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Abstract

Energy optimization plays a vital role in decreasing the
carbon footprint of residential buildings. In this paper, we
present a prediction model of indoor temperature in residen-
tial buildings in three different case studies in different towns
in Sweden. To predict the indoor temperature accurately, a
dataset based on several years of data collection (up to 7
years) has been used. This paper applies both the traditional
LSTM model as well as the more recent transformer model.
The latter has been used because of its ability to perform a
mechanism of self-attention that shows particular promise in
multivariate sensor data. In addition to these algorithms, the
data set is also modified based on contextual information and
compared against an approach where no contextual informa-
tion is used. Contextual information in this case takes into ac-
count the physical location of specific apartment units within
the full residence and builds individual models based on the
location of the unit. The results demonstrate that transformers
are better suited for task of prediction, and that transformers
combined with contextual information, provide a suitable ap-
proach for energy consumption prediction.

Introduction
Residential buildings still use more than half of the energy
consumption in the Nordic region in heating, ventilation,
air conditioning and electricity (Energimyndigheten 2021).
Most of the energy produced for heating is generated by fos-
sil fuels and biomass (Jenni Patronen and Torvestad 2017).
Therefore, it is important to optimize the energy consump-
tion. For developing such an efficient strategy, prediction
of indoor temperature plays an important role and can save
up to 5 - 15% of energy in existing buildings (Afroz et al.
2018). This paper deals with multivariate time series since
it involves several variables that impact the prediction of in-
door temperature over a period of time. Several AI methods
can be used for time series prediction, but there is a need
to investigate new methods that can account for the contex-
tual information of building and long data sequences. In this
paper, we address the feasibility of predicting indoor tem-
perature time series data with transformers and compared to
LSTM as a benchmark. And, we investigate the role of con-
textual information such as size, location of the apartment,
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weather, seasons, occupancy, and passive heating or cool-
ing for prediction of indoor temperature.

Background
Various AI techniques have been used in the literature to
predict the indoor temperature in buildings. The analytical-
based models are poor in prediction due to many assump-
tions and parameters (Braun and Chaturvedi 2002). On the
contrary, data-driven models which completely rely on ex-
perimental data provide appropriate prediction accuracy if
enough data is available (Afram and Janabi-Sharifi 2015).

For the prediction of indoor temperature time series data,
it is shown that the prediction models based on data-driven
modeling techniques, i.e., Neural networks, are more effec-
tive than analytical models (Soleimani-Mohseni, Thomas,
and Fahlen 2006; Ruano et al. 2006).

However, a few works have considered modelling indoor
temperature time series prediction of up to 28 Hrs and en-
ergy consumption prediction of up to three months (Ruano
et al. 2006; Somu, MR, and Ramamritham 2020; Soleimani-
Mohseni, Thomas, and Fahlen 2006; Hietaharju, Ruusunen,
and Leiviskä 2018). In general, despite the efforts in Arti-
ficial Neural Networks (ANN) and Recurrent Neural Net-
works (RNN), these models still lack the predictions for long
sequences of data and complex features (Jain et al. 2014) due
to vanishing gradients and low memory.

Moreover, a new approach based on attention mechanisms
called transformer has been introduced to model the se-
quences in Natural Language Processing (NLP) (Vaswani
et al. 2017). transformer-based approaches work well on
processing long data sequences and complex patterns (Wu
et al. 2020), which make it a proper option for indoor tem-
perature prediction. There is not much research are done us-
ing transformers to predict particularly indoor temperature.
One of the works which use transformers to predict energy
consumption is (Rao and Zhang 2020) which predicts one
step ahead. Besides the time series data of indoor tempera-
ture, contextual information provides a broader understand-
ing of the system and a better prediction accuracy in the
model. An example is to include the season context (Afroz
et al. 2018), wherein the data was split accordingly to prove
that including context provides a better prediction accuracy
in long-term forecasting. In this paper, we aim to address
the prediction of data using LSTM and transformer tech-



niques, as well as considering the significance of the context
of floors of the buildings in the accuracy of the prediction.

Method
The method we propose is to 1) apply both LSTM and trans-
former models each individually for predicting indoor tem-
perature time series in a building, and 2) include the con-
textual information to present a context-aware transformer
model for prediction. The overall comparison of the pro-
posed methods is processed by single-step and multi-step
prediction of indoor temperature by LSTM and transformer
as shown in Figure 1. Two approaches are followed to model
the methods, one is training the prediction models for each
building with the complete climatic sensor data (overall
model) and the other is to include the context of floors to
model a transformer based approach (context-aware model).

Input Information
The data was measured in residential apartment buildings
across Sweden provided by EcoGuard AB. An illustration
of a sample building is shown in Figure 2 with all the apart-
ments as the individual units. For the privacy of the resi-
dents, the buildings used in this research are not shown.

Indoor climate sensors were placed on the walls in the liv-
ing area at a height of 1.7 m above the floor. The temperature
sensor measurements have been taken every 15 minutes for
2-7 years based on the building and availability. The tem-
perature outside the building has been also measured for the
same period at every 15 minutes.

Three buildings have been investigated in this paper,
where their information is presented in Table 1. For all the

LSTM

Prediction modelsInput information

Transformer

time-series 
data of indoor 
temperature

contextual data

LSTM prediction 
(Overall)

Transformer prediction 
(Overall)

Transformer prediction 
(context-aware)

Output of prediction

Figure 1: Representation of modeling methods in buildings
including context.

Figure 2: An illustration of a building (27 units in 3 floors).

Residential buildings in Sweden
Name of city
(Location of
building)

Number
of floors

Number
of apart-
ments

Measurement
Period

Borås 5 21
2014 Aug
– 2021 Oct
(7y,2m)

Örebro 9 141
2017 Oct –
2021 July (3y,
9m)

Piteå 3 15
2019 June
– 2021 Oct
(2y,4m)

Table 1: Input information of the buildings to be modelled.

buildings, the heat is provided through a district heating net-
work. The control system in a building operates the heating
temperature based on the average indoor temperature in the
building.

In the first approach, the input of the prediction mod-
els is alike with 250k samples in Borås, 131k samples in
Örebro, and 79k samples in Piteå. In the second approach,
with the context of floors, the input is split into three lay-
outs for each building: the apartments on the ground floor to
ground-layout, the apartments connected to the roof to top-
layout, and the rest of the floors to middle-layout. Individual
models are trained for each layout for each of the buildings.
Contextual information in this case takes into account the
physical location of specific apartment units within the full
residence and builds individual models based on the location
of the unit. The ground-layout and top-layout split individ-
ually due to variations of temperature from ground and the
roof of building.

Prediction Models
LSTM In general, LSTM employs three gates: input gate,
forget gate, and output gate to modulate the information
across the cells. We apply the common architecture of
LSTM (Hochreiter 1997), but we tune the overall model for
our specific case study, as follows. The parameter setting of
the LSTM is similar for all three buildings: two LSTM lay-
ers with 50 neurons each, and a Relu activation function. We
use Dropout of 0.2 for each layer, batch size of 150, a learn-
ing rate of 0.001, optimizer Adam, and loss function mean
absolute error (MAE). All three models are trained for 40
epochs. Also, look back of 128-time steps is used for pre-
dicting the future time steps of indoor Temperature.

The next future indoor temperature is predicted for 15
min, 24 hrs, and 72 hrs.

Transformer The proposed transformer model follows
the original transformer architecture (Vaswani et al. 2017)
consisting of encoder and decoder layers. The encoder is
composed of a stack of N=5 identical layers. Each layer
has two sub-layers: a multi-head self-attention mechanism,
and a positional wise fully connected feed-forward network.
Positional wise encoding with sine and cosine functions is



used to encode sequential information in time series data by
element-wise addition of input vector with a positional en-
coding vector. Each sub-layer is followed by a normalization
layer. The encoder produces a dimensional vector, dmodel, to
feed to the decoder (Vaswani et al. 2017; Wu et al. 2020).

The decoder is also composed of a stack of N=5 identical
layers. In addition to the two sub-layers, the decoder inserts
a third sub-layer to apply multi-head attention on the output
of the encoder stack. The output layer maps the output of the
last decoder to the target time sequence. The output embed-
dings are offset by one position to ensure that the prediction
only depends on the past data points (Vaswani et al. 2017;
Wu et al. 2020). For our case study, the parameter setting
of the transformer model is similar to the LSTM model, but
without a dropout in the encoder and decoder.

Evaluation In order to evaluate the prediction accuracy of
the models, root mean square error (RMSE) is used as the
evaluation criteria of the models The RMSE calculation for-
mula is as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (1)

where ŷi is the predicted value and yi is the true value, and
N is the sample size. The smaller the value of RMSE, the
better the forecasting.

Results
The results are presented in two phases, 1) the overall mod-
eling LSTM and transformer for each of the buildings, and
2) modeling a transformer for each of the contexts of floor.
The test data for all the models are from November 2020 to
June 2021 to have a similar test set and an equal comparison.

Phase 1: Each building in Borås, Örebro, and Piteå has
been modelled by LSTM and transformer. The prediction
results of these models are presented in Table 2. The mod-
els are evaluated with different prediction lengths: 1 step
(15min), 96 steps (24hrs), and 288 steps (72 hrs), and
their performance was evaluated by calculating the average
RMSE of each apartment. A sample of results prediction
models are presented in Figure 3 for 72 hours (288 time
steps) ahead. The apartment is randomly selected from the
4th floor of the building in Örebro. The top graph shows
transformer performs better than LSTM in this example. The
bottom one shows the significance of involving the context
of floor in transformer model by comparing the results of the
overall versus the context-aware transformer models.

The average RSME results of LSTM and transformer for
all the three buildings are shown in Table 2. Considering
these results, transformer outperforms LSTM in all three
prediction scenarios (15 min, 24 Hrs, 72 Hrs). In average,
the performance is increased 80% in 1 time step, 75% in 96
time steps, and 34% in 288 time steps.

Phase 2: This phase has trained both LSTM and trans-
former model for contexts of floors in Borås and Örebro.
Due to the lack of data from the floors in Piteå, the model is
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Figure 3: Indoor temperature prediction in a 4th floor unit in
Örebro for 72 hours: overall LSTM vs overall transformer
(top). overall vs. context-aware transformer (bottom).

Prediction RMSE (average)
Building
location Model 1 step

(15 min)
96 steps
(24 Hrs)

288 steps
(72 Hrs)

Borås LSTM 0.049 0.078 0.121
Transformer 0.009 0.023 0.093

Örebro LSTM 0.046 0.082 0.175
Transformer 0.007 0.017 0.091

Piteå LSTM 0.066 0.126 0.237
Transformer 0.012 0.049 0.158

Table 2: Comparison of the average RMSE using LSTM and
transformer models in different buildings.

not presented. The results are presented only for the trans-
former models because the improvement is similar over
LSTM in this phase and due to the page limitation. Fig-
ure 4 presents the results for the second approach by train-
ing the model for different layouts in the locations of Borås
and Örebro. The models are trained by LSTM and trans-
former but the results presented in the Figure 4 are for the
transformer. In both locations, considering the context of
floors and modeling according to the layout, the models have
greater accuracy. Figure 4 also compares the context result
with the overall model as the first approach (grey bar).

Implementation details: All the experiments are carried
out under the running environment of Intel i7-10870H 2.2-
4.8GHz, 32GBs of RAM, NVIDIA GeForce RTX 3080
16Gbs, and Windows 10.

Conclusions
In this short paper, we presented a transformer based ap-
proach to predict time series data on buildings. Compared
to LSTM, this approach leverages the self-attention mech-
anisms to model the sequence data and learns the complex
dependencies from time series data. Our results suggest that



R
M

S
E

0.000

0.025

0.050

0.075

0.100

1 step (15 min) 96 step (24 hrs) 288 step (72 hrs)

Floor 1 Floor 2,3,4 Floor 5 overall
R

M
S

E

0.000

0.025

0.050

0.075

0.100

1 step (15 min) 96 step (24 hrs) 288 step (72 hrs)

Floor 1 Floor 2,3,4,5 Floor 6,7 overall

Figure 4: The average RMSE using transformer for overall
and context of floors in Borås (top), and Örebro (bottom).

including the contextual information ( floors in our case) im-
proves the model performance. However, the improvement
when considering the context of floors is significant but con-
sidering other contextual information in the training step is
likely to improve the model much further.

Although this paper focuses on modeling overall build-
ing and in the context of floors, we hypothesize that our
approach can be further extended to include the location,
weather, seasons, occupancy, and passive heating or cool-
ing in the training. The future work of this research can be a
better formalization and integration of context in the learn-
ing process, to better predict the long-term results. More-
over, we will address the optimization problem of the build-
ing using the proposed prediction models.
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