experimental results demonstrate that the
proposed approach effectively reduces the solving iteration
number (20%↓ on average) and solving time (15%↓ on av-
erage) over the above datasets, compared to directly solving
the original linear programming models. This work can in-
spire the future research for better exploiting the performance
variability of solvers with machine learning techniques.

1 Introduction
Through many years of practice, it has been verified that
mathematical programming (Ge et al. 2021) is capable of
formulating real-life optimization problems such as plan-
ning, scheduling, resource allocation, etc. The mathematical
programming model can obtain the optimal solution by re-
sorting to corresponding solvers, such as Gurobi (Gurobi
2021), CPLEX (IBM 2021), SCIP (ZIB 2021), COIN LP
(CLP) (COIN-OR Foundation 2021a), etc. Government and
business corporations benefit significantly from the prac-
tice of mathematical programming in their daily opera-
tions (Mavrotas and Makryvelios 2021), which thus con-
stantly draws interests from academics and industries. There
are many kinds of mathematical programmings, including
linear programming (LP), mixed integer programming (MIP),
and quadratic programming (QP). In past decades, a col-
lection of classical algorithms (such as simplex (Dantzig
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1987), barrier (Andersen, Roos, and Terlaky 2003), branch
and bound (Wolsey 2007), etc.) have been proposed to solve
the above mathematical programmings. Meanwhile, they
have been implemented and integrated into the above modern
solvers. Amongst kinds of mathematical programming, LP is
the foundation. In other words, much performance enhance-
ment of solver can be gained from the research of LP. Thus,
this work aims to accelerate LP solving.

Recently, machine learning (ML) techniques have
been used to improve mathematical programming
solvers (NeurIPS 2021 Competition 2021) on a specific
problem distribution. Because in real-life scenarios, a
practitioner repeatedly solves problem instances from a
specific distribution, with redundant patterns and similar
characteristics. For example, managing a large-scale
production planning among many factories requires solving
very similar optimization problems on a daily basis, with
relatively fixed manufacturing capabilities and transportation
networks while only the demand of customers changes
over time. This change in demand is hard to capture by
hand-engineered expert rules, and ML-enhanced approaches
offer a possible solution to detect typical patterns in
the demand history. A series of machine learning-based
approaches have been proposed to improve the performance
of the above solvers (Khalil et al. 2016; Gasse et al. 2019;
Gupta et al. 2020; Nair et al. 2020).

Most of the above ML-enhanced approaches focus on
using ML techniques to replace some critical components
within the solver. Almost no previous work has thought of
accelerating the solving by changing the mathematical for-
mulation with the help of ML techniques. Because we uncon-
sciously think that human experts are responsible for mod-
eling and formulating real-life optimization problems. The
expert-designed formulation is deemed the ‘perfect’ mathe-
matical programming model and sent to the solver to get the
optimal solution. Nevertheless, (Lodi and Tramontani 2013)
discussed many perspectives of the performance variability
in mixed-integer programming solver. Especially the formu-
lation (such as the appearing order of variables of a given LP
instance) is highly related to both the accuracy and solving
speed of the solver, which leaves considerable space for im-
proving the performance of solvers through reformulating the
mathematical programming model. However, it is non-trivial
to find the best appearing order of variables for a given LP



instance due to the permutation explosion.
To exploit the performance variability, we propose a novel

approach to accelerate the LP solving from reformulation
perspective via reinforcement learning. In our proposed ap-
proach, a graph convolutional neural network (GCNN) is
firstly utilized to extract the patterns and characteristics of
variables for a given LP. Then the pattern of variables is sent
to a pointer network (PN) (Bello et al. 2016), from which we
can get a new ordering of variables. In this way, we obtain a
different but mathematically identical formulation of the orig-
inal LP instance. The reformulation objective is to accelerate
the solving process without decreasing the solving accuracy.
The parameter of the above neural networks is trained via an
end-to-end reinforcement learning method. Our contribution
is three-fold:

• An easily overlooked phenomenon that the appearing or-
der of variables in a given LP instance has a relatively
significant impact on the solving performance of math-
ematical programming solver is revealed again in this
paper, i.e., one of the performance variability of solvers.

• To exploit the above performance variability of solvers,
we propose a reinforcement learning-based automatic re-
formulation approach. To the best of our knowledge, this
is the first work to enhance the solver performance from
reformulation perspective via reinforcement learning.

• Extensive experiments were performed on three repre-
sentative and challenging datasets with three modern
solvers, CLP, SCIP, and Gurobi. The results suggest that
our method can effectively reduce the solving iteration
number (20%↓) and the solving time (15%↓) on average,
compared to directly solving the original LP instances.

2 Related work
Performance variability in mathematical
programming solvers
A linear programming (LP) can be defined in the form of

min
x

cT x, s.t. Ax ≤ b, x ≥ 0 (1)

where c ∈ Rn is the objective coefficient vector; A ∈ Rm×n

is the constraint coefficient matrix; and b ∈ Rm is the con-
straint right-hand-side vector; x ∈ Rn is the variable vector;
Note that formulation (1) is the standard form of linear pro-
gramming. Any other form of linear programming can be
transformed to the standard form (Maros 2002). Different
from LP, mixed integer programming (MIP) has an extra in-
teger constraint on a subset/all of variables. The most widely-
adopted algorithms to solve linear programming include sim-
plex method and interior point method (Maros 2002). These
algorithms have been implemented in modern solvers. (Lodi
and Tramontani 2013) discussed and analyzed the perfor-
mance variability in the mathematical programming solvers.
The performance of solvers is subject to some unexpected
variability, for instance, the different computing platform, the
permutation of rows and/or columns of a model and the addi-
tion of neutral changes to the solution process, etc. Lodi et.
al. suggest that one source of the performance variability is

rooted from the so-called imperfect tie breaking. Most of the
decision made in solvers are based on ordering candidates
according to specifically-designed scores and selecting the
best-scored candidates. This is true for initial basis construc-
tion (Bixby 1992; Maros 2002) within the optimal face of
LP solution process and also holds for cut separation and
variable selection for MIP solution process. However, we
are even not close to define what is the best scoring rules
of decision making in solvers because it surely depends on
what the scoring rule is used for, namely, initial basis con-
struction, variable selection and cut selection, etc. Finally the
consequence is that the algorithms just depend on the order
in which the variables have been loaded or the floating-point
computing arithmetics of the platform. An intuitive example
for the performance variability of solvers is given in Sec-
tion 3. We just exploit the performance variability to enhance
the solving efficiency and robustness of linear programming
solving, via resorting to machine learning techniques.

Graph representation of mathematical
programmings
The relation between variables and constraints of mathemat-
ical programming can be represented by a bipartite graph,
where a set of n nodes in the graph represents the n variables
contained in the LP and the other set of m nodes correspond
to the m constraints of the LP. The edge between a variable
node and a constraint node represents the variable is present
in the constraint. The number of edges indicates the number
of non-zero coefficients of the constraint matrix A. Other
information such as the objective coefficients and constraint
bounds, etc. can also be incorporated into the bipartite graph.
In this way, the lossless representation of the LP can be sent
as an input to graph neural networks. Many previous works
adopt the representation method or related one to extract
high-order embedding information of the original problems,
such as Gasses et. al. and Nair et. al. done for mixed integer
problem (Gasse et al. 2019; Nair et al. 2020), and Selsam et.
al. done for satisfiability problem (Selsam et al. 2018).

Pointer network for combinatorial optimization
Combinatorial optimization problem such as Traveling Sales-
man Problem (TSP), Convex Hull problem, Set Cover prob-
lem, etc. play a fundamental role in the development of com-
puter science, which have many applications in manufactur-
ing, planning, genetic engineering, etc. Many kinds of algo-
rithms have been proposed to solve above combinatorial opti-
mization problem, including dynamic programming (Sumita
et al. 2017; Chauhan, Gupta, and Pathak 2012), cutting
plane (Applegate et al. 2003), local search (Zhang and Looks
2005) and neural network-based search method (Vinyals, For-
tunato, and Jaitly 2015; Bello et al. 2016). In recent years, the
application of neural networks on combinatorial optimization
problem has drawn much more attention than other meth-
ods (Vinyals, Fortunato, and Jaitly 2015; Bello et al. 2016),
especially after the proposal of Pointer Network (PN). The
pointer network is a sequence-to-sequence model (Vinyals,
Fortunato, and Jaitly 2015) originating from the field of nat-
ural language processing. It can learn the conditional prob-
ability of an output sequence of elements that are discrete
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Figure 1: Three distinct LP instances (WA, BIP, and HPP)
are selected to perform the preliminary experiment. For each
original LP instance, we randomly changed the appearing
order of variables to get many reformulated but mathemati-
cal identical LP instances. Next, we called Gurobi to solve
the above LP instances. We recorded the primal infeasibility
(‘Primal Inf.’), dual infeasibility (‘Dual Inf.’) of the first itera-
tion of Gurobi solving process, and the total iteration number
(‘# Iteration’) to solve the instances. The significant variance
of metrics shows that solver performance is quite sensitive to
the different formulations for a given LP instance.
symbols corresponding to positions in an input sequence,
which dedicates to dealing with variable size of output dic-
tionary. On the TSP, (Vinyals, Fortunato, and Jaitly 2015)
trained above neural network in a supervised manner to pre-
dict the sequence of visited cities. (Bello et al. 2016) trained
the network with reinforcement learning method, using the
negative tour length as the reward signal.

3 Preliminary Experiment and Motivation
Before the introduction of our solution, preliminary exper-
iments were performed to reveal an easily overlooked phe-
nomenon that the appearing order of variables in a given
LP instance indeed affects the solver’s performance. To this
end, we selected three distinct LP instances (BIP, WA, and
HPP) described statistically in Section 5. Three metrics, in-
cluding initial primal infeasibility, initial dual infeasibility,
and total iteration number, are recorded to show the effect of
appearing order of variables on solving performance. Next,
we randomly changed the appearing order of variables in
a given LP instance to obtain many reformulated but math-
ematically identical LP instances. Then we called Gurobi
solver to solve them. After normalizing above recorded 1

metrics into the range of [0, 1], we visualize the normalized
metrics in Figure 1. Observed from the large variance of the
recorded metrics in Figure 1, we can infer that taking into
input the same LP instances, the solver performance is quite
sensitive to the different formulations (i.e., the different ap-
pearing order of variables in this paper) even with the one of
state-of-the-art commercial solver Gurobi.

Therefore, it leaves us a relatively large room to improve
the solver performance using machine learning techniques
from a reformulation perspective. To that end, we have three
incident challenges to tackle: 1) How to appropriately rep-
resent an LP instance in a low-dimension space without loss
of relationships between variables, constraints, and objective
of the LP instance; 2) What machine learning model is suit-
able to infer the best formulation of a given LP instance and

1Raw recorded metrics can be seen in Table 6 of Appendix.

3) How to efficiently train above inferring model (if any)
considering the permutation explosion of different formula-
tions. Keeping in mind the challenges, we propose our rein-
forcement learning-based automatic reformulation method.

4 Proposed Solution
Overview
In this section, our reformulation method is presented. We
firstly introduce how we represent a given LP model and send
it as input into a graph neural network. Then the embedding
output by the graph neural network is aggregated with a given
group of variable clusters and passed into a pointer network
to get a new appearing order of variables. The appearing order
is utilized to reformulate the original LP model to accelerate
the solving process of the corresponding solver. The entire
process is summarized in Figure 2.

Representation
We adopt the same method as done in (Gasse et al. 2019)
to represent a given linear programming as a bipartite graph
(G,C,E,V). Specifically, in the bipartite graph, C ∈ Rm×c

corresponds to the features of the constraints in the LP; V ∈
Rn×d denotes the features of the variables in the LP; and an
edge eij ∈ E between a constraint node i and a variable node
j if the corresponding coefficient Ai,j ̸= 0. For simplicity,
we just attach the value of Ai,j to the corresponding edge eij .
Readers can refer to the used features in Appendix.

Next, the bipartite graph representation of LP is sent as in-
put into a two-interleaved graph convolutional neural network
(GCNN) (Gasse et al. 2019). In detail, the graph convolution
is broken into two successive passes, one from the variable
side to the constraint side, and one from the constraint side
to the variable side, which can be formulated as follows:

c(k+1)
i ← fC

c(k)i ,

(i,j)∈E∑
j

gC(c
(k)
i , v(k)

j , eij)

 , (2)

v(k+1)
j ← fV

v(k)
j ,

(i,j)∈E∑
i

gV(c
(k)
i , v(k)

j , eij)

 (3)

where fC, gC, fV and gV are 2-layer perceptrons with prenorm
layer. We adopt the ReLU as the activation function. And k
represents the number of times that we perform the convolu-
tion. The parameters of GCNN are denoted by θG.

Aggregation
The embedding of variables is obtained using the GCNN.
However, we further perform an aggregation operation over
the embeddings of variables rather than directly sending them
to the pointer network. There are several reasons why we need
to perform aggregation. First, the learning capability of the
pointer network is limited. According to the evaluation report
of previous work (Vinyals, Fortunato, and Jaitly 2015; Bello
et al. 2016), the pointer network can achieve closely optimal
results with up to 100 nodes in their experimental setting.
It performs significantly worse when the number of nodes
exceeds 1000. Second, considering all possible permutations
of variables of a given LP is intractable. The number of



Graph 
Neural 

Network

1 2 3 4 5 6…

Pooling 
Function

A given 
splitting cluster

1 2 3 4 5 6 Pointer 
Network

6 2 5 1 3 4

Representation

Aggregation

Permutation

Node embedding

Clustering embedding

Clustering embedding 
as a sequence

New permutation 
of the sequence

Linear programming Bipartite graph Original LP

{𝑨, 𝒃, 𝒄}

Reformulation

Reformulated LP

{𝑨′, 𝒃, 𝒄′}

Critic 
Network

Baseline b

Solver

Solver

Reward R

Gradient 𝑔

Loss Function 𝐿𝑐

Learning

Learn to Reformulate

update by 𝑔

update by 𝑔

update by 𝐿𝑐

Figure 2: Overview of our proposed reinforcement learning-based automatic reformulation method, which is split into two parts,
i.e., the reformulation and learning parts, respectively. The reformulation part can be summarized as three steps: a) the inputting
LP instance is represented by a bipartite graph, and then the embedding of variables of the LP instance is obtained via a graph
neural network (GNN); b) the embedding of variables will be further aggregated with a given group of variable clusters and
c) taking as input the previous embeddings, a pointer network (PN) is used to output a new permutation of variables, i.e., the
reformulation of the original LP instance. The learning part interacts with the reformulation part to update the parameters of
GNN and PN, in the fashion of reinforcement learning.

LP variables that come from a practical scenario can easily
exceed 100. Third, many LPs have their special structure,
which can be exploited to split the variables into several
clusters in advance. Many optimization methods such as
Benders decomposition (Mavrotas and Makryvelios 2021;
Gharaei, Karimi, and Hoseini Shekarabi 2020) have exploited
the structure of the LP model to accelerate the solving process.
Considering all the above, we perform the aggregation using
the following steps:
Splitting. For a given LP as shown in (1), the variables
xi(i = 1, ..., n) are split up into M disjoint clusters Cj =
{xj1 , xj2 , ..., xj|Cj |

}(j = 1, ...,M). Note that variables
within one cluster are subject to the order of variables in the
original LP. The clustering method is not restricted. It could
be specified by human experts or using the hyper-graph de-
composition method (Manieri, Falsone, and Prandini 2021).
Pooling function. With above splitting clusters Cj(j =
1, ...,M) and variable embedding vi(i = 1, ..., n), we per-
form the aggregation for each cluster via:

Σj = P({vi|xi ∈ Cj}) (4)
where P is a pooling function that could be maximum, mini-
mum, average, or other appropriate functions. We still do not
restrict the kind of pooling function here. Σj ∈ Rd can be
understood as the embedding of the splitting cluster.

Permutation
Given an LP l, we reformulate l by reordering its variables.
More specifically, given a sequence of splitting clusters
{Cj}Mj=1 of variables of l, we would like to find a new permu-
tation π of these clusters to reformulate l. The reformulation

is achieved by that 1) between splitting clusters, the vari-
ables will be reordered with its associated cluster according
to the permutation π; and 2) within each cluster, the order of
variables remains the same with the original LP. In this way,
the coefficients matrix A and objective coefficients vector c
will correspondingly be altered. We hope the reformulation
of the original LP can improve the solving performance of
the solver over the LP. The solving performance can be the
solving time, iteration number, primal/dual solution viola-
tion (Maros 2002), etc., which depends on the preference of
performance optimization. We define the improvement R of
solving performance gained from reformulation as:

R(π|l) = 1− SM(l|π)
SM(l)

(5)

where SM(l) denotes that w.r.t. a solving performance metric
M, calling a solver to solve l; and SM(lp|π) refers to that
w.r.t. the same solving metricM, calling the same solver to
solve l which is reformulated by the permutation π. Using
Eq.(5), we can measure how the reformulation of l can im-
prove the solving performanceM of the solver, compared to
directly solving the original LP l.

We aim to learn a probability distribution p(π|{Cj}Mj=1)

that given a sequence of splitting clusters {Cj}Mj=1 of LP l

and associated embeddings {Σj}Mj=1, can assign higher prob-
abilities to "better" permutations and lower probabilities to
"worse" ones. The "better" and "worse" are measured us-
ing Eq.(5). Similar to (Vinyals, Fortunato, and Jaitly 2015;
Bello et al. 2016), the probability distribution p(π|{Cj}Mj=1)
utilizes the chain rule to factorize the probability of a permu-



tation as:

p(π|{Cj}Mj=1) =

M∏
j=1

p(π(j)|π(< j), {Cj}Mj=1) (6)

We parameterize p(π|{Cj}Mj=1) by a pointer network
whose parameter is denoted by θP .

Training method
In our proposed method, there are two main groups of param-
eters, θG, and θP , to learn. Theoretically, the parameters can
be learned using supervised learning (SL) as done in (Vinyals,
Fortunato, and Jaitly 2015) or reinforcement learning (RL)
as done in (Bello et al. 2016). However, we adopt the rein-
forcement learning method instead of the supervised learning
method. First, getting high-quality labeled data (getting im-
provement R gained from reformulation in our context) is
expensive, especially when the size of LP is large. Because
we need to call a solver to solve two LP instances (i.e., origi-
nal LP and its reformulated LP) each time we calculate the
improvement R. Besides, RL is deemed as an effective way
to generate better-supervised signals, which could help find
a more competitive solution than purely supervised learn-
ing. Thus we propose to use model-free policy-based RL to
learn θG and θP . The training objective is to maximize the
expected improvement R over a given LP l, which is formally
defined as:

J(θG, θP |l) = Eπ∼pθG,θP
(.|l)[R(π|l)] (7)

In our training phase, the LPs are i.i.d.. In other words,
they usually originate from the same practical scenario such
as production planning, bin packing, etc. We denote the dis-
tribution (or scenario) by S . Thus the total training objective
is defined as:

J(θG, θP ) = El∼S [J(θG, θP |l)] (8)
We utilize stochastic gradient ascent method (Sebbouh,

Cuturi, and Peyré 2022) to optimize Eq.(8). According to the
REINFORCE algorithm (Li 2017), the gradient of Eq.(8) is
given as:
▽θG,θP J(θG, θP |l) = Eπ∼pθG,θP

(.|l)[(R(π|l)− b(l))

▽θG,θP log pθG,θP (π|l)]
(9)

where b(.) is a baseline function independent of π and esti-
mates the expected improvement R to reduce the learning
variances. To enhance the estimated accuracy of baseline
function, we additionally introduce a critic network param-
eterized by θc, which is trained with the stochastic gradient
descent method over a mean squared error (MSE) between
the actual improvement R and its prediction bθc(l). The MSE
loss is defined as:
L(θc) = El∼S,π∼pθG,θP

(.|l)[bθc(l)−R(π|l)]2 (10)
Note that all mentioned-above gradients are approximated

in our implementation using Monte Carlo sampling. We give
a snippet of pseudo codes in Algorithm 1.

5 Experimental Evaluation
Implementation detail
Solvers and related interfaces. In our implementation,
we adopt three well-established solvers (i.e., CLP, SCIP and
Gurobi) as testbeds, with which the proposed reformulation

Algorithm 1: Training procedure of the proposed method

Inputs S: set of linear programming problems; T : total num-
ber of episodes; B: batch size

Initializes θG: parameters for graph convolutional neural
network; θP : parameters for pointer network; θc: param-
eters for critic network

1: for steps t = 1 to T do
2: li ∼ S for i ∈ {1, ..., B}
3: πi ∼ pθG,θP (.|li) for i ∈ {1, ..., B}
4: Calculate Ri using Eq.(5) for i ∈ {1, ..., B}
5: bi = bθc(li) for i ∈ {1, ..., B}
6: g ← 1

B

∑B
i=1(Ri − bi)▽θG,θP log pθG,θP (πi|li)

7: Lc ← 1
B

∑B
i=1(bi −Ri)

2

8: Perform a gradient ascent step to update θG and θP
using g respectively

9: Perform a gradient descent step to update θc using
▽θcLc

10: end for
11: return θG, θP and θc

method interacts. To facilitate the interaction between neu-
ral networks and solvers, we developed interfaces based on
CyLP (COIN-OR Foundation 2021b), PySCIPOpt (Maher
et al. 2016) and Gurobi Python API. The functions of these
interfaces can be summarized as 1) taking as input a permuta-
tion outputted from neural networks; 2) reformulating an LP
instance according to the given permutation; 3) solving the re-
formulated LP instance with a given solver, and 4) returning
the solving metric of interest back to neural networks. Note
that we set the hyperparameters of solvers as their default
values, which are summarized in Table 5 (see Appendix).

Neural networks and aggregation. Concerning the
GCNN and PN involved in the proposed method, we first
refer to the design and implementation of (Gasse et al. 2019;
Vinyals, Fortunato, and Jaitly 2015) respectively and then re-
implemented them using PyTorch (Paszke et al. 2019). The
corresponding hyperparameters of above neural networks
are also given in Table 5 (see Appendix). With respect to
the aggregation, for a given LP, we split its variables into
equal-size clusters according to their appearing order in the
original LP. Besides, we adopt the average function as the
pooling function.

Used computing resources. All experiments were con-
ducted on a computing server, equipped with Intel(R)
Xeon(R) Platinum 8180M CPU@2.50GHz, a V100 GPU
card with 32GB graphic memory and 1TB main memory.
For each training and each testing, they were performed five
times with different random seeds. Each training with 500
episodes took 12.5 hours of CPU-GPU computing on aver-
age. The total amount of computing consumption is around
675 CPU-GPU hours.

Dataset All experiments were performed over three sets
of Mixed Integer Linear Programming (MILP) problems.
All datasets are scenario specific. In other words, they con-
tain problem instances from only a single scenario. Two of
them, Balanced Item Placement (BIP) and Workload Ap-
portionment (WA), are from NeurIPS 2021 ML4CO compe-
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Figure 3: Learning convergence and improvement of the iteration number over three datasets’ training (seen) instances. Several
findings can be pointed out: 1) the networks’ parameters can converge over the three datasets; 2) with each testing solver, our
method is effective in reducing the solving iteration number; 3) on the LP instances from WA and HPP, our method performs
slightly worse than those from BIP, which demonstrates that it is relatively harder to learn neural network parameter over the
large-scale and complex LP instances.

Table 1: Statistical description of used dataset
Dataset m n NNZ

BIP 195.00± 00.00 1083.00± 00.00 7440.00± 00.00
WA 6.43e04± 54.51 6.1e04± 00.00 3.62e05± 6007.41
HPP 1.25e06± 6.93e04 2.66e06± 1.83e05 6.64e06± 4.29e05

tition (NeurIPS 2021 Competition 2021). The third one is
obtained from a real-life production planning scenario called
HPP. The detail about these datasets is given in the Appendix,
where we describe the physical meaning of the problem, such
as optimization objective and constraints. Note that we relax
the integer constraint of variables in the above MILPs to get
the corresponding LP instances. Concerning the dataset of
BIP and WA, there are in total 10, 000 LP instances, respec-
tively, which are different in the value of coefficients, the
size of constraints, and variables. Moreover, for the dataset
of HPP, there are in total 1, 000 LP instances. The statistical
description of the above datasets is summarized in Table 1,
where m,n, and NNZ represent the number of constraints,
variables, and non-zero coefficients, respectively. For each
dataset, 80% and 20% of instances are randomly selected
into the training and testing set, respectively. The instance se-
lection is subject to the uniform distribution. It should admit
that our method can only generalize over i.i.d. LP instances.
Thus, we train the neural networks in the proposed method
separately for each dataset. In other words, we have three sets
of (θG, θP , θc) to train. Enhancing the generalization of the
proposed method by meta learning (Hospedales et al. 2020)
is left to future work.

Metric of interest As defined in Eq.(5), we need to specify
the solving performance metric M when we measure the
improvement gained from reformulation. In practice, people
usually care about the solving time or iteration number of
the search process when the solution quality meets a given
standard (for example, the maximum of primal/dual infeasi-
ble max_inf of a solution is less than a given primal/dual
tolerance). Nevertheless, the solving time is very sensitive
to the run-time state of the computing server where many
other background tasks simultaneously run. The training pro-
cess will be unstable if we adopt solving time as our met-
ric. Luckily, the solving time is empirically proportional to
the solving iteration, which is not affected by the run-time
state of the computing server. Thus we finally adopt the

Table 2: Improvement of the iteration number (the lower, the
better) over testing instances of three datasets.

Avg. # IterationDataset Solver Original Reformulated Improv. (%)

CLP 956.32 705.10 26.27
SCIP 673.58 545.33 19.04BIP

Gurobi 525.46 428.30 18.49
CLP 6943.37 5985.18 13.8
SCIP 11354.34 9874.87 13.03WA

Gurobi 17962.85 15110.35 15.88
CLP 98352.27 90277.55 8.21
SCIP 94124.48 82933.08 11.89HPP

Gurobi 23526.64 21656.27 7.95

iteration number as the solving performance metricM. Be-
sides, we also specific requirement for solution quality, that
is max_inf ≤ 10−6.

Evaluation result
Improvement on solving iteration number We measure
how the proposed reformulation method reduces the solving
iteration number compared to directly solving the original
LP. Specifically, we first call the solvers to solve original LP
instances from the above three datasets and record the itera-
tion number (here refers to the iteration number of the dual
simplex method). Then we reformulate these LP instances
using the learned neural networks. The same solver is called
again to solve the reformulated LP instances, and the iteration
number is recorded subsequently. We compare the iteration
number of solving reformulated LP instances against that of
solving original ones.

The learning convergence and comparison results are pre-
sented in Figure 3 and Table 2. In Figure 3, the vertical
axis, improvement ratio, denotes the improvement of solving
performance gained from reformulation (i.e., the reduction
ratio of iteration number of reformulation to that of original
one). Several findings can be pointed out: 1) the parame-
ter learning of neural networks involved in our method can
converge over the three datasets; 2) with each testing solver,
our reformulation method is effective in reducing the solv-
ing iteration number; 3) on the LP instances from WA and
HPP, our method performs slightly worse than those from
BIP, which demonstrates that it is relatively harder to learn
neural network parameter over the large-scale and complex
LP instances from WA and HPP. Besides, in Table 2, it can be
demonstrated that our method can be generalized to testing
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(a) CLP over BIP
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(b) SCIP over BIP
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(c) Gurobi over BIP

Figure 4: How different number of clustering block impacts our method’s performance on BIP. Several findings can be pointed
out: 1) it can be noted that increasing the number of clustering block within a specific range will lead to an improvement in the
performance of our learning-based method; 2) it can also suffer a dramatic performance degradation if the number of clustering
blocks is too large. Similar conclusions are drawn on the other two datasets (see Figure 6 in Appendix).

Table 3: Improvement of solving time (the lower, the better)
by our proposed method over all instances of three datasets

Dataset Seen/Unseen Solver Avg. Solving Time (s) Avg. Reordering Improv.
Original Reformulated Time (s) (%)

BIP

Seen
CLP 0.03862 0.02851 0.00011 26.18
SCIP 0.04625 0.03453 0.00012 25.35

Gurobi 0.01086 0.00849 0.00012 21.78

Unseen
CLP 0.01792 0.01355 0.00019 24.39
SCIP 0.04636 0.03472 0.00017 25.11

Gurobi 0.01144 0.00939 0.00018 17.86

WA

Seen
CLP 6.74099 5.76085 0.00695 14.54
SCIP 3.96057 3.39302 0.00811 14.33

Gurobi 5.21913 4.23533 0.00723 18.85

Unseen
CLP 7.17389 6.17385 0.00689 13.94
SCIP 4.04960 3.29840 0.00709 18.55

Gurobi 4.31686 3.59897 0.00685 16.63

HPP

Seen
CLP 71.0665 63.7396 0.01441 10.31
SCIP 40.4433 34.2676 0.01719 15.27

Gurobi 43.2238 37.7647 0.01996 12.63

Unseen
CLP 70.9742 65.9208 0.01334 7.12
SCIP 40.7626 34.9947 0.01755 14.15

Gurobi 43.9299 40.0245 0.01454 8.89

(unseen) data since it still performs well over the testing data.

Improvement of solving time We continue to measure
how our proposed method reduces the solving time. The
same procedure as described in Section 5 is adopted in this
experiment. Unlike Section 5, we here compare the solving
time between original LP instances and its reformulation
obtained from our method instead of the solving iteration
number. The results are recorded in Table 3. Observing the
results, several claims can be made: 1) the proposed method
can indeed reduce the solving time of given LP instances
by reformulating them, which inferably benefits from the re-
duction of solving iteration number; 2) our method performs
slightly worse over the complex and large-scale LP instances
but still can reduce at least 10.31% the solving time over the
complex LP instances from WA and HPP; 3) our method
does not depend on the type of solver since the performance
improvements are achieved on all three solvers in the experi-
ments; 4) the learned neural networks still can be generalized
to testing (unseen) data, and 5) the reordering process includ-
ing the inference of neural networks and model reformulation
is swift compared with the solving process. Besides, to figure
out what the neural networks have learned, visualization for
the reformulation process of our method is given (see visual
analysis part in Appendix).

Impact of different cluster size Further, we investigate
how cluster size impacts performance. We demonstrate the
performance comparison with the different number of clus-

tering blocks (1, 5, 10, 20, 50, and 100). When there is only
one clustering block, no reformulation is made. Thus the
improvement ratio is always zero in the training process. The
same procedure as described in Section 5 is adopted in this
experiment. Results 2 are presented in Figure 4. Several find-
ings can be pointed out: 1) it can be noted that increasing the
number of clustering blocks within a certain range will lead
to an improvement in the performance of our learning-based
method; 2) it can also suffer a dramatic performance degrada-
tion if the number of clustering blocks is too large. Moreover,
it is in accordance with our common intuition. Specifically,
the proper number of clustering blocks of BIP is referred
to in the range of 50~100; the one of WA is referred over
100; the one of HPP is referred to in the range of 1~5. These
results can help to determine the proper clustering size when
solving LP problems from the same distribution.

6 Conclusion
In this paper, we propose a reinforcement learning-based
reformulation method to accelerate the linear programming
solving. It makes use of the graph neural network and pointer
network together to find the better reformulation for linear
programmings that come from a specific distribution. In the
detailed computational studies, we demonstrated that the
formulation derived from our proposed approach effectively
reduced the solving iteration and solving time, compared to
original formulation of LP instances, which is independent
of solvers. To the best of our knowledge, this is the first work
that exploits the performance variability of modern solvers
via machine learning techniques to gain performance.

The idea of using machine learning techniques to exploit
or to reduce the performance variability of mathematical
programming solvers can be extended in many directions.
First, one can further learn the modeling experience or gain
the modeling tricks from the reformulation derived from the
neural networks. Besides, one can use the proposed method
to decide the better ordering rules in various decision-making
components in solver such as pricing, variable selection, cut
separation, etc. We believe that this work can inspire the
future research to better exploit the performance variability
of solvers to improve the solvers.

2Experimental results of WA and HPP are placed in Figure 6 in
Appendix due to the space limitation.
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A Appendix
Feature used in constructing bipartite graph

Table 4: Used features of constraints, variables and edges in
the bipartite graph

Tensor Feature Meanings

C
rhs the right-hand side coefficients

of LP, i.e. b, normalized with
constraint coefficients

ub_cons upper bound of constraint, nor-
malized with all constraints up-
per bound

lb_cons lower bound of constraint, nor-
malized with all constraints
lower bound

V
obj the objective coefficients of vari-

ables, i.e. c
lb_var upper bound of variable, nor-

malized with all variables lower
bound

ub_var lower bound of variable, nor-
malized with all variables upper
bound

E coef the constraint coefficients of vari-
ables, i.e. A , normalized per con-
straint

Description of used datasets
Balanced Item Placement. This problem deals with spread-
ing items (e.g., files or processes) across containers (e.g.,
disks or machines) and utilizing them evenly. Items can have
multiple copies, but at most, one copy can be placed in a
single bin. The number of items that can be moved is con-
strained, modeling the real-life situation of a live system
for which some placement already exists. Each problem in-
stance is modeled as a MILP, using a multi-dimensional
multi-knapsack formulation.
Workload Apportionment. This problem deals with appor-
tioning workloads (e.g., data streams) across as few workers
(e.g., servers) as possible. The apportionment is required to be
robust to any one worker’s failure. Each instance problem is
modeled as a MILP, using a bin-packing with apportionment
formulation.
Huawei Production Planning. The planning and scheduling
optimization problems are solved in the Huawei production
planning engine. The production planning problem is to plan
daily production for hundreds of factories according to cus-
tomers’ daily and predicted demand. Besides, the problem
is subject to material transportation and production capac-
ity constraints. The problem’s optimization objective is to
minimize the production cost and lead time simultaneously.
Readers can refer to (Li et al. 2021; Pochet and Wolsey 2006).

Hyper-parameters setting
Part of important hyperparameters involved in our method is
listed in Table 5.

Table 5: Hyperparameters setting
Name Used value

Optimizer ADAM
# episode (T ) 500

# splitting cluster 20
Batch size (B) 8

Train size 640
Validation size 320
Learning rate 10−4

Decay ratio of learning rate 0.96
Gradient clip normalizer l2 Normalization

Dimension of input embedding in PN 128
Dimension of hidden layers in PN 128

Dimension of input embedding in GCNN 64
# of times that performs convolution 2

Presolve of CLP On
Presolve of SCIP On

Presolve of Gurobi On
Solving method of CLP Dual
Solving method of SCIP Dual

Solving method of Gurobi Dual

Visual analysis
In order to figure out what the neural network has learned,
we give the visualization for the reformulation process of our
method over the three datasets of LP instances. Specifically,
we select two LP instances from each dataset to visualize.
We reformulate them by the learned neural network of our
proposed method. Then we visualize the coefficient matrix
of original LP instances and reformulated ones, respectively,
which are shown in Figure 5(a) to Figure 5(l).

Observing these figures, we can find that 1) our proposed
reformulation method captures the characteristics of LP in-
stances originating from different scenarios. Because the
pattern of corresponding reformulated LP instances are sig-
nificantly different across different datasets but are similar
between LP instances within the same dataset; 2) The refor-
mulation is relatively stable when the original LP instances
are highly similar. All the original LP instances of BIP have
the same number of constraints and variables, which is only
different in the value of coefficients. Thus the pattern of the
corresponding reformulated LP instances are almost the same
(see Figure 5(a) to Figure 5(d)). However, the pattern of re-
formulated LP instances of WA and HPP is quite different
(see Figure 5(e) to Figure 5(h) and Figure 5(i) to Figure 5(l))
because the corresponding original LP instances differ in
not only the value of coefficients but also the number of
constraints and variables.



(a) original LP1 from BIP (b) reformulated LP1 from BIP (c) original LP2 from BIP (d) reformulated LP2 from BIP

(e) original LP1 from WA (f) reformulated LP1 from WA (g) original LP2 from WA (h) reformulated LP2 from WA

(i) original LP1 from HPP (j) reformulated LP1 from HPP (k) original LP2 from HPP (l) reformulated LP2 from HPP

Figure 5: Visualization of reformulation process over BIP, WA and HPP datasets

Table 6: Statistics of preliminary experiments. ‘Primal Inf.’ and ‘Dual Inf.’ respectively indicates the primal infeasible value and
dual infeasible value at the first iteration of Gurobi Solver (using default dual simplex method), i.e., the initial solution quality.
And the ‘# Iteration’ denotes the total iteration number that the solver used to solve a given instance.

Idx HPP (m=146722, n=260636, nnz=668270) WA (m= 64282, n=61000, nnz=359428) BIP (m=195, n=1083, nnz=7440)
Primal Inf. Dual Inf. # Iteration Primal Inf. Dual Inf. # Iteration Primal Inf. Dual Inf. # Iteration

1 7.721295E+09 1.884180E+11 19408.00 311.22 1.9980E+09 14083.00 9.43 1.922493E+07 539.00
2 7.720309E+09 1.882416E+11 19242.00 295.33 1.9790E+09 17020.00 9.58 1.937180E+07 486.00
3 7.725508E+09 1.869514E+11 19208.00 269.29 1.9530E+09 16495.00 9.38 1.916960E+07 557.00
4 7.764919E+09 1.876644E+11 19408.00 262.35 2.0620E+09 15149.00 9.47 1.932945E+07 453.00
5 7.726977E+09 1.878485E+11 19175.00 299.10 1.9080E+09 16351.00 9.37 1.915617E+07 586.00
6 7.746786E+09 1.877944E+11 19266.00 281.19 1.8650E+09 14971.00 9.43 1.922493E+07 528.00
7 7.746866E+09 1.879217E+11 19274.00 308.00 1.9630E+09 15778.00 9.22 1.706866E+07 591.00
8 7.729257E+09 1.873669E+11 19391.00 269.86 2.1070E+09 16586.00 9.00 1.880115E+07 519.00
9 7.745738E+09 1.875424E+11 19203.00 296.18 2.0280E+09 14984.00 9.22 1.902808E+07 453.00
10 7.727762E+09 1.882426E+11 19240.00 284.81 2.2290E+09 15861.00 9.05 1.674231E+07 554.00
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(a) CLP over WA
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(b) SCIP over WA
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(c) Gurobi over WA
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(d) CLP over HPP
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(e) SCIP over HPP
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(f) Gurobi over HPP

Figure 6: How different number of clustering block impacts the our method’s performance on WA and HPP


