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Abstract

The utilization of Passive Acoustic Monitoring (PAM) for
wildlife monitoring remains hindered by the challenge of data
analysis. While numerous supervised ML algorithms exist,
their application is constrained by the scarcity of annotated
data. Expert-curated sound collections are valuable knowl-
edge sources that could bridge this gap. However, their uti-
lization is hindered by the sporadic sounds to be identified
in these recordings. In this study, we propose a weakly su-
pervised approach to tackle this challenge and assess its per-
formance using the AnuraSet dataset. We employ TALNet,
a Convolutional Recurrent Neural Network (CRNN) model
and train it on 60-second sound recordings labeled for the
presence of 42 different anuran species. We conduct the eval-
uation on 1-second segments, enabling precise sound event
localization. Furthermore, we investigate the impact of vary-
ing the length of the training input and explore different pool-
ing functions’ effects on TALNet’s performance on AnuraSet.
Our findings demonstrate the effectiveness of TALNet in har-
nessing weakly annotated sound collections for wildlife mon-
itoring.

1 Introduction

Passive acoustic monitoring (PAM), has emerged as a key
technology for wildlife monitoring (Sugai et al. 2019) while
using acoustic sensors and provides a way to promote biodi-
versity, assess and understand the impact of climate change,
and develop intervention strategies to preserve ecosystems.
However, handling the large amount of data generated by
PAM still poses a barrier for adoption by both researchers
and biodiversity managers (Tuia et al. 2022; Gouvéa et al.
2023). Although a wide range of supervised machine learn-
ing methods for analyzing PAM datasets (e.g., for sound
event detection) exist (Stowell 2022), their application is
often constrained by the availability of domain-specific an-
notated data. Biologists traditionally rely on museum col-
lections for studying biodiversity (Meineke et al. 2018). In
modern times, multimedia registers have become increas-
ingly important and recognized as valuable in common
practice. Among these, sound archives and collections hold
significant importance (Dena et al. 2020; Sugai and Llu-
sia 2019). Several such collections exist, such as FNJV!,

"https://www2.ib.unicamp.br/fnjv/

Macaulay library?, and Xeno-Canto®. These resources serve
as valuable sources of annotated data for training models to
automate sound event detection in large PAM datasets. How-
ever, their potential for this task is currently limited because
these sound files are weakly annotated, meaning that sound
recordings are labeled only at the file level, with no infor-
mation about the timestamps of specific identifying species
sounds. This problem is further compounded by the pres-
ence of multiple signals in these recordings, such as other
species co-occurring in the same soundscape, and the voice
of the naturalist who performed the recording, often speak-
ing into the microphone and providing metadata such as
species name and a description of the recording context. Ef-
fective utilization of such knowledge sources for powering
ML tools rely on isolating the meaningful, identifying por-
tions of the sound recordings. In this paper, we propose a
weakly supervised method to leverage existing sound collec-
tions and generate training data for ML models for species
level sound event detection in PAM datasets (Figure 1).

2 Related Work

Deep learning methods have proven very useful for detection
of sound events in PAM datasets. Among the most popular
convolutional neural network (CNN) architectures applied
to PAM are ResNet (He et al. 2016), VGG (Simonyan and
Zisserman 2015) and DenseNet (Huang et al. 2017). Even
though they were created for computer vision tasks, these
architectures proved to be very efficient in analyzing sound
data. Kahl et al. (2021) developed BirdNet, an EfficientNet-
based model for detection of bird vocalizations. Other popu-
lar methods include convolutional recurrent neural networks
(CRNNs), that combine the advantages of both CNNs and
RNNs (Tzirakis et al. 2020; Cakir et al. 2017; Xie et al.
2020). Dufourq et al. (2022) compare the performance of
different models pretrained on ImageNet (Deng et al. 2009)
on different PAM datasets. They show that transfer learning
can be used successfully on small PAM datasets with few
samples per species.

Auvailability of training data is crucial for the development
of supervised ML models. BirdNet is trained on datasets that
consist largely of weakly annotated focal recordings. For

Zhttps://www.macaulaylibrary.org/
*https://xeno-canto.org/
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Figure 1: A schematic of our proposed approach

detecting the presence of target sounds, they used heuris-
tic image processing methods for signal-strength estimation
(Sprengel et al. 2016).

In recent years, there has been a notable surge of interest
within the research community in the domain of weakly su-
pervised sound event detection (WSSED), which has been
notably catalyzed by initiatives like the Detection and Clas-
sification of Acoustic Scenes and Events (DCASE) chal-
lenges and the release of extensive audio datasets such as
AudioSet (Gemmeke et al. 2017) that provide baselines for
the development and evaluation of ML methods related to
sound event detection (SED) and specifically WSSED. Ku-
mar and Raj (2016) propose that WSSED can be treated as
a problem of Multi Instance Learning; from this perspec-
tive, every audio file can be viewed as a bag of instances of
sound events. They explore SVM and neural network based
approaches trained on weak labels for detection and achieve
temporal localization of sound events. Xu et al. (2018) intro-
duce an attention mechanism, replacing the ReLU activation
function after each convolution with GLUs. Wang, Li, and
Metze (2019) proposed TALNet, a CRNN for audio tagging
and localization. They identify the best pooling function for
the task. More recent approaches propose transformer-based
methods for WSSED (Miyazaki et al. 2020; Xin, Yang, and
Zou 2022). Current approaches combine embeddings ex-
tracted from pre-trained models such as BEATS (Chen et al.
2022) with CRNN classifiers aligning with the newest re-
quirements of the DCASE challenges that use heterogeneous
datasets that contain unlabeled, weakly labeled and synthetic
datasets with strong annotations. In our work, we focus only
on methods for weakly annotated datasets and how to use
them to enrich annotations for PAM.

Table 1: Performance metrics on AnuraSet

Architecture  Global 1s
F1 Score F1 Score Precision Recall
TALNet 90.00 64.68 50.82 88.94

ResNet50 90.11 63.54 54.79 75.60

3 Implementation

Dataset For our experiments, we use AnuraSet, a recently
released benchmark PAM dataset comprised of 1612 min-
utes of omindirectional recordings from four different sites
in two Brazilian biomes: Cerrado and Atlantic Forest (Cafias
et al. 2023). The dataset consists of 60 seconds long record-
ing files, as well as manually created expert annotations for
42 species of anurans (frogs and toads). The annotations
consist of strong labels, i.e., species identity plus on- and
offset times for each call occurrence.

Data Preprocessing The audio recordings are represented
as Mel-frequency single channel spectrograms S € R™*",
where m = 64 is the number of frequency bins and n is
the number of frames. As “frame” we denote the minimal
time segment, so m depends on the length of the input files.
For the 60-second long recordings m = 2400. To compute
the spectrograms, we use a window size of 1102 and hop
length 551. Raw recordings are resampled to 22kHz. For
comparing performance when training is carried with in-
puts of different durations, we partition the 60-second au-
dio recordings from the training set into non-overlapping
10-second and 3-second long segments. We keep the same
frame length and number of frequency bins as described in
TALNet (Wang, Li, and Metze 2019), but adjust the number
of frames according to the segment length. Considering the
unbalanced nature and relatively small size of the dataset
when training with 60-second long input, we perform iter-
ative stratification to ensure balanced train and test splits,
with 80% for training and 20% for test. The test set record-
ings are partitioned into non-overlapping 1-second long seg-
ments. For each segment, a vector of binary labels is gener-
ated to indicate presence of calls from each of the 42 species;
each entry is set to 1 if a call of that species is present any-
where in the corresponding segment, and O otherwise. To
create the Mel-frequency spectrograms, we use native tor-
chaudio (Yang et al. 2021) transforms for audio processing.

Model architecture For the sound event detection and lo-
calization we use TALNet (Wang, Li, and Metze 2019) a
convolutional recurrent neural network developed for audio
tagging and localization on AudioSet and the DCASE chal-



Table 2: Comparison of pooling functions for TALNet trained on 60-second long inputs and evaluated on either 60-second

(global) or 1-second long segments.

Pooling Function Global 1s
F1 Score F1 Score Precision Recall
Average 88.22 65.7 51.74 89.97
Max pooling 63.96 47.76 54.77 42.34
Exponential Softmax 70.87 56.64 46.97 71.31
Linear Softmax 90.00 64.68 50.82 88.94
Attention pooling 70.50 49.42 40.02 64.56

lenge 2017. The network consists of three convolutional lay-
ers, five pooling layers and one recurrent layer.

To perform WSSED using transfer learning on the PAM
dataset, we use Resnet50 (He et al. 2016) pretrained on Im-
ageNet (Deng et al. 2009), leveraging its feature extraction
capabilities to capture fundamental patterns typical for spec-
trograms.

Experimental setup We train the network on samples of
the AnuraSet with weak labels (3-, 10-, or 60-seconds long
samples) and evaluate the performance using the strong la-
bels (1-second). In the training procedure, we use the Adam
optimizer (Kingma and Ba 2014), and a learning rate of
3 x 107*. As a loss function we use the binary cross entropy
loss:

L(y,9) = —(y xlog(§ + (1 —y) xlog(1 —g)) (1)

In equation 1, y represents the true labels, while ¢ the
predicted probabilities. Time and frequency masking are ap-
plied as suggested in SpecAugment (Park et al. 2019). We
create shuffled batches of size 32 samples and train for 100
epochs.

Evaluation metric is micro-averaged F1 scored, unless
otherwise indicated. To compare the model performance on
different input lengths, we also conduct experiments with
10-second (original TALNet input size) and 3-second long
files.

4 Results

We assess the model’s performance on PAM data using the
AnuraSet dataset. As evaluation metrics, we use global F1
score, a metric assessing how well the model can identify
only the presence or absence of events within an audio file,
and /-second F1 score, an indication of how well the model
can localize sound events in an audio file with a precision of
1 second.

We start by analyzing models trained on 60-second long
inputs. To compute F1 scores for both tagging and localiza-
tion tasks, we use weak and strong labels. For this, we make
predictions on 1-second windows by aggregating proba-
bilities across 10 frames, followed by the application of
a threshold as described in (Wang, Li, and Metze 2019).
To compare the performance of TALNet with a pretrained
model, we use Resnet50. In Table 1 we report the global and
1-second F1 scores on AnuraSet. Since the performance of
the model on 1 second segments is essential for our goal,

we report the related precision and recall too. As it is evi-
dent from the table TALNet performs better than Resnet50
in the localization task (1s segments) and slightly worse in
the tagging task (60s segments). Figure 2 illustrates predic-
tion results for a 10s long file with five species present. We
use TALNet for the following experiments. TALNet treats
WSSED as a multiple instance learning problem; specifi-
cally, the strategy consists of training models to make pre-
dictions for each frame of a multi-frame data point, and then
apply a pooling function. The pooling function combines
frame level predictions into segment level ones while re-
taining important information. Table 2 shows the results for
different pooling functions on AnuraSet. Since TALNet was
developed and evaluated for 10 second long audio files, we
train and evaluate its performance on three different input
lengths (table 3). The decrease of the input length to 10 sec-
onds improves the performance by 32% for the 1-second F1
score and 7.5% for the global F1 score, indicating that the
model’s sensitivity to input length is task dependent.

5 Conclusion and Future Work

In this paper, we proposed the use of the existing CRNN
based approach TALNet to harness more information from
weakly annotated data for wildlife monitoring and evaluated
its performance on a benchmark PAM dataset. We demon-
strated that domain transfer of existing models developed
for different acoustic environments, such as the one in Au-
dioSet to passive acoustic monitoring (PAM) datasets does
not always require a complex model architecture and input
modifications. We achieved a 90% global F1 score in the
tagging task and 64% F1 score in the localization task of
animal sounds for 60-second long recordings.

Table 3: Micro F1 score of the TALNet model trained on
inputs of varying duration (3, 10, or 60 seconds), and evalu-
ated globally and on 1-second long segments. Performance
drops as duration of training samples increases.

Length of Training Input Micro F1 Score
Global Is

3s 96.71  87.94

10s 96.77  85.46

60s 90.00 64.68
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Figure 2: Spectrogram of a representative 10-second audio
segment, and bar plots with predicted and observed labels
for five example species at 1-second resolution. Gray bars
are true labels; green line is predicted probability of species
occurrence; yellow line is the decision threshold. Notice that
species LEPPOD, PHYALB, PHYSAU, and PITAZU are cor-
rectly localized by the model, while DENMIN gets mistak-
enly identified as occurring during the entire duration of the
audio clip

Future research includes applying our approach to PAM
collections to generate annotated data from the weakly la-
belled recordings. Based on the promising results using
AnuraSet, we could train TALNet using the recordings of
anuran calls and the weak annotations from museum col-
lections such as the FNJV collection. The evaluation can be
twofold: calculating evaluation metrics using the strong la-
bels from AnuraSet and utilizing domain expertise using an
intelligent user interface where domain experts can investi-
gate and interpret the results (Zacharias, Barz, and Sonntag
2018; Hartmann et al. 2022) and provide feedback for the
quality of the annotations in a human-in-the-loop approach.
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