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Abstract

Tuning parameters is a major hurdle for successfully design-
ing industrial or research processes. Bayesian Optimization
is often used for sample efficient tuning when an analytic so-
lution is intractable, and the evaluation procedure for can-
didate parameter values is costly, especially in higher di-
mensions. In this paper, we combine recent developments
in Deep Kernel Learning (DKL) and attention-based Trans-
former models to improve the modeling powers of GP sur-
rogates with meta-learning. We propose a novel method for
improving meta-learning BO surrogates by incorporating at-
tention mechanisms into DKL, empowering the surrogates
to adapt to contextual information gathered during the BO
process. We combine this Transformer Deep Kernel with a
learned acquisition function using Soft Actor-Critic Rein-
forcement Learning to aid in exploration. This Reinforced
Transformer Deep Kernel (RTDK) approach produces state-
of-the-art results on various high dimensional optimization
problems. We demonstrate this approach on certain classes of
costly to evaluate, analytically intractable problems that have
real-world applications in multiple domains. We compare
our approach against other recently proposed Reinforcement
Learning augmented Bayesian Optimization approaches like
MetaBO, TAF, and FSAF and achieve competitive results
with better performance on higher dimensions in a sample
efficient manner.

Introduction
Sample efficient and high dimensional optimization is at the
core of many industrial and scientific processes with appli-
cations including material design (Zhang, Apley, and Chen
2020), physics (Carr, Garnett, and Lo 2016), synthetic chem-
istry and biology (Shields et al. 2021; Barnes et al. 2011),
and hyperparameter optimization (Snoek, Larochelle, and
Adams 2012). The success of these industrial and scientific
processes is often governed by the correct choice of param-
eters. Due to the complex nature of these processes and the
associated cost to run them, tuning these parameters by solv-
ing analytical equations is intractable. It is also expensive to
tune them by trial and error. One particular class of problem
we are interested in is the Thompson problem of arranging
a set of N electrons on a sphere so that they have the min-
imum potential energy. Many existing problems in physical
chemistry like how electrons are arranged around atoms; in
virus-morphology like determining spatial configuration of

proteins on a virus; discretization of manifolds where we are
interested in optimal placement and design of airplane wings
etc. rely on this formulation (LANL 2015). The Thomp-
son problem is difficult to solve using standard optimization
techniques due to the complicated topology and lack of re-
cursive structure in the problem, leading researchers to use
non-conventional methods for optimization (Mes 2022). The
Electric Grid (Liu, Song et al. 2022) problem is another an-
alytically intractable problem that tries to find the best con-
figuration of generators and system load while keeping the
grid frequency stable. It is difficult to solve this problem us-
ing a model-free trial and error approach due to the safety
critical requirements for maintaining stability while optimiz-
ing the energy generation for a given load. In the domain of
space-research and looking for minerals, the asteroid rout-
ing problem presents a class of problems where the goal is
to find the optimal route for visiting a set of different loca-
tions that vary in space temporally while having a resource
budget (López-Ibáñez, Chicano et al. 2022).

Bayesian Optimization (BO) is a ubiquitous technique
that has proven to be very promising across all the do-
mains listed above, and is often the standard for sample-
efficient block-box optimization (Frazier 2018). However,
Bayesian Optimization relies on the design of a surrogate
model which estimates the optimization objective in yet un-
explored regions, as well as an acquisition function for ef-
fectively exploring the optimization domain. Both of these
components typically require domain knowledge to adapt to
specific optimization objectives, and this design is critical to
BO’s performance on challenging domains.

In this paper, we leverage the contextual representation
power of Transformers in a Deep Kernel Bayesian Opti-
mization setting to solve the Thompson and related analyti-
cally intractable optimization problems, especially in higher
dimensions. We further improve it by using existing tech-
niques in Reinforcement Learning based acquisition func-
tions that does not need any gradient information from the
black-box functions. This is the first work to the best of
our knowledge that combines the power of RL and Trans-
former based Deep Kernel into a unified architecture where
embedding information is shared across the surrogate and
Acquisition function. This is what enables the approach
to be applied to higher dimensions in a sample efficient
manner while using Deep Learning models. We perform



competitively compared to other recent deep learning-based
Bayesian Optimization techniques in the higher dimensional
space. Our belief is that the solution approach would benefit
different fields, where the existing problem can be converted
to an equivalent problem we solve.

Related Work
Deep Kernel Learning Deep Kernel Learning (DKL)
(Wilson et al. 2015; Ober, Rasmussen, and van der Wilk
2021) extends the learning capability of the Gaussian Pro-
cesses (GP) by mapping the original optimization domain
into a new domain via a parameterized transformation, such
as a deep neural network. The underlying GP is then trained
on these embedding inputs after neural network reprocess-
ing. The GP parameters are optimized via log-likelihood
minimization, and the gradients are passed along to the em-
bedding through back-propagation.

Reinforcement Learning Acquisitions Reinforcement
learning (RL) approaches to Bayesian optimization have re-
cently shown promising results, especially for discrete ob-
jectives. MetaBO presents a seminal framework for inter-
preting the acquisition function within Bayesian optimiza-
tion as a reinforcement learning policy, to be trained with
policy gradient methods (Volpp et al. 2020). This work has
been further generalized in (Hsieh, Hsieh, and Liu 2021) to
allow for few-shot q-learning instead of a discrete policy op-
timization. These approaches present useful frameworks for
tackling small sample Bayesian optimization, but they pri-
marily focus on the acquisition function, leaving the surro-
gate model as a traditional Gaussian process. Additionally,
both approaches rely on a discrete grid to perform optimiza-
tion, approximating continuous domain optimization with a
quasi-random hierarchical grid.

Attention and Transformers Attention mechanisms (Lu-
ong, Pham, and Manning 2015) provide a method for deep
neural networks to modify their activations in response to a
set of contextual vectors. This allows us to condition a pa-
rameterized neural network on an arbitrary number of un-
ordered vectors. Attention has been used in various network
architectures to achieve state-of-the-art results in many ap-
plications, including natural language processing (Vaswani
et al. 2017) and computer vision (Dosovitskiy et al. 2021).
We will use the contextual embeddings of transformers to
assist in rapidly optimizing black box functions from obser-
vations on similarly structured objectives.

Preliminary: Bayesian Optimization
Bayesian Optimization (BO) corresponds to a general set of
techniques for optimizing a black-box function f(x) : X →
Y by: fitting a surrogate model to estimate function values
across the optimization domain; and employing an acqui-
sition function based on the surrogate to select promising
query points (Frazier 2018).

The surrogate model, f̂(x;xtrain, ytrain) = f̂(x;D),
provides a probabilistic estimate of the objective across the
entire optimization domain given a sparse sample of points
xtrain = {x1, x2, . . . , xk} where the objective is known

ytrain = {y1, y2, . . . , yk}. Surrogates typically provide both
a mean estimate of the function value µ(x;D), and an uncer-
tainty for that estimate in the form of a variance σ2(x;D).

After fitting the surrogate on the observed dataset D,
the acquisition function, A(x;D), defines a score for se-
lecting the next query point xquery. Bayesian optimization
selects queries by maximizing the acquisition xquery =
argmaxx∈X A(x;D). Therefore, the acquisition must be re-
sponsible for balancing exploration to ensure a global op-
timum across the domain and exploitation to optimize lo-
cally within a promising region. One common acquisition
function, especially with Gaussian Process surrogates, is the
Expected Improvement (EI) criterion (Jones, Schonlau, and
Welch 1998).

In this work, we aim to improve both aspects of BO by
introducing deep neural networks to both the surrogate and
acquisition functions while maintaining the generality of the
BO approach. These improvements will minimize required
training data while ensuring that these methods work in both
continuous and discrete optimization domains.

Proposed Approach: Conditional Deep Kernel
with Reinforced Acquisition Function

Conditional Deep Kernel Surrogate
The Gaussian Process (GP) (Rasmussen and Williams 2005)
is a fundamental architecture for BO surrogate models
(Frazier 2018). GPs estimate the objective with a Gaus-
sian posterior over functions fitting the observed data:
f̂(y|x;D) ∼ N (µ(x;D), σ2(x;D)). We use a learned mean
component which is parameterized by a linear transfor-
mation of the input µW (x) = Wx. In general, both the
mean and covariance components may have parameters that
must be learned. The parameters of a Gaussian process are
trained to maximize the log-likelihood of the training dataset∑

x,y∈D logP (f̂(y;x,D) = y).
The GP covariance is determined by a Kernel, K(x1, x2),

which defines the distance between any two points within
a high dimensional (sometimes infinite) manifold. This ker-
nel representation, along with the Gaussian likelihood, de-
fines an analytical posterior distribution over the optimiza-
tion domain given a set of observed function values. The
choice of kernel function is crucial for well-fitting GPs, and
many domains have specially designed kernel functions to
fit domain-specific data.

Combination Kernel
In the interest of generality, we want a consistent architec-
ture that works reasonably well across various domains. A
common kernel in traditional GPs is the RBF, which corre-
sponds to a dot-product in an infinite dimensional manifold
and may be defined as an infinite sum of polynomial kernels
(Rasmussen and Williams 2005).

KRBF (x1, x2) ∝
∞∑
k=1

⟨x1, x2⟩k

k!

Taking inspiration from this representation, we choose to
instead approximate this high dimensional embedding up to
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Figure 1: Block Diagram of Transformer Deep Kernel Learning Gaussian Process. The red path indicates the prediction path
for the query point. The black paths indicate the contextual information.

a certain power, K, learning the coefficients, αk, as part of
the kernel’s parameters. We call this kernel the Combination
up to K, or C(K), kernel.

KC(K)(x1, x2) =

K∑
k=1

αk⟨x1, x2⟩k

k!
(1)

We find this kernel provides additional learning potential
over a fixed RBF kernel. A hyperparameter selects the max-
imum polynomial.

Normalized Deep Kernel Learning
We find that DKL sometimes experiences numerical
instability, especially when training for Bayesian Op-
timization tasks, which typically have very little data.
We, therefore, introduce an additional parameterized
neural network, vϕ(x), to explicitly estimate the diagonal
components of the covariance, while using a normalized
variant (Rasmussen and Williams 2005) of the kernel,
K(x1, x2), to estimate the non-diagonal components. This
allows us to use a flexible kernel while avoiding large
values due to a poorly conditioned embedding network.
Knormalized(x1, x2) = exp vϕ(x1) · exp vϕ(x2) · K(x1,x2)

K(x1,x1)K(x2,x2)

Transformer Deep Kernel Learning (TDKL)
Transformers present a mechanism for adding arbitrary con-
text sequences to condition neural network activations. Cru-
cially for BO, since the context does not necessarily require
a unique target, it may include additional information that is
not present in traditional BO observations. Specifically, we
include not just the previous sample points xobserved in the
context but also the known function values for those points
yobserved. This mechanism has been shown to be sufficient
for Bayesian inference by itself (Müller et al. 2021) and we
follow a similar framework for conditioning a DKL embed-
ding on previously observed data.

Formally, we extend the DKL framework to include a
conditioning term on the embedding network, zquery =
gθ(xquery|xobserved, yobserved), where g is a sequence-
to-sequence transformer encoder-decoder model (Vaswani
et al. 2017). The observed data, (xobserved, yobserved) =
{(x1, y1), (x2, y2), . . . , (xK , yK)}, is first fed through the

transformer encoder to produce the latent encoded se-
quence wobserved = {w1, w2, . . . , wK}. This is used as
the keys and values for the decoder, whereas the target se-
quence xquery = {xK+1, xK+2, . . . , xN} is used as the
query for the decoder. The output sequence, zquery =
{zK+1, zK+2, . . . , zN}, represents a conditional embedding
of the query locations. We also produce the conditional
embedding of the original observed locations, zobserved =
{z1, z2, . . . , zK}, to condition the downstream Gaussian
Process. The output distribution is parameterized by our GP,
f̂(y|zquery; zobserved, yobserved). See Figure 1 for a flow di-
agram for all inputs. Similarly to (Müller et al. 2021), we re-
move the temporal embedding from the input to ensure that
the transformer is invariant to sequence order. Additionally,
we ensure that query points do not attend to each other by
enforcing a diagonal attention mask on the decoder query
sequence.

We refer to this complete surrogate model - employing a
transformer embedding, learned point-wise variances, and a
combination base kernel - as the Transformer Deep Kernel
Learning (TDKL) surrogate. Unlike (Müller et al. 2021), we
focus this architecture on sample efficiency, relying on the
Gaussian process mechanism to encode the uncertainty in
our predictions. This design introduces an inductive bias to-
wards smooth functions, which may be represented by our
combination kernel GP within the embedding space, but we
find that this assumption does limit our performance due to
the learning potential of the transformer.

Soft Actor-Critic Acquisition

We turn our focus to the BO acquisition function. The TDKL
described above provides a robust surrogate model which
can estimate a function given a sufficiently robust set of sam-
ples. To collect such samples, we need a policy that will suf-
ficiently explore the domain. For this purpose, we will em-
ploy a soft actor-critic (SAC) reinforcement learning agent
(Haarnoja et al. 2018). We will represent the Bayesian op-
timization problem as a Markov decision process and use
this formulation to train a novel model-based soft actor-critic
agent
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Figure 2: Flow diagram for the critic network, showing how the state-action pair is embedded and processed into a Q-Value
estimate.

Optimization Environment
Following the representations presented in MetaBO (Volpp
et al. 2020) and FSAF (Hsieh, Hsieh, and Liu 2021), the
state space for the problem at any time t of the optimiza-
tion process is defined as the collection of points and val-
ues in the BO trajectory, s = (xobserved, yobserved) =
{(x1, y1), (x2, y2), . . . , (xt, yt)}. The action space corre-
sponds to the space of possible locations where we can
sample defined by the input domain X, and action repre-
sents the next candidate point, at = xt+1 ∈ X. We de-
fine the reward in terms of the (approximate) regret, rt+1 =
−log(f∗ − f(xt+1)), where f∗ is the estimated true opti-
mum for the function. We consider finite-length trajectories
determined by the budget for the number of steps in each
trajectory t < Tmax.

In general, each trajectory may originate from a different
underlying objective. This enables meta-learning between
similar objectives as both the agent and model must per-
form well across many different trajectories. We may also
collect additional trajectories from the same environment if
we wish to continue optimizing the given objective. Sam-
pled trajectories are stored in a replay buffer, separated by
their objective variant.

Model-Based Soft Actor-Critic
Following the soft actor-critic framework, our agent
consists of two learned Q-value network q1(s, a) and
q2(s, a), a conservative estimate of the q value q(s, a) =
min{q1(s, a), q2(s, a)}, and a probabilistic policy π(s).
We extend SAC to a model-based reinforcement learning
method by introducing the learned surrogate model into the
framework.

Surrogate Model The surrogate model f̂ will be trained
on function samples from the replay buffer. After sam-
pling a trajectory s = {(x1, y1), (x2, y2), . . . , (xT , yT )},
we shuffle this trajectory and arbitrarily split the x and
y values into observation and query datasets using a
uniform random splitting pivot M ∼ U(1, T − 1).
These datasets, Dobserved = {(x1, y1), . . . , (xM , yM )}
and Dquery = {(xM+1, yM+1), . . . , (xT , yT )} are then
used to optimize the surrogate on purely observed data.
Lmodel =

∑
(xquery,yquery)∈Dquery

− logP (f̂(y;xquery,Dobserved) = yquery)(2)
Notice that this loss function differs from the traditional

GP optimization because the training dataset which condi-

tions our TDKL is different than the prediction dataset. This
is to ensure that the TDKL learns a general representation
regardless of which objective originated the trajectory. Opti-
mizing this loss with a stochastic gradient-descent optimizer,
sampling a different trajectory after each step, presents a
cheap method for meta-learning GP models on a variety of
objectives.

Critics We train the dual critic networks using the
standard entropy-corrected Bellman update described in
(Haarnoja et al. 2018). However, we wish to include infor-
mation learned by the surrogate in the critic networks to im-
prove sample efficiency. We accomplish this by exploiting
the learned embeddings of the TDKL and the GP estimates
of the objective.

The state, s, is embedded using another transformer
architecture (Vaswani et al. 2017). This time, the trans-
former is acting only as an encoder to transform the
variable-length observations, s = {(x1, y1), . . . , (xT , yT )},
into a fixed-size latent embedding. We encode the se-
quence into a latent sequence using the transformer en-
coder {ucritic

1 , . . . , ucritic
T } = TransformerEncoder(s)

and then simply take the final latent vector, ucritic
T , as the

fixed-length embedding.
The action, a, is encoded by passing the suggested point

through the TDKL to extract both the embedding and func-
tion estimates from the surrogate model. wa = gθ(a|s)) rep-
resents the embedding from the TDKL transformer gθ, and
µa, σ

2
a = f̂(a|wa; s) are the surrogate model estimates for

the objective at the action location.
The Q-networks, therefore, become functions

are the more abstract state-action representation,
q(ucritic

T , wa, µa, σ
2
a), allowing information to be shared

between the model and critics. Note that TDKL parameters
are treated as constant w.r.t the critic, and the gradient is not
passed to the TDKL when optimizing the Bellman loss. A
diagram of the critic architecture is presented in Figure 2.

Actor The actor network, π(s), uses the same ar-
chitecture as the state encoding from the Q-networks
(The left-hand component in Figure 2). We use a sep-
arately trained transformer encoder to construct a fixed-
length embedding for the state representation. uactor

T ∈
TransformerEncoder(s). Following the methods de-
scribed in (Haarnoja et al. 2018), we use a tanh-squashed



normal for the actor distribution and apply an affine trans-
form to fit the desired optimization domain.

Acquisition Exploration in Continuous Domains
We find that relying purely on the actor for selecting good
actions while exploring performs poorly on the small sample
counts found in Bayesian optimization. Therefore, instead
of sampling the action directly from a ∼ π(s) like in tra-
ditional SAC, we would like to incorporate the Q networks
into the policy.

To do this, we take inspiration from Boltzmann explo-
ration (Cesa-Bianchi et al. 2017), a common exploration
technique in discrete environments. This involves construct-
ing a policy that will sample proportional to a Boltzmann
distribution based on the Q-network, P (a|s) ∝ expQ(s, a).
We perform this kind of Boltzmann sampling when optimiz-
ing discrete domains using the softmax function, but this ap-
proach fails for continuous optimization domains.

Extending this to the continuous domain can be difficult
because we cannot generally sample from arbitrary func-
tions in high dimensions. However, if we believe that our
actor generally learns the landscape of our Q-function, then
we can sample from the actor in order to assist with gener-
ating samples from the Boltzmann Q using importance sam-
pling.

First, we sample a large batch of actions from the pol-
icy, {a1, a2, . . . , aN} ∼ π(s), where N is typically in
the thousands. Then, we compute the importance weights
of each sampled points w.r.t the Boltzmann Q, wi =
exp(Q(s,ai))
P (π(s)=ai)

. Finally, construct an empirical distribution over
{a1, a2, . . . , aN} using these importance weights and sam-
ple an action a such that P (a = ai) =

wi∑N
k=1 wk

. As long as
the actor has a non-zero probability of sampling anywhere in
the optimization domain, then this process will produce sam-
ples from exactly the Boltzmann Q distribution as N → ∞.
In practice, to trade off memory and computation time, we
use a value of N = 1024

While this process is quite slow, the priority on sample
efficiency in the BO environment allows us to spend more
computation time selecting each action when collecting ob-
jective samples. We use this sampling technique to select
actions during inference. Unfortunately, this process is too
slow to execute when performing gradient updates, so we
use the regular π(s) policy with the re-parameterization trick
to compute the actor loss during SAC training.

Experiments
We evaluate the RTDK Bayesian optimization approach on
a variety of test functions. First, we confirm that this fully
learnable approach can still achieve reliable results in sim-
pler discrete optimization tasks. Then we explore the effec-
tiveness of this fully continuous approach on the class of
analytically intractable and costly to evaluate functions that
relate to the class of problems discussed in the Introduction.

We use the RTDK surrogate with continuous SAC ac-
quisition as the model of study for all experiments. The

RTDK uses a transformer DKL embedding and a combina-
tion kernel with 5 components C(5). RTDK evaluation dif-
fers slightly from other BO methods because the transformer
models must be trained on example trajectories. Therefore,
we must present the model with similarly sized trajecto-
ries during both training and evaluation. To accommodate
longer evaluation trajectories, we split the BO run into ”sub-
trajectories” of length 50, resetting the surrogate after 50
steps. This allows us to only train on trajectories up to length
50. Each sub-trajectory also begins by taking 5 uniform
random function samples to initialize the RTDK surrogate.
Additionally, we add a large action noise to the first sub-
trajectory in order to encourage the RTDK to explore dur-
ing this initial phase. We examine the effect of these sub-
trajectories as discussed later during the ablation studies in
Figure 6.

Discrete Optimization Baseline
We evaluate RTDK, as well as a variety of baselines, on dis-
crete, real-world optimization tasks. In order to aid in direct
comparison, we evaluate this method on the same set of op-
timization problems and methods as (Hsieh, Hsieh, and Liu
2021). These include the previously discussed asteroid rout-
ing, grid stability as well as related problems in particulate
matter (PM2.5), dataset optimization (HPOBench XGB) and
an extremely difficult problem in oil drilling location selec-
tion (Oil 4D)

We compare against baseline acquisition based on a
traditional Gaussian process including Expected Improve-
ment (EI) (Močkus 1975), Probability of Improvement
(PI)(Kushner 1964), Max-value entropy search (MES)
(Wang and Jegelka 2017), and TAF-ME (Wistuba, Schilling,
and Schmidt-Thieme 2018). We also compare against deep
learning acquisition functions FSAF (Hsieh, Hsieh, and Liu
2021) and MetaBO (Volpp et al. 2020). We allow the models
which can perform meta-learning to pre-train on 250 func-
tion samples: 5 trajectories of 50 samples each. We then
evaluated all the methods on 36 additional variants, and plot
the median regret values for these evaluation runs in Figure
3.

We find that RTDK performs on par with other methods,
showing very good performance on the higher dimensional
PM2.5 data-set. We do find that baseline methods do per-
form better in lower dimensional tasks. We think this can be
explained by the larger number of parameters and aggres-
sive SAC exploration in RTDK. This may assist in challeng-
ing domains, but it can decrease performance in simpler do-
mains. We nevertheless display reasonable performance on
these simpler problems even without parameter tuning.

High Dimensional Continuous Domains
We perform a similar comparison of optimization methods
in the continuous domain problems. We evaluate on high
dimensional variations of the Thompson Problem (F.R.S.
1904). We parameterize this function in 4N dimensions,
storing the sin and cos of both the polar and azimuthal angle
of each electron on the sphere. We construct the 16, 32, 48,
and 64 dimensional variants of the function by taking ran-
dom D-dimensional slices through an overarching N = 32
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Figure 3: A comparison of different optimization methods on discrete domain hyper-parameter optimization objectives. TDKL
results include a shaded region representing the IQR (25% - 75%) of achieved regret values.
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Figure 4: A comparison of different optimization methods on medium dimensional continuous optimization tasks. The final
plot shows a comparison of FSAF across different dimensional optimization tasks.

Thompson problem. Each slice is treated as a variant of the
function, allowing us to make a near infinite amount of ob-
jectives with similar characteristics. To demonstrate our ap-
proach on a similar class of problem with multiple modes,
we used the 10-dimensional variant of the Powell function
and compared the results to the current best performance in
(Hsieh, Hsieh, and Liu 2021).

For this test, we continue using the discrete grid-based
approach described in (Hsieh, Hsieh, and Liu 2021; Volpp
et al. 2020) for baseline methods FSAF, MetaBO, MES, and
TAF. This is because generalizing these methods to the con-
tinuous domain directly is challenging, and (Hsieh, Hsieh,
and Liu 2021) recommends using a discrete grid of quasi-
random Sobol samples for approximating continuous op-
timization. However, other baseline methods - EI, PI, and
UCB - may be adapted for use with continuous Gaussian
processes and optimization schemes. Therefore, we use a
continuous Bayesian optimization routine for these base-
lines, along with the RTDK model.

Figure 4 presents results on the lower-dimensional con-
tinuous optimization tasks, demonstrating the limitations of
the grid-based approximation for real-world problems. We
find that TDKL consistently appears in the top scorers across
these optimization domains, with better separation for the
Thompson problem because it features more opportunities
for meta-learning.

The combined benefits of the transformer surrogate and
SAC acquisition truly shine through on the higher dimen-
sional optimization problems presented in Figure 5. We
found that the discrete methods failed to optimize within
these high dimensional domains due to the exponential
growth in required grid size to densely cover the domain.
We also find that RTDK starts to break off from the baseline
methods and effectively meta-learns on the 64-dimensional
Thompson problem. Moreover, we observe a discrete phase
transition between the first 50-sample sub-trajectory and
the later sub-trajectories for the RTDK model. Due to the
heightened exploration, we find that the first 50 samples are
suboptimal for the RTDK method, before rapidly jumping
to a better solution once the second sub-trajectory begins.
We plan to look into this behavior to allow for a smoother
transition, potentially improving sample efficiency.

Ablation Study
Sub-Trajectory Length We find that longer sub-
trajectories assist with achieving lower final regret on the
10 Dimensional Powell function (Figure 6(a)). However,
this comes with a slight hit to convergence time, taking
longer to achieve low regret earlier during the optimization.
Additionally, sub-trajectories larger than 50 samples risked
running out of memory as the transformer architecture
memory requirements scale as n2 with respect to the se-
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Figure 5: A comparison of different optimization methods on very high dimensional continuous optimization tasks. The final
plot shows a comparison of RTDK across different dimensional Thompson optimization runs.
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((b)) Comparison of DKL architecture in
single-function optimization (Powell 10D)
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Figure 6: Ablation studies on TDKL model, enabling and disabling various components.

quence length. However, we find that performance plateaus
after length 30, so these longer trajectories are not necessary
for optimization. For the purposes of the experiments, we
used a trajectory length of 50 to ensure the lowest possible
regret with reasonable memory usage. However, in practice,
lower lengths may be used to improve performance time
and improve performance in very sample-limited situations.

Single-Function DKL Architecture In Figure 6(b), we
evaluate the effect of the DKL structure on optimizing
the 10-dimensional Powell function. Overall, we find that
the deep kernel architecture performs better than a simple
Gaussian process. However, in this simpler case, the feed-
forward, unconditional DKL performs slightly better. This
is likely because it has fewer parameters and a simpler gra-
dient than the transformer architecture.

Meta-Learning DKL Architecutre We see better sepa-
ration when evaluating the three different DKL approaches
on the meta-learning task for the 16-dimensional Thomp-
son problem. This objective has more meta-learning because
each objective is a projection of a 128-dimensional Thomp-

son problem projected onto a random 96-dimensional plane.
This results in a wide variety of possible objective land-
scapes. We find that the Transformer DKL achieves lower
final regret values when compared to the feed-forward ap-
proach.

Conclusion

We present novel contributions to two important aspects of
costly black-box Bayesian. We improve the surrogate model
through contextual transformer deep kernel learning, ex-
tending BO methods to higher dimensional problems such as
the 64-dimensional Thompson problem. We design a model-
based soft actor-critic to train an acquisition function with
reinforcement learning, extending RL Bayesian optimiza-
tion methods to continuous domains and problems. This
two-fold approach could extend deep-learning enhanced
Bayesian optimization methods to high dimensional, chal-
lenging black-box optimization in the physical sciences and
machine learning.
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