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Abstract

The discovery of new materials using crystal structure predic-
tion (CSP) based on generative machine learning models has
become a significant research topic in recent years. In this
paper, we study invariance and continuity in the generative
machine learning for CSP. We propose a new model, called
ContinuouSP, which effectively handles symmetry and peri-
odicity in crystals. We clearly formulate the invariance and
the continuity, and construct a model based on the energy-
based model. Our preliminary evaluation demonstrates the ef-
fectiveness of this model with the CSP task.

Introduction
Recently, there has been a growing trend toward incorporat-
ing computers into the discovery of new materials, a process
that traditionally relied heavily on human intuition. Partic-
ularly for solid materials, recent successes using generative
machine learning models provide a rational approach from
the perspective of “emulating human intuition”. However,
theoretically, a solid material consists of an atomic spatial
arrangement which is not necessarily finite, making it chal-
lenging to model correctly in a generative machine learning
framework.

When discussing machine learning models for materials,
invariance and continuity are critical aspects. Consider a
function with materials as its domain; for this function to
hold physical meaning, it must be invariant under operations
such as “10 cm translation along the x-axis” or “60° rotation
around the y-axis”. Additionally, if some atoms in the ma-
terial are displaced by a small amount, the resulting change
should also be small, meaning that the continuity must be
preserved. In generative models, two functions are consid-
ered: (i) the mapping from training data to the training out-
come, and (ii) the probability density function determined
by this outcome. A “physically correct” model can only be
obtained when all these requirements are satisfied.

In this paper, we focus on crystal structure prediction
(CSP), which predicts crystal structures from given atom
species vector in one period. Recent CSP models have
achieved the invariance in their probability density by em-
ploying equivariant score predictors that incorporate graph
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neural networks (GNNs) (Xie et al. 2022; Jiao et al. 2023;
Luo, Liu, and Ji 2023; Jiao et al. 2024). However, it is still
difficult to achieve the continuity simultaneously.

Therefore, we develop a CSP model called ContinuouSP,
which simultaneously meets the invariance and the continu-
ity by using an energy-based model (EBM). 1 We employ
a modified version of the crystal graph convolutional neural
networks (CGCNN) (Xie and Grossman 2018) as the energy
predictor. CGCNN is an invariant property prediction model
that can also ensure continuity with straightforward modifi-
cations.

The main contributions of this paper are as follows:
• The concepts of invariance and continuity in solid ma-

terials and periodic units of crystals are mathematically
formulated.

• A CSP model, ContinuouSP, is designed within the EBM
framework to satisfy the invariance and the continuity.

• Through performance evaluation, it is demonstrated that
while ContinuouSP does not achieve state-of-the-art per-
formance, it surpasses traditional machine learning ap-
proaches and performs comparably to several existing
generative models.

• We clarify the advantages and challenges of Continu-
ouSP through supplementary experiments and theoretical
analyses.

Related Work
Crystal Property Prediction
Modern machine learning schemes to predict material prop-
erties were first developed to accelerate molecular dynamics
simulation (Behler and Parrinello 2007). For this purpose,
the radial and angular distribution functions were convoluted
with artificial neural networks inside each atom, and then
the total energy was output. The GNN is also employed to
construct a universal model including various kinds of el-
ements (Xie and Grossman 2018; Schütt et al. 2017; Chen
et al. 2019; Lin et al. 2023). This GNN model can handle
periodicity and rotation, permutation, and translation invari-
ance and be extended to the hypergraph to treat the bond an-
gle directly (Choudhary and DeCost 2021). Recently, a more
accurate graph-transformer-based model (Yan et al. 2022)

1Code: https://github.com/packer-jp/ContinuouSP



and infinitely fully connected neural network for crystal sys-
tems (Taniai et al. 2024) have been proposed. These models
can be assumed as an extension of the GNN for crystals by
using the attention mechanism. This study uses these GNN
models to describe the logarithmic probability because that
function is expected to behave as the total energy, and we
can easily modify that model to guarantee the continuity of
the lattice deformation.

CSP and Crystal Generation
CSP and crystal generation using machine learning have tra-
ditionally developed under the predict-optimize paradigm
(Cheng, Gong, and Yin 2022), based on formation energy
predictors and optimization methods. On the other hand, in
recent years, significant research efforts have been dedicated
to exploring the potential of generative models. FTCP (Ren
et al. 2022), proposed alongside the implementation of a
crystal generative model using VAE, serves as a reversible
feature representation for crystals. Among crystal generative
models utilizing GANs is CrystalGAN (Nouira, Sokolovska,
and Crivello 2019), which targets crystals with specific com-
positions and enables efficient crystal generation by parti-
tioning the search space. Furthermore, inspired by the suc-
cess of diffusion models in the field of computer vision, nu-
merous studies have reported advances using diffusion mod-
els. One advantage of diffusion models lies in their ability to
guarantee the invariance of probability density functions by
adopting equivariant score predictors for translations, rota-
tions, and permutations of atomic orders. CDVAE (Xie et al.
2022), a pioneering work in this approach, explicitly handles
atomic coordinates. DiffCSP (Jiao et al. 2023) employs frac-
tional coordinates and Fourier-transformed features, while
SyMat (Luo, Liu, and Ji 2023) utilizes interatomic distances.
EquiCSP (Lin et al. 2024) explores the invariance concern-
ing the permutation of lattice vector orders. DiffCSP++ (Jiao
et al. 2024) further extends the DiffCSP method by incor-
porating space group considerations. However, we believe
that, although these approaches partially ensure certain in-
variances, they still fall short of fully satisfying all the nec-
essary properties that should be met.

Continuity of Machine Learning Models
In the field of computer vision, the continuity of machine
learning models has been a subject of discussion. Specifi-
cally, it has been pointed out that using classical represen-
tations such as quaternions or Euler angles for 3D rotations
in point clouds or joints results in a lack of the continuity
(Zhou et al. 2019). In general, for 3D rotations, represen-
tations with 4 or less dimensions are insufficient from the
perspective of the continuity, and it has been shown that
representations of 5 or higher dimensions should be used,
along with practical representation example. Additionally,
self-selecting ensembles (Xiang 2021) provide an approach
to address the topological complexity arising from the rota-
tional symmetry of the target.

Energy-Based Models
Energy-based models (EBMs), which trace their origins
back to the Boltzmann machine (Hinton and Sejnowski

1986), continue to be actively explored across various do-
mains. For example, (Du and Mordatch 2019) demonstrates
performance comparable to then state-of-the-art methods in
tasks such as image generation and corrupted data restora-
tion. Also, Generative PointNet (Xie et al. 2021) leverages
EBMs for point cloud generation, achieving high perfor-
mance while ensuring invariance. In the realm of physics
applications, protein conformation prediction stands out as a
prominent example (Du et al. 2020). Moreover, EBMs form
the theoretical foundation of diffusion models, and their in-
direct impact in this area is immeasurable.

Preliminaries
Solid Materials
A solid material refers to an atomic arrangement in 3D
space. Its mathematical definition is as follows:
Definition 1 (Solid Materials). Let A be the set of atomic
species consisting of H, He, Li, and so on. The set of all solid
materials, S, is the set of all countable subsets of A×R3×1.
Namely, (a, x) ∈ S (∈ S) represents a pair of an atomic
species and a coordinate in the solid material S.

Next, we define each kind of invariance in solid mate-
rials. Physical properties such as the formation energy, the
band gap, and the bulk modulus, which take scalar values,
are examples of invariance under translation or rotation. Be-
low, Y represents an arbitrary set, and elements of groups
are identified with their standard representations.
Definition 2 (Translation Invariance on Solid Materials). A
partial mapping f : S ⇀ Y is said to be translation invariant
if, for any solid material S ∈ Dom(f) and any translation
operation b ∈ T(3), the equation f({(a, x + b) | (a, x) ∈
S}) = f(S) holds.
Definition 3 (Rotation Invariance on Solid Materials). A
partial mapping f : S ⇀ Y is said to be rotation invari-
ant if, for any solid material S ∈ Dom(f) and any rotation
operation Q ∈ O(3), the equation f({(a,Qx) | (a, x) ∈
S}) = f(S) holds.

Finally, we define the continuity of solid materials. Con-
tinuity here means that when each atom is displaced by a
small amount, the changes in the values corresponding to the
solid material, such as physical properties, are also small.
Definition 4 (Continuity on Solid Materials). A partial map-
ping f : S ⇀ Rm is said to be continuous at a solid material
S ∈ S if, for any ε > 0, there exists a δ > 0 such that the fol-
lowing conditions hold for any solid material S′ ∈ Dom(f).
There exists a bijection ϕ : S → S′, ϕ(a, x) = (a′, x′), and
if a′ = a and ∥x′ − x∥ < δ, then ∥f(S′) − f(S)∥ < ε. In
what follows, when we simply say that f is continuous, it
means it is continuous for all solid materials in its domain.

Crystals
Let us formulate the periodic unit commonly used to de-
scribe crystals. In general, a crystal can be represented by
(i) a species vector corresponding to the species of atoms
in one period, (ii) a coordinate matrix corresponding to the
coordinates of atoms in one period, and (iii) a lattice basis
corresponding to the shape of the unit cell.



Definition 5 (Periodic Units). The set of all periodic units
with n atoms per period is denoted as Pn. This consists of
(A, (x1, . . . , xn), L) ∈ An × R3×n × R3×3 such that for
any i, j ∈ {1, . . . , n} and k ∈ Z3×1 with i ̸= j or k ̸= 0,
xj + Lk ̸= xi. Namely, in a periodic unit (A,X,L) ∈ Pn,
A represents the species vector, X represents the coordinate
matrix, and L represents the lattice basis.

A periodic unit can be converted into a solid material as
follows:
Definition 6 (Periodic Units to Solid Materials). The con-
version from a periodic unit to a solid material, PtoS :⋃∞

n=1 Pn → S is represented as follows:

PtoS((a1, . . . , an), (x1, . . . , xn), L) ={
(ai, xi + Lk) | i ∈ {1, . . . , n}, k ∈ Z3×1

}
. (1)

Through this conversion PtoS, the entire set of crystals can
be expressed as the image PtoS(

⋃∞
n=1 Pn). Namely, a crys-

tal is a solid material where atoms are periodically arranged
according to lattice basis.

It should be noted that PtoS is not injective. In other
words, a periodic unit can be re-described without chang-
ing the crystal it indicates. The replacement of lattice basis,
encompassing both cases where the number of atoms per pe-
riod changes and does not change, as well as the rearrange-
ment of atomic order, corresponds to a re-description. To
address this, we introduce the concept of re-description in-
variance. For example, a function that takes a periodic unit
as input and calculates a physical property of the crystal it
indicates should reproduce the same output even if the input
periodic unit is re-described. Only when this is guaranteed,
the function can be interpreted as a mapping from a crystal
to its physical property.
Definition 7 (Strong Re-description Invariance). A mapping
g :

⋃∞
n=1 Pn → Y is said to be strongly re-description

invariant if, for any periodic units P, P ′ ∈
⋃∞

n=1 Pn,
PtoS(P ′) = PtoS(P ) implies g(P ′) = g(P ). In this case,
there exists a unique mapping f : PtoS(

⋃∞
n=1 Pn) → Y

such that f ◦ PtoS = g. When g is strongly re-description
invariant, the notation g◦PtoS−1 is expediently allowed and
is considered equal to f .

Additionally, a version with a fixed number of atoms per
period, which is a weaker form of the above definition, is
also defined.
Definition 8 (Weak Re-description Invariance). A mapping
g :

⋃∞
n=1 Pn → Y is said to be n-weakly re-description

invariant if, for any periodic units with n atoms P, P ′ ∈ Pn,
PtoS(P ′) = PtoS(P ) implies g(P ′) = g(P ). In this case,
there exists a unique mapping f : PtoS(Pn)→ Y such that
f ◦ PtoS|Pn = g|Pn . When g is n-weakly re-description
invariant, the notation g ◦ PtoS|−1

Pn
is expediently allowed

and is considered equal to f .

Crystal Graph Convolutional Neural Networks
The crystal graph convolutional neural networks (CGCNN)
(Xie and Grossman 2018) is a machine learning model de-
signed to predict physical properties of crystals. By convert-

ing periodic units into graphs, it achieves any kind of invari-
ance.

In the process of graph construction, atoms within one
periodic unit of the crystal are interpreted as nodes, and
edges are drawn between nodes corresponding to atomic
pairs within a cutoff distance. Each edge is associated with a
feature determined by the interatomic distance. Notably, this
can be multi-edges.
Definition 9 (Graph Construction in CGCNN). For a graph
including n nodes corresponding to a periodic unit P =
(A, (x1, . . . , xn), L) ∈ Pn, the neighborhood NP (i) of a
node i ∈ {1, . . . , n} is defined as follows:

NP (i) =

(j, k)

∣∣∣∣∣∣∣
j ∈ {1, . . . , n},
k ∈ Z3×1,

∥xj + Lk − xi∥ < D

 , (2)

where D is the cutoff distance. When (j, k) ∈ NP (i), an
edge is drawn between nodes i and j, carrying a feature
ei,j,k ∈ Rde×1 determined by the distance ∥xj + Lk − xi∥.
The resulting graph is undirected.

Next, the node features are updated through graph convo-
lution.
Definition 10 (Graph Convolution in CGCNN). The fea-
ture vi ∈ Rdv×1 of a node i, initialized based on the atomic
species, is updated as follows:

vi ← vi +
∑

(j,k)∈NP (i)

ψθ(vi, vj , ei,j,k). (3)

Here, θ represents the learning parameters, and ψθ is a con-
tinuous mapping for each column vector of the input.

The resulting node features are then aggregated using
mean pooling, and the output is obtained via a multi-layer
perceptron (MLP). This process constitutes the CGCNN.
Definition 11 (CGCNN). CGCNNθ :

⋃∞
n=1 Pn → R is

defined by the following steps:
1. Convert the input crystal into a graph.
2. Update node features through graph convolution.
3. Aggregate the graph features using mean pooling.
4. Pass the aggregated features through an MLP to obtain

the output.
CGCNN defined as above satisfies all the desired invari-

ances, although it should be noted that this does not satisfy
the continuity as it stands.
Theorem 1 (Invariance of CGCNN). CGCNNθ is strongly
re-description invariant. Also, CGCNNθ◦PtoS−1 is invari-
ant to translation and rotation.

Energy-Based Models
The energy-based model (EBM) is one of the generative
models designed to learn the underlying probability distribu-
tion of a given dataset. Unlike other generative models such
as VAEs or GANs, the NN in an EBM does not directly out-
put samples. Instead, it outputs a scalar value called energy
associated with the input, which is tied to the probability
density.



Definition 12 (Probability Density Function in EBMs). The
goal is to learn a probability distribution over a set X . For
a point x ∈ X , the parameterized probability density is de-
noted as pθ(x). A relationship is established between pθ(x)
and an NN Hθ : X → R as follows:

pθ(x) =
exp(−βHθ(x))

Z(θ, β)
, (4)

where Z(θ, β) =
∫
x∈X

exp(−βHθ(x))dx. (5)

Here, β > 0 is the inverse temperature. By analogy with sta-
tistical mechanics, Hθ is referred to as the energy function.

A sampling method using the energy function is Markov-
chain Monte Carlo (MCMC). In MCMC, a point is initially
chosen at random and then iteratively updated. A fundamen-
tal MCMC algorithm is the Metropolis-Hastings (MH) algo-
rithm, which proposes transitions to neighboring states and
decides whether to accept these transitions based on changes
in energy.
Definition 13 (MH). In MH, by denoting the transition
probability from a point x ∈ X to another point x′ ∈ X as
r(x′ | x), the acceptance probability is defined as follows:

min

{
1,
r(x | x′)pθ(x′)
r(x′ | x)pθ(x)

}
. (6)

This ensures that the detailed balance condition is satis-
fied, and after sufficient iterations, the samples follow the
probability distribution pθ.

If Hθ is differentiable with respect to the input, another
MCMC method, Langevin Monte Carlo (LMC) algorithm,
can be applied.
Definition 14 (LMC). In LMC, a point x ∈ X = Rm is
updated as follows:

x← x− αβ∇xHθ(x) +
√
2αu,where u ∼ N (0, I) (7)

If the step size α is sufficiently small, no acceptance decision
like in MH is required. An LMC variant that includes accep-
tance decisions is called the Metropolis-adjusted Langevin
algorithm (MALA).

The EBM is typically trained via maximum likelihood es-
timation.
Definition 15 (Loss Function in EBMs). In an EBM, given
a dataset (x1, . . . , xn) ∈ Xn, learning minimizes the fol-
lowing loss J(θ):

J(θ) = −
n∑

i=1

log pθ(xi). (8)

Although directly computing the loss function is difficult,
its gradient can be calculated.
Theorem 2 (Gradient of Loss Function in EBMs). The gra-
dient of the loss J(θ) is given by:

∇θJ(θ) =
β

n

n∑
i=1

(
∇θHθ(xi)− Epθ(x) [∇θHθ(x)]

)
. (9)

Here, the subscript pθ(x) of the expectation operator E rep-
resents sampling x from the probability distribution corre-
sponding to pθ.

In essence, learning progresses to minimize the energy for
data points while maximizing the energy for sample points.

Proposed Method
We propose a CSP model, ContinuouSP, that is both invari-
ant and continuous. By leveraging the EBM framework, we
can retain the invariance properties guaranteed by CGCNN.

First, we modify CGCNN slightly to ensure the continu-
ity.

Definition 16 (Graph Convolution in CGCNN’). CGCNN′
θ

is defined as a modified version of the update formula of
CGCNNθ, as follows:

vi ← vi+∑
(j,k)∈NP (i)

cos2

(
π∥xj + Lk − xi∥

2D

)
ψθ(vi, vj , ei,j,k).

(10)

Here, ψθ is a continuous mapping for each column vector of
its inputs.

Next, we use this directly as the energy function.

Definition 17 (Energy Function in ContinuouSP). The en-
ergy function Hθ :

⋃∞
n=1 Pn → R is defined as Hθ =

CGCNN′
θ

For the CSP task, which is a conditional generation prob-
lem based on the species vector, we define the relationship
between the energy and the probability density.

Definition 18 (Probability Density Function in Continu-
ouSP). For a periodic unit (A,X,L) ∈ Pn, the conditional
probability density pθ(X,L | A) is expressed using the en-
ergy function Hθ as:

pθ(X,L | A) =
exp(−βHθ(A,X,L))

Z(θ, β,A)
, (11)

where Z(θ, β,A) =∫
X∈R3×n

L∈R3×3

exp(−βHθ(A,X,L))dXdL. (12)

The energy functionHθ satisfies the following properties:

Theorem 3 (Properties of Energy Function in ContinuouS-
P). Hθ is strongly re-description invariant. Also, Hθ ◦
PtoS−1 is invariant to translation and rotation, and is con-
tinuous.

Theorem 4 (Properties of Probability Density Function in
ContinuouSP). For any positive integer n, pθ is n-weakly
re-description invariant. Also, pθ ◦ PtoS|−1

Pn
is invariant to

translation and rotation, and is continuous.

In the standard EBM, the parameters θ are determined via
maximum likelihood estimation over the dataset. However,
in the CSP task, the generation condition, species vector, is
not inherently unique to the crystal (even ignoring permuta-
tion symmetry). Thus, directly using it in the loss function is
inappropriate. In ContinuouSP, the loss function is defined
prescriptively as follows:
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Figure 1: Diagram illustrating the training workflow of ContinuouSP: For each periodic unit of the crystal included in the
training data points, the species vector is Reduce-d to the composition, then Expand-ed using a geometric distribution to
create a new species vector. This vector is used to condition the sampling performed via MCMC. The resulting new crystal and
the original crystal are compared by calculating the energy difference, which is used as a pseudo-loss.

Definition 19 (Loss Function in ContinuouSP). The loss
function J in ContinuouSP on the dataset ((A1, X1, L1),
. . . , (Am, Xm, Lm)) ∈ (

⋃∞
n=1 Pn)

m is defined as:

J(θ) =
1

m

m∑
i=1

(
βHθ(Ai, Xi, Li)+

∞∑
j=1

(1− q)j−1q logZ(θ, β,A′
i)

)
, (13)

where:
• (1 − q)j−1q is the probability mass of geometric distri-

bution with success probability q and j trials.
• A′

i = Expand(Reduce(Ai), j).
• Reduce is a function that constructs the simplest integer

ratio of atomic counts (so-called composition) from the
species vector.

• Expand is a function that constructs the species vector
by multiplying the composition by an integer.

Due to the re-description invariance of Hθ, the computation
outcome does not depend on the order of atoms inA′

i. There-
fore, this loss function is well-defined.

Then, the gradient of the loss function can be expressed
in a form that corresponds well to that of a general EBMs.
Theorem 5 (Gradient of Loss Function in ContinuouSP).
The gradient of the loss J(θ) is given by:

∇θJ(θ) =
β

m

m∑
i=1

(
∇θHθ(Ai, Xi, Li)−

Ej∼Geom(q)
pθ(X,L|A′

i)

[∇θHθ(A
′
i, X, L)]

)
, (14)

where Geom(q) is geometric distribution with success prob-
ability q.

Thus, the pseudo-loss is computed through the flow illus-
trated in Fig. 1, guiding the training process.
Definition 20 (Loss Function for Single Datum). For the
mapping L :

⋃∞
n=1 Pn → R from a single datum to the

loss, the following holds:

L(A,X,L) = 1

m

(
βHθ(A,X,L)+

∞∑
j=1

(1− q)j−1q logZ(θ, β,A′)

)
+R(θ), (15)

where R(θ) accounts for the contributions of other data
points.

The following properties hold for L:
Theorem 6 (Properties of Loss Function in ContinuouSP).
The mappingL is strongly re-description invariant. Also, the
mapping L◦PtoS−1 is invariant to translation and rotation,
and is continuous.

If the mapping from a datum to the loss is invariant and
continuous, it is reasonable to expect that the training results
will also be invariant and continuous with respect to the da-
tum. Therefore, we conclude that in ContinuouSP, both the
training results regarding the training data and the probabil-
ity density functions determined by the training results sat-
isfy all requirements.

Experiment
Experimental Setup
Crystal Structure Prediction We evaluate the perfor-
mance of ContinuouSP on the CSP task using datasets that



were utilized in previous researches such as (Xie et al. 2022)
and (Jiao et al. 2023). After training as usual, we generate
species vectors for each crystal in the test dataset, use them
as input conditions for the model, and compare the actual
structures with the sampled structures.

Datasets We evaluate our methods on three datasets with
varying complexity. Perov-5 (Castelli et al. 2012a)(Castelli
et al. 2012b) consists of 18,928 crystals with perovskite
structures. Each crystal has a cubic unit cell containing 5
atoms, characterized by similar structural configurations.
This dataset is relatively simple. MP-20 comprises 45,231
inorganic crystals and is considered a standard dataset. Each
crystal contains up to 20 atoms per unit cell. MPTS-52 is a
more complex extension of MP-20, consisting of 40,476 in-
organic crystals. Each crystal also contains up to 20 atoms
per unit cell. Perov-5 and MP-20 datasets are split into 60-
20-20 ratios for training, validation, and testing. For MPTS-
52, the dataset is split into 27,380/5,000/8,096 entries based
on the order of the earliest published year.

Baselines We compare our approach with several base-
line methods to evaluate its effectiveness. RS, BO, and PSO
(Cheng, Gong, and Yin 2022) represent traditional methods
based on the predict-optimize paradigm. Specifically, a for-
mation energy predictor is first constructed using MEGNet
(Chen et al. 2019), followed by the discovery of structures
that minimize formation energy through various optimiza-
tion methods. Each of these methods employs over 5,000
iteration steps. P-cG-SchNet (Jiao et al. 2023) is an autore-
gressive generative model adapted for CSP by incorporat-
ing lattice basis predictions into SchNet (Schütt et al. 2017),
which was originally designed for molecular tasks. CDVAE
(Xie et al. 2022) is a crystal generative model based on diffu-
sion and can be applied to CSP. DiffCSP (Jiao et al. 2023) is
another diffusion-based model explicitly designed for CSP.

Metrics For evaluation, 20 samples are generated for each
crystal in the test dataset, and each kind of metric value is
computed by using StructureMatcher(stol=0.5,
angle tol=10, ltol=0.3) from pymatgen library.
Match Rate is the percentage of test crystals for which at
least one sampled structure matches the actual structure.
A match is determined if the get rms dist method of
StructureMatcher returns a value other than None.
RMSE is the mean of the smallest atomic RMS displace-
ments among matched structures for each test crystal. The
float values returned by get rms dist method are
used for this calculation.

Implementation Details In the ψθ of CGCNN, the sum
of the outputs of linear layers applied to vi and vj , and the
Hadamard product of the output of a linear layer applied to
ei,j,k, are prepared twice in the same way. One of them is
passed through a sigmoid function, and the two are multi-
plied. After each graph convolutional layer, the vertex fea-
tures are passed through a softplus activation function. The
edge features are computed using Gaussian smearing with
a maximum value of 20 Å and a standard deviation coeffi-
cient of 3.0. The cutoff distance D for graph construction
is set to 3.0 times the cube root of the reciprocal of the

atomic density. For Perov-5, both the vertex feature dimen-
sion dv and the edge feature dimension de are set to 32, with
3 graph convolutional layers and a 2-layer MLP with the
softplus activation function. On the other hand, for MP-20
and MPTS-52, both dv and de are set to 64, with 6 graph
convolutional layers and a 4-layer MLP also with the soft-
plus activation function. To prevent excessively low or high
atomic densities, a penalty is added to the energy output by
the neural network, which is the logarithm of the atomic den-
sity divided by the reference atomic density of 0.05 Å

−3
.

The geometric distribution parameter q in the loss function
is set to 0.5, and sampling is performed using 1000 itera-
tions of MALA. During the iterations, the inverse tempera-
ture β changes exponentially from 1 to 1000, and the step
size α changes exponentially from 0.5 to 0.0005. The lattice
basis is initialized with a normal distribution such that the
expected atomic density is 0.05 Å

−3
, and the atomic coordi-

nates are initialized with a uniform distribution in fractional
coordinates. At each sampling step, the lattice basis is re-
duced using Niggli reduction. The training optimization al-
gorithm uses Adam with a learning rate of 0.001, β1 = 0.9,
and β2 = 0.999. Training is performed for 5 epochs on
Perov-5 and 1 epoch on MP-20 and MPTS-52, using a single
NVIDIA A100 GPU.

Displacement vs. Energy As a supplementary experiment
to verify the validity of the model trained for the CSP task,
the change in energy with respect to atomic displacement
from stable structures is examined. Specifically, for crystals
with stable structures included in the test dataset, Gaussian
noise with a standard deviation of 0.1 Å is added to the co-
ordinates of a single atom within the periodic unit, and the
resulting structure is passed through the energy predictor.
By repeating this process a sufficient number of times, the
relation between the displacement and the energy can be ob-
tained. For this experiment, five crystals are randomly se-
lected from each of Perov-5, MP-20, and MPTS-52. From
the periodic unit of each selected crystal, one atom is ran-
domly chosen. Then, 1000 pairs of displacement magnitudes
and energy values are obtained.

Experimental Result
Crystal Structure Prediction The experimental results
are presented in Table 1. Overall, while the ContinuouSP
does not surpass DiffCSP, generally outperforms the meth-
ods based on the predict-optimize paradigm, and exhibits
comparable performance to several existing generative mod-
els. Notably, the Match Rate on the Perov-5 dataset achieves
the highest value among all methods. It is unfortunate that
the relative performance decreases as the complexity of the
datasets increases. However, this is primarily attributed to
the current inability to identify optimal hyperparameter set-
tings for these cases, rather than any fundamental issues in
the core methodology causing such tendencies. Regarding
training time, it remained within 10 hours for all datasets.
This is neither significantly longer nor shorter compared to
prior models. Nevertheless, the drawback of EBMs — the
long time required for a single epoch — has become appar-
ent. Addressing this issue, such as by employing paralleliz-



Table 1: The results of performance evaluation on the CSP task: Metrics such as Match Rate and RMSE are reported for
datasets like Perov-5, MP-20, and MPTS-50, alongside results from existing methods based on the predict-optimize paradigm
and generative models. ContinuouSP generally outperforms methods based on the predict-optimize paradigm and demonstrates
performance comparable to several existing generative models.

Perov-5 MP-20 MPTS-52

Match rate↑ RMSE↓ Match rate↑ RMSE↓ Match rate↑ RMSE↓

RS 29.22 0.2924 8.73 0.2501 2.05 0.3329

BO 21.03 0.2830 8.11 0.2816 2.05 0.3024

PSO 20.90 0.0836 4.05 0.1670 1.06 0.2339

P-cG-SchNet 97.94 0.3463 32.64 0.3018 12.96 0.3942

CDVAE 88.51 0.0464 66.95 0.1026 20.79 0.2085

DiffCSP 98.60 0.0128 77.93 0.0492 34.02 0.1749

ContinuouSP 99.16 0.0893 44.21 0.1757 11.77 0.2647

able sampling methods, will be a focus for future improve-
ments.

Displacement vs. Energy We show the experimental re-
sult in Fig. 2. Across all datasets, the behavior can be cat-
egorized into two patterns: one where the energy increases
monotonically with displacement from the stable position,
and another where both increases and decreases in energy
are observed. For the cases of monotonic energy increase,
the slope also increases from horizontal as displacement
grows, which aligns well with physical behavior, such as
the harmonic force field approximation. Notably, these phe-
nomena are reproduced despite the fact that no explicit con-
straints, such as those used in loss functions, are incorpo-
rated into the model, as is the case like (Xie et al. 2022).
There are also instances where a range of energy values
is observed for the same displacement magnitude, which
can be interpreted as the model capturing the anisotropy
of energy changes. On the other hand, cases where energy
decreases with displacement indicate instances where the
model fails to correctly identify the energy of the stable
structure as a true local minimum. Thus, while our model
can automatically emulate correct physical behavior in some
cases, it also faces challenges in consistently handling all
scenarios.

Discussion
Relation with Data Augmentation
One method to address arbitrariness in a training dataset is
data augmentation. For instance, this involves applying ran-
dom rotations to image data before feeding it into the model.
So far, we have discussed the perspective of ensuring various
invariances in crystals at the model level. However, Contin-
uouSP actually incorporates elements of data augmentation.
Specifically, the process of doubling the number of atoms
per period through Reduce and Expand serves this purpose,

absorbing the arbitrariness related to the size of the period.
While addressing other forms of arbitrariness through data
augmentation could have been a viable approach, ensuring
the invariances at the model level is preferable. This is be-
cause data augmentation struggles to handle the replacement
of lattice basis that does not change the number of atoms per
period. Unlike rotation or translational symmetry in period-
icity, lattice basis replacement is unbounded and cannot be
sampled correctly due to its symmetry and the inherent arbi-
trariness unrelated to the number of atoms per period. Tak-
ing these factors into consideration, we aimed to maximize
the invariances at the model level by utilizing an EBM with
CGCNN as its backbone.

Comparison with Other Methods
Here, we compare ContinuouSP with other methods from a
theoretical perspective.

First, CSP using EBMs is similar to the predict-optimize
paradigm. This is because the neural network in an EBM
functions as an energy predictor, and the behavior of MCMC
closely resembles optimization—particularly at low temper-
atures, where it can essentially be regarded as optimization.
However, the reason we adopted EBM, despite the similar-
ities, lies in the inherent challenges of the predict-optimize
paradigm. Specifically, the paradigm’s reliance on construct-
ing an energy predictor from actual formation energy data
makes it less robust to data biases. The pairs of crystal struc-
tures and formation energies in the training data must con-
form to the probability distribution derived from those ener-
gies. If the training data consists only of stable crystals, for
instance, the energy predictor might overestimate the energy
of unstable structures during optimization. Preparing a suit-
able dataset that satisfies this requirement is not straightfor-
ward. In contrast, EBMs or general generative models learn
the probability distribution based solely on the presence or
absence of data. This means that a dataset consisting only
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Figure 2: The results of the displacement vs. energy experiment: For crystals with stable structures, an atom is selected from
the periodic unit, and Gaussian noise is added to its coordinates. The diagram shows the relationship between the displacement
and the energy output by the model. From top to bottom, the results correspond to crystals picked from the Perov-5, MP-20,
and MPTS-52 datasets, respectively. Note that the format of IDs representing crystals varies across datasets. The relationship
between displacement and energy is divided into two types: those where energy monotonically increases with displacement and
those where both increases and decreases are observed.

of stable crystals would suffice. Nonetheless, constructing
formation energy predictors or other property predictors and
utilizing them for transfer learning in EBMs or similar mod-
els could be promising for performance improvement.

The relationship with diffusion models is also crucial.
Diffusion models can be seen as an evolution of EBMs, and
their efficiency arises from not requiring MCMC sampling
during training. Instead, they explicitly assume a probability
distribution from the training data and train a score predic-
tor to learn its gradient. We attribute the success of diffusion
models in the computer vision domain partly to the validity
of assuming simple distributions, such as mixtures of Gaus-
sians, for objects in Euclidean space like images. In con-
trast, the topological space of crystals is more complex due
to periodicity. This complexity is exemplified by the fact that
even for the same crystal, the degrees of freedom can vary
depending on the method of description per period. From
these observations, we consider the use of EBMs instead of
diffusion models in CSP to be reasonably justified. However,
from the perspective of training efficiency, diffusion models
have a clear advantage, as reflected in the performance eval-
uation results of this study. Improving the training efficiency
of EBMs remains an important challenge for future work.

Concolusion
In this study, we proposed the CSP model ContinuouSP.
We began by formalizing key concepts, including invari-
ance to translation and rotation and continuity, both at the
solid material level, as well as the conversion from periodic
units to solid materials and the associated invariance to re-
description. Using the property prediction model CGCNN
and the EBM framework, we successfully fulfilled these re-

quirements. In performance evaluation, while the model did
not achieve state-of-the-art on ordinary datasets, it outper-
formed traditional methods and demonstrated comparable
performance to several existing generative models. More-
over, a unique feature of ContinuouSP was its ability to
maintain performance on extraordinary datasets, a charac-
teristic not observed in existing models. Additionally, we
discussed the relationship with data augmentation, princi-
pled comparisons with existing methods such as the predict-
optimize paradigm and diffusion models, and the theoretical
underpinnings of these approaches. Through this work, we
reaffirm the potential of EBM in CSP tasks. Future work
will focus on improving performance to further solidify its
advantages.
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Appendix
Invariance of CGCNN
Let us prove Theorem 1. First, in order to prove the strong re-
description invariance of CGCNNθ, consider constructing a
graph corresponding to a solid material.
Definition 21 (Graph Construction for Solid Materials). For
a graph including infinite nodes corresponding to a solid
material S ∈ S, the neighborhood NS(a, x) of a vertex
(a, x) ∈ S is defined as follows:

NS(a, x) = {(a′, x′) | (a′, x′) ∈ S, ∥x′ − x∥ < D}.
For (a′, x′) ∈ NS(a, x), an edge is formed between ver-
tices (a, x) and (a′, x′), with a feature ea,x,a′,x′ ∈ Rde×1

determined by the distance ∥x′ − x∥. Due to symmetry, the
resulting graph is undirected.
Definition 22 (Graph Convolution for Solid Materials). The
feature ua,x ∈ Rdv×1 of a vertex (a, x) is initialized based
on its atomic species and is updated as follows:

ua,x ← ua,x +
∑

(a′,x′)∈NS(a,x)

ψθ(ua,x, ua′,x′ , ea,x,a′,x′).

By using these, the strong re-description invariance of
CGCNNθ can be established as follows:
Lemma 1 (Strong Re-description Invariance of CGCNN).
CGCNN′

θ is strongly re-description invarant.

Proof of Lemma 1. Consider a periodic unit ((a1, . . . , an),
(x1, . . . , xn), L) ∈ Pn corresponding to a solid material
S = PtoS(P ). By mathematical induction, after graph con-
struction and a fixed number of graph convolution steps, for
any i ∈ {1, . . . , n} and k ∈ Z3×1, we have uai,xi+Lk =
vi,k. The resulting node features are passed through mean
pooling and an MLP, yielding the same result.

Next, we show proofs of the translation and rotation in-
variance of CGCNNθ ◦ PtoS−1

Lemma 2 (Translation invariance of CGCNN). CGCNNθ ◦
PtoS−1 is translation invariant.
Lemma 3 (Rotation invariance of CGCNN). CGCNNθ ◦
PtoS−1 is rotation invariant.

Proof of Lemma 2. Let a crystal be C ∈ PtoS(
⋃∞

n=1 Pn)
and a periodic unit P = (A, (x1, . . . , xn), L) such that
PtoS(P ) = C. For any translation b ∈ T(3), define a new
periodic unit P ′ = (A, (x1 + b, . . . , xn + b), L). The graph
and initial node features constructed from P and P ′ are iden-
tical. Thus, CGCNNθ(P

′) = CGCNNθ(P ). Hence:
CGCNNθ ◦ PtoS−1({(a, x+ b) | (a, x) ∈ C})

=CGCNNθ(P
′)

=CGCNNθ(P )

=CGCNNθ ◦ PtoS−1(C).

Proof of Lemma 3. It can be proven in a similar manner to
Lemma 2.

Using the above, Theorem 1 follows.

Proof of Theorem 1. It follows from Lemmas 1, 2, 3.

Gradient of Loss function in EBMs
Theorem 2 is well-known and can be derived through the
following transformations:

Proof of Theorem 2.

∇θJ(θ) (16)

=
β

n

n∑
i=1

∇θHθ(xi) +∇θ logZ(θ, β) (17)

=
β

n

n∑
i=1

∇θHθ(xi) +
∇θZ(θ, β)

Z(θ, β)
(18)

=
β

n

n∑
i=1

∇θHθ(xi)−

β

Z(θ, β)

∫
x∈X

exp(−βHθ(x))∇θHθ(x)dx (19)

=
β

n

n∑
i=1

∇θHθ(xi)− βEpθ(x) [∇θHθ(x)] (20)

=
β

n

n∑
i=1

(∇θHθ(xi)− Epθ(x) [∇θHθ(x)]). (21)

Properties of Energy Function in ContinuouSP
Let us prove Theorem 3. By Hθ = CGCNN′

θ, it suffices
to demonstrate the properties of CGCNN′

θ. Since most of
the proof is almost identical to that of Theorem 1, we focus
here on proving the continuity of CGCNN′

θ ◦PtoS
−1. First,

consider the following lemma:
Lemma 4 (continuity on periodic units to solid materials).
Let g :

⋃∞
n=1 Pn → Rm be strongly permutation-invariant.

Then, if the mapping hA satisfying hA(X,L) = g(A,X,L),
is continuous for any A with respect to each column vector
of the input, then g ◦ PtoS−1is continuous.

Proof of Lemma 4. Let C ∈ PtoS(
⋃∞

n=1 Pn) and ε > 0.
Consider P = (A,X,L) = (A, (x1, . . . , xn), (l1, l2, l3))
such that PtoS(P ) = C and n has sufficiently many di-
visors. By the continuity of hA, there exists δ > 0 such
that for any periodic unit P ′ = (A,X ′, L′), if the norms
of each column of X ′ − X and L′ − L are less than
δ, then ∥hA(X ′, L′) − hA(X,L)∥ < ε. For this δ, con-
sider any C ′ ∈ PtoS(

⋃∞
n=1 Pn). There exists a bijection

ϕ : C → C ′ such that for any atom (a, x) ∈ C, if
ϕ(a, x) = (a′, x′), then a′ = a and ∥x′−x∥ < δ. Thus, there
exists P ′ = (A,X ′, L′) = (A, (x′1, . . . , x

′
n), (l

′
1, l

′
2, l

′
3))

such that PtoS(P ′) = C ′ and for any i ∈ {1, . . . , n} and
k, k′ ∈ Z3×1, ∥x′i + L′k′ − xi − Lk∥ < δ. By consid-
ering k = k′ = 0, ∥x′i − xi∥ < δ stands. Also, by con-
sidering k = k′ = (±1, 0, 0)T, ∥l′1 − l1∥ < δ stands.
Similarly, ∥l′2 − l2∥ < δ and ∥l′3 − l3∥ < δ. Hence,
∥hA(X ′, L′) − hA(X,L)∥ = ∥g(P ′) − g(P )∥ = ∥g ◦
PtoS−1(C ′)− g ◦ PtoS−1(C)∥ < ε.

By using this lemma, we can prove the continuity of
CGCNN′

θ ◦ PtoS
−1 as follows:



Lemma 5 (Continuity of CGCNN’). CGCNN′
θ ◦PtoS

−1 is
continuous.

Proof of Lemma 5. The mapping ωk defined as

ωk(xi, xj , L) ={
cos2

(
π∥xj+Lk−xi∥

2D

)
(∥xj + Lk − xi∥ < D)

0 (∥xj + Lk − xi∥ ≥ D)
(22)

is continuous with respect to each column vector of the in-
put.Using this, the update rule for CGCNN′

θ is expressed
as:

vi ← vi +
∑

j∈{1,...,n}
k∈Z3×1

ωk(xi, xj , L)ψθ(vi, vj , ei,j,k). (23)

This update rule relies solely on mappings that are continu-
ous with respect to each column vector of X and L. Addi-
tionally, since mean pooling and MLP are continuous map-
pings, CGCNN′

θ satisfies the conditions of Lemma 4.

Thus, the proof of Theorem 3 is complete.

Proof of Theorem 3. The content corresponding to Theorem
1 and Lemma 5 implies properties concerning CGCNN′

θ.
These properties also hold for Hθ = CGCNN′

θ.

Properties of Probability Density Function in
ContinuouSP
Proof of Theorem 4. Considering the substitution that si-
multaneously changes the order of X ′ in Eq. 12 along with
the order ofA, the value of Z, the denominator in Eq. 11, re-
mains unchanged due to the strong re-description invariance
of Hθ. Therefore, revisiting the strong re-description invari-
ance of Hθ in the numerator of Eq. 11, we can conclude
that pθ remains unchanged even when the unit cell is altered
without changing the crystal or the number of atoms per pe-
riod. Furthermore, due to the invariance and the continuity
of Hθ ◦ PtoS−1, it follows immediately that pθ ◦ PtoS|−1

Pn

also exhibits the same properties.

Gradient of Loss Function in ContinuouSP
Proof of Theorem 5.

∇θJ(θ) (24)

=
1

m

m∑
i=1

(
β∇θHθ(Ai, Xi, Li)+

∞∑
j=1

(1− q)j−1q∇θ logZ(θ, β,A
′
i)

)
(25)

=
1

m

m∑
i=1

(
β∇θHθ(Ai, Xi, Li)+

∞∑
j=1

(1− q)j−1q
∇θZ(θ, β,A

′
i)

Z(θ, β,A′
i)

)
(26)

=
1

m

m∑
i=1

(
β∇θHθ(Ai, Xi, Li) +

∞∑
j=1

β(1− q)j−1q

Z(θ, β,A′
i)∫

X∈R3×n

L∈R3×3

exp(−βHθ(A
′
i, X, L))∇θHθ(A

′
i, X, L)dXdL

)
(27)

=
1

m

m∑
i=1

(
β∇θHθ(Ai, Xi, Li)−

βEj∼Geom(q)
pθ(X,L|A′

i)

[∇θHθ(A
′
i, X, L)]

)
(28)

=
β

m

m∑
i=1

(
∇θHθ(Ai, Xi, Li)−

Ej∼Geom(q)
pθ(X,L|A′

i)

[∇θHθ(A
′
i, X, L)]

)
. (29)

Properties of Loss Function in ContinuouSP
Proof of Theorem 6. Since Reduce(A) is the composition
which is intrinsic to the crystal, the summation doesn’t
depend on re-description. Thus, also with the strong re-
description invariance of Hθ, the strong re-description in-
variance of L stands. Furthermore, due to the invariance and
the continuity of Hθ ◦ PtoS−1, it follows immediately that
L ◦ PtoS−1 also exhibits the same properties.


