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Abstract

Numerous studies have explored image-based automated sys-
tems for plant disease diagnosis, demonstrating impressive
diagnostic capabilities. However, recent large-scale analyses
have revealed a critical limitation: that the diagnostic capa-
bility suffers significantly when validated on images captured
in environments (domains) differing from those used dur-
ing training. This shortfall stems from the inherently lim-
ited dataset size and the diverse manifestation of disease
symptoms, combined with substantial variations in cultiva-
tion environments and imaging conditions, such as equipment
and composition. These factors lead to insufficient variety in
training data, ultimately constraining the system’s robustness
and generalization. To address these challenges, we propose
Few-shot Metric Domain Adaptation (FMDA), a flexible and
effective approach for enhancing diagnostic accuracy in prac-
tical systems, even when only limited target data is avail-
able. FMDA reduces domain discrepancies by introducing a
constraint to the diagnostic model that minimizes the ”dis-
tance” between feature spaces of source (training) data and
target data with limited samples. FMDA is computationally
efficient, requiring only basic feature distance calculations
and backpropagation, and can be seamlessly integrated into
any machine learning (ML) pipeline. In large-scale experi-
ments, involving 223,015 leaf images across 20 fields and 3
crop species, FMDA achieved F1 score improvements of 11.1
to 29.3 points compared to cases without target data, using
only 10 images per disease from the target domain. More-
over, FMDA consistently outperformed fine-tuning methods
utilizing the same data, with an average improvement of 8.5
points.

Introduction
Plant diseases cause significant damage to crops, posing
a major challenge for farmers worldwide. According to
the Food and Agriculture Organization (FAO), 20–40% of
global food crops are lost annually to plant pests and dis-
eases, resulting in economic losses estimated at approxi-
mately $290 billion per year (Food and A. O. of the United
Nations 2019). Early detection of diseases in plants is criti-
cal to minimizing these losses. However, current diagnostic
methods rely heavily on subjective visual inspections by ex-
perts, which may not always be accurate, especially in cases
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of subtle or complex disease symptoms. This highlights the
pressing need for a simple yet highly accurate automated
plant disease diagnosis system.

Deep learning techniques, particularly convolutional neu-
ral networks (CNNs), have demonstrated remarkable perfor-
mances in plant disease diagnosis, achieving high classifica-
tion accuracy in numerous studies (Mohanty, Hughes, and
Salathé 2016; Hiroki et al. 2018; Ferentinos 2018; Atila et al.
2021). However, subsequent large-scale and rigorous evalu-
ations have revealed a significant drop in diagnostic perfor-
mance when these models are validated on unseen datasets,
captured under conditions different from those used dur-
ing training (Mohanty, Hughes, and Salathé 2016; Boulent
et al. 2019; Shibuya et al. 2021). In many earlier studies,
exceptionally high accuracy was reported due to inappro-
priate train-test data splitting, since images within the same
domain (environment) shared similar characteristics. When
training and test data were probabilistically split without
accounting for domain diversity, implicit data leakage oc-
curred. Shibuya et al. addressed this issue by conducting
a large-scale analysis using a dataset of 221,000 images
of four crops collected from 24 prefectures, ensuring care-
ful management of shooting fields to prevent data leakage.
While they achieved accuracy levels comparable to prior
studies (averaging 99%) on data from the same fields used
for training, accuracy on data from different fields ranged
from 64% to 88% (Shibuya et al. 2021). This discrepancy
is attributed to the inherently small and diverse nature of
disease symptoms, coupled with significant variations in vi-
sual appearance, cultivation methods, and photography con-
ditions across fields (domains) and datasets. The limited di-
versity of training data, even with tens of thousands of im-
ages, fails to capture these variations, hindering the gen-
eralization of diagnostic performance to unseen domains.
As such, the fundamental diagnostic capability of a sys-
tem should be evaluated on data unseen to the model, from
unknown domains. However, even state-of-the-art machine
learning (ML) techniques struggle to achieve high accu-
racy on such scenarios, disadvantaged by limited diversity
in training data.

Domain adaptation techniques have shown promising re-
sults for tasks where training and target data exhibit do-
main differences (Ganin et al. 2016; Tzeng et al. 2017; Dins-
dale, Jenkinson, and Namburete 2021; Li et al. 2023). These
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Figure 1: Architecture of FMDA. Triangles (△) represent target domain data, circles (⃝) represent source domain data, and
colors indicate the data labels (disease classes).

methods are particularly valuable for large-scale tasks in-
volving data integration from multiple domain sources. Al-
though domain adaptation has been applied to plant disease
diagnosis with some success (Yan et al. 2021; Fuentes et al.
2021; Wu et al. 2023), existing approaches—often based on
unsupervised domain adaptation (UDA)—require substan-
tial amounts of unlabeled target data. Furthermore, their ef-
fectiveness diminishes when the distribution gap between
source (training) and target (test) domains is too large (Wang
et al. 2019; Zhao et al. 2019).

Efforts to address the limited diversity of training data in-
clude augmenting datasets using generative models. Tech-
niques leveraging Generative Adversarial Networks (GANs)
have achieved promising results by generating high-quality
images (Nazki et al. 2020; Cap et al. 2022; Kanno et al.
2021). However, since GAN-generated images are derived
from existing training data, they face limitations in scenar-
ios with significant domain discrepancies. Recent advances
in diffusion models (Ho, Jain, and Abbeel 2020), partic-
ularly latent diffusion models (Rombach et al. 2022), en-
able more flexible and diverse image generation by leverag-
ing extensive pre-trained image datasets and textual infor-
mation. These advancements hold potential for augmenting
training datasets in plant disease diagnosis tasks.

Given the challenge of accurately diagnosing diseases in
unseen domains with limited training data diversity, this
study considers a practical scenario where a small amount
of data from the target diagnostic domain is available. We
aim to effectively utilize this limited data to improve diag-
nostic accuracy.

In this paper, we propose Few-shot Metric Domain Adap-
tation (FMDA), a supervised domain adaptation method that
leverages a small amount of target data effectively. FMDA
introduces a learning constraint to reduce the ”distance”
between feature spaces of the target and source domains,

thereby enhancing the model’s ability to generalize. By ex-
tending conventional fine-tuning techniques with FMDA,
we enable stable mitigation of domain shifts while utiliz-
ing existing knowledge from the source domain. FMDA is
a simple and versatile approach applicable to various tasks
with significant domain shifts. It is particularly effective for
tasks like plant disease diagnosis, where intra-class variabil-
ity is extremely high. In this paper, we demonstrate the ap-
plication of FMDA to automated plant disease diagnosis, as-
suming scenarios where limited data from the target imag-
ing environment is available. We validate its effectiveness
through large-scale experiments.

The contributions of this study are as follows:

1. We propose FMDA, a supervised domain adaptation
method that can be applied to various tasks with serious
domain shifts using limited target data.

2. We develop a highly accurate automated plant disease
diagnosis system capable of diagnosing target data with
high precision.

Related Works
Improving Model Generalizability in Automated
Plant Disease Diagnosis
Region of Interest (ROI) detection Saikawa et al. pro-
posed a system that removes background features, which
are considered significant sources of variability across fields,
reporting an approximate accuracy improvement of 12%
(Saikawa et al. 2019). However, subsequent experiments by
Shibuya et al., using a larger dataset with higher-resolution
images, revealed that the impact of background removal on
diagnostic performance was limited (Shibuya et al. 2021).
In contrast, methods utilizing object detection techniques
have been reported to be more robust to variations in subject



distance while providing higher interpretability of results
(Suwa et al. 2019; Chen et al. 2022). Specifically, Wayama
et al. demonstrated through large-scale analysis that ROI de-
tection is particularly effective for diagnosing pest infesta-
tions, which are smaller in size but exhibit less variability
compared to plant diseases (Wayama et al. 2024).

Data Generation Nazki et al. proposed AR-GAN, an ex-
tension of CycleGAN (Zhu et al. 2017) that incorporates a
loss function to maintain critical feature similarity between
real and generated images. Experiments using a tomato leaf
dataset showed that the inclusion of generated images during
training enhanced the model’s classification accuracy (Nazki
et al. 2020). Quan et al. introduced LeafGAN, which en-
sures that disease symptoms are localized specifically within
leaf regions, rather than appearing in the background, en-
abling the generation of high-quality images (Cap et al.
2022). Kanno et al. proposed Productive and Pathogenic Im-
age Generation (PPIG), a two-stage generative process that
first produces healthy leaf images and then overlays dis-
ease symptoms. This approach generates more diverse im-
ages, with disease symptoms being the only variable feature
within otherwise identical compositions (Kanno et al. 2021).
While these GAN-based methods have contributed to im-
proving classification accuracy, the generated images are in-
herently constrained by the distribution of the original train-
ing data, reducing their effectiveness in addressing funda-
mental domain diversity issues. In contrast, latent diffusion
models (Rombach et al. 2022) can generate more diverse im-
ages compared to GANs. Although still relatively new, these
models hold great promise for advancing data augmenta-
tion techniques in plant disease diagnosis (Muhammad et al.
2023).

Studies on Domain Adaptation in ML Tasks

General Unsupervised Domain Adaptation (UDA) Do-
main adaptation aims to reduce the distributional gap (do-
main shift) between the ”source domain” (training data) and
the ”target domain” (test data), thereby enhancing model
performance on the target domain. In many real-world sce-
narios, test data cannot be used during training. A prac-
tical alternative is the transductive learning setup, where
unlabeled test data is fully available for training, but the
model is not expected to generalize beyond this scope.
This setup has driven extensive research into unsupervised
domain adaptation (UDA). Ganin et al. proposed the Do-
main Adversarial Neural Network (DANN), which simulta-
neously trains a domain discriminator and a primary clas-
sification task using source data. By reversing the gradi-
ent of the domain discriminator during backpropagation,
DANN enforces domain-invariant feature extraction (Ganin
et al. 2016). Tzeng et al. introduced Adversarial Discrimina-
tive Domain Adaptation (ADDA), which adversarially trains
a target domain encoder while feeding its outputs into a
domain discriminator. This approach constructs a domain-
invariant encoder, leveraging a pre-trained source domain
encoder (Tzeng et al. 2017). These adversarial approaches
have been widely adopted across various ML application.

UDA in Automated Plant Disease Diagnosis In the con-
text of automated plant disease diagnosis, UDA has been ap-
plied in a limited number of studies. Fuentes et al. proposed
a diagnostic framework that applies UDA to the bound-
ing boxes of detected disease symptoms, mitigating domain
shifts in a dataset of tomato leaf images captured across
three fields (Fuentes et al. 2021). Wu et al. applied UDA to
a training framework designed to learn diverse feature rep-
resentations using a dataset comprising leaf images of vari-
ous crops captured in both laboratory and outdoor environ-
ments (Wu et al. 2023). While these methods have demon-
strated potential for improving diagnostic performance, they
rely heavily on the availability of large amounts of unlabeled
target data. Furthermore, when the data distributions of the
source and target domains differ significantly, these meth-
ods often fail to bridge the domain gap effectively, thereby
limiting diagnostic performance.

To address these challenges, this study considers a practi-
cal scenario where a small amount of labeled target data is
available. We propose Few-shot Metric Domain Adaptation
(FMDA), a domain adaptation method that effectively lever-
ages this limited data to achieve superior diagnostic perfor-
mance.

FMDA: Few-shot Metric Domain Adaptation
Problem Setting and Overview of FMDA
In this study, the labeled training dataset consists of C
classes of source data {Xs, ys} and a small number of la-
beled target data {Xt, yt} for the same C classes. Here, X
represents the input data (e.g., images), and y represents the
corresponding class labels. While the source data is avail-
able in sufficient quantities, the target data is limited to n
samples per class, amounting to only C × n samples in to-
tal. The primary objective is to effectively leverage this lim-
ited labeled target data to train an ML model G capable of
achieving high diagnostic accuracy on unseen target data.

We propose Few-shot Metric Domain Adaptation
(FMDA), a diagnostic framework designed to address chal-
lenging tasks, such as automated plant disease diagnosis,
where domain discrepancies are significant. FMDA is both
practical and capable of achieving excellent diagnostic per-
formance. The architecture of FMDA is illustrated in Figure
1. The ML model G in FMDA consists of a feature extractor
Gf and a classifier Gy , and the choice of models for Gf and
Gy is flexible. FMDA training comprises two phases:
1. Pre-training Phase: The model G is pre-trained on the

source data {Xs, ys} using supervised learning.
2. Adaptation Phase: The pre-trained model G is fine-

tuned using the limited C×n target domain training sam-
ples {Xt, yt}. This phase integrates metric learning into
a standard fine-tuning strategy, enabling more effective
utilization of the scarce but valuable target data to con-
struct a robust model.
Conventional fine-tuning applied in scenarios with ex-
tremely limited target data risks degrading the original
model G and causing overfitting. On the other hand,
re-training the entire model using both source and tar-
get data is computationally expensive. Moreover, due to



the significantly smaller number of target samples com-
pared to source data, the overall impact of such addi-
tional training is often limited. FMDA addresses these
challenges through a simple yet effective combination of
fine-tuning and metric learning. This approach ensures
that the model not only retains the general knowledge
learned from the source domain but also adapts effec-
tively to the unique characteristics of the target domain,
even with minimal data.

Implementation Details of FMDA
Since the pre-training phase performs general training of the
model using the source data {Xs, ys} as mentioned above,
the adaptation phase of the FMDA is explained here. In the
adaptation phase, the entire loss function L the model to be
minimized is defined as:

L = LC(Xt, yt) + λLD. (1)
Here, LC is a classification loss based on the commonly

used cross entropy, computed only by target data {Xt, yt}:

LC(Xt, yt) = −
N∑
i=1

y
(i)
t log(Gy(Gf (X

(i)
t ))). (2)

Here, N denotes the batch size used during training.
The term LD corresponds to the distance-based loss,

which is introduced to mitigate overfitting and domain shift.
The hyperparameter λ balances the contribution of clas-
sification loss and distance-based loss. Conventional fine-
tuning often suffers from overfitting when only a small
amount of target data is available. This makes the model dif-
ficult to generalize to unseen target data. By incorporating
LD, FMDA leverages information from both source and tar-
get domains, ensuring that the feature representations of tar-
get data are properly aligned with the source feature space.
This alignment reduces domain discrepancies while preserv-
ing robust classification boundaries.

In this study, we define two types of LD:
1. Euclidean Distance Loss (LD,L2): This loss minimizes

the Euclidean distance between the feature representa-
tions of target samples and positive samples (X(i)

sp : same
labels from Xt).

LD,L2 =
1

N

N∑
i=1

∥∥Gf (X
(i)
t )−Gf (X

(i)
sp )

∥∥
2
. (3)

2. Improved Triplet Loss (LD,Triplet+): This loss enhances
feature separation by maximizing the distance between
target samples and negative samples (X(i)

sn : different la-
bels from Xt) while minimizing the distance to positive
samples.

LD,Triplet+ =
1

N

N∑
i=1

{[∥∥Gf (X
(i)
t )−Gf (X

(i)
sp )

∥∥
2

−
∥∥Gf (X

(i)
t )−Gf (X

(i)
sn )

∥∥
2
+ α

]
+

+
[∥∥Gf (X

(i)
t )−Gf (X

(i)
sp )

∥∥
2
− β

]
+

}
.

(4)

α and β are margin parameters, and [z]+ = max(0, z).

The choice of distance function in FMDA has some in-
fluence on its performance, depending on the specific con-
ditions. The Euclidean distance loss is computationally ef-
ficient and performs well in cases where intra-class vari-
ability is low, with features being tightly clustered. How-
ever, its performance may decrease in scenarios where intra-
class variability is high, leading to greater diversity within
the same class. In contrast, The Improved triplet loss offers
additional benefits by minimizing the distance between pos-
itive pairs (target and source data with the same label) while
increasing the separation between negative pairs (target and
source data with different labels). This property makes it
more effective in cases with high inter-class similarity or
overlapping feature distributions. Practitioners using FMDA
should weigh the computational cost against the complex-
ity of feature distributions in the target domain. For applica-
tions requiring efficiency, Euclidean Distance Loss may be
a practical choice, while Improved Triplet Loss could be ad-
vantageous for tasks demanding more discriminative feature
spaces.

By incorporating LD into FMDA, the method effectively
enhances generalization by balancing fine-tuning with do-
main adaptation. This integration enables FMDA to handle
domain-shift-heavy tasks with improved flexibility and ro-
bustness.

Experiments
Experimental Setup
To evaluate the effectiveness of FMDA, we benchmarked it
against the automated plant disease diagnosis task, a highly
relevant application area, and conducted large-scale experi-
ments using our proprietary dataset. The dataset comprises
223,015 images collected from 20 fields, covering 3 crops
and a total of 30 disease classes. Details of the dataset are
shown in Table 1. The dataset was split into source (Train-
ing) and target (Test) data for different farms taken or differ-
ent periods of time. From the target data, only a very small
number of samples (n samples per disease class) were used
for training. As shown in Figure 2, the domains differ sig-
nificantly in features such as cultivation environments, back-
grounds, and compositions.

In this study, EfficientNetV2-S (Tan and Le 2021) was
employed as the feature extractor Gf , and the classifier Gy

was implemented as a simple fully connected layer with a
softmax activation function throughout all phases of exper-
iments. In the pre-training phase, the model was initial-
ized with weights pre-trained on ImageNet1K (Russakovsky
et al. 2015) dataset. Subsequently, pre-training was con-
ducted using the source domain data {Xs, ys}. The follow-
ing conditions were applied during this phase:

• Optimizer: Adam (Kingma 2014) with a learning rate of
0.001.

• Batch Size: 128.
• Data Augmentation: Applied transformations included

random cropping to 480× 480 pixels, random 90-degree
rotations, horizontal flips, and brightness adjustments.



Table 1: Dataset details.

Crop ID Name Source Target

Cucumber

00 HEALTHY 16,016 5,583
01 Powdery Mildew 7,757 1,905
02 Gray Mold 636 174
03 Anthracnose 3,031 80
08 Downy Mildew 6,946 2,586
09 Corynespora Leaf Spot 7,557 1,820
17 Gummy Stem Blight 1,476 381
20 Bacterial Spot 4,355 2,655
22 CCYV 5,961 186
23 Mosaic diseases 26,854 1,633
24 MYSV 17,229 1,011
Total 97,818 18,014

Eggplant

00 HEALTHY 12,431 1,122
01 Powdery Mildew 7,936 938
02 Gray Mold 1,024 166
06 Leaf Mold 3,188 732
11 Leaf Spot 5,509 119
18 Verticillium Wilt 3,176 354
19 Bacterial Wilt 3,415 463
Total 36,679 3,894

Tomato

00 HEALTHY 8,120 2,994
01 Powdery Mildew 4,490 4,250
02 Gray Mold 9,327 571
05 Cercospora Leaf Mold 4,078 1,809
06 Leaf Mold 2,761 151
07 Late Blight 2,049 808
10 Corynespora Target Spot 1,732 1,350
19 Bacterial Wilt 2,259 412
21 Bacterial Canker 4,353 128
27 ToMV 3,453 49
28 ToCV 4,320 871
29 Yellow Leaf Curl 4,513 1,746
Total 51,471 15,139

In the adaptation phase, the model weights initialized dur-
ing the pre-training phase were further fine-tuned using the
target data {Xt, yt}. The experimental setup for this phase
is as follows:

• Optimizer: Adam with a learning rate of 0.001.

• Batch Size: 2 × C, where C represents the number of
classes in the target data.

• Data Augmentation: Identical to the pre-training phase.

The primary focus was on evaluating the impact of domain
adaptation learning. Therefore, only basic data augmenta-
tion were applied. Based on preliminary experiments, the
hyperparameter λ, controlling the balance between the clas-
sification loss and the distance-based loss, was set to λ = 1.

Evaluation
We evaluated the diagnostic performance of the classifier G
on test data (11 cucumber classes, 7 eggplant classes, and 12
tomato classes) using the F1 score. The following methods
were compared:

1. w/o Target data: No information from target data is
used.

Figure 2: Examples of domain differences in the cu-
cumber dataset. HEALTHY Source (top-left), Bacte-
rial Spot Source (top-right), HEALTHY Target (bottom-
left), Bacterial Spot Target (bottom-right).

2. DANN: The DANN framework (Ganin et al. 2016) is ap-
plied in a transductive setting where all target domain im-
ages are available as unlabeled data during training.

3. finetune: n samples per disease from target data are used
for fine-tuning.

4. DANN-tune: The representative UDA method DANN
(Ganin et al. 2016) is adapted to fine-tuning with n sam-
ples per disease.

5. FMDA(L2): The proposed method using Euclidean dis-
tance for LD.

6. FMDA(Triplet+): The proposed method using Im-
proved Triplet Loss (Cheng et al. 2016) for LD.

For these experiments, the number of target data samples
was set to n = 3 and n = 10 per disease in each crop. Each
experiment was repeated five times with different target data,
and results were evaluated diagnosis performance. The num-
ber of training iterations for the pre-training and adapta-
tion phases was set to 100 and 1,000, respectively, based
on preliminary experiments. In addition, since the diagnos-
tic performance of some methods varies with the number of
training iterations, the performance at the point of maximum
test performance was reported along with the corresponding
number of iterations. To qualitatively evaluate the extent to
which each method reduces domain differences, the feature
distribution f of both domain data obtained from the feature
extractor Gf was visualized using t-SNE (Van der Maaten
and Hinton 2008).

Results
Table 2 summarizes the diagnostic performance of the mod-
els after 1,000 training iterations. Although the dependence
of the diagnostic performance on the number of training iter-
ations varied by method, the observed trends were generally
consistent across all crops. As a representative example, Fig-
ure 3 shows the relationship between the number of training



Table 2: Comparison of plant disease diagnosis performance at the 1,000th epoch in macro F1 (%: mean ± SD).

Crop Cucumber Eggplant Tomato
# added samples (n / class) 3 10 3 10 3 10
1. w/o Target data 48.0 72.7 48.0
2. DANN 47.9 67.9 44.5
3. finetune (baseline) 69.73±2.69 70.05±2.79 78.81±3.56 78.39±2.15 62.54±5.39 73.72±2.42
4. DANN-tune 61.45±4.04 69.08±1.99 73.99±2.75 78.89±2.14 62.61±3.78 67.30±2.91
5. FMDA(L2) (ours) 72.11±2.62 74.57±1.53 81.61±1.03 82.73±3.03 65.75±1.53 74.19±2.78
6. FMDA(Triplet+) (ours) 72.91±1.45 77.29±1.84 80.62±2.90 83.83±1.97 65.91±2.76 74.37±1.42

Scores in bold indicate best results in the category.

Table 3: Reference results: Comparison of plant disease diagnosis performance at the best-performing epoch (epoch count) in
macro F1 (%: mean ± SD).

Crop Cucumber Eggplant Tomato
# added samples (n / class) 3 10 3 10 3 10
3. finetune (baseline) 69.85±1.42 (200) 76.32±1.50 (120) 81.04±1.44 (600) 87.17±1.70 (50) 65.24±2.40 (400) 74.85±2.41 (180)
4. DANN-tune 68.82±1.67 (100) 75.64±0.81 (20) 77.71±3.12 (500) 86.53±1.17 (10) 62.86±3.75 (900) 74.85±2.41 (180)
5. FMDA(L2) (ours) 72.38±1.73 (700) 79.39±1.57 (400) 85.36±1.39 (400) 89.08±1.63 (50) 70.74±2.02 (200) 79.26±0.75 (90)
6. FMDA(Triplet+) (ours) 73.79±2.30 (400) 79.90±1.31 (300) 85.20±2.04 (500) 89.15±1.11 (30) 70.79±2.58 (200) 80.38±1.51 (60)
Scores in bold indicate best results in the category.

Figure 3: Performance trends for the cucumber dataset.

iterations and the diagnosis performance for the cucumber
dataset when n = 10.

Table 3 the F1 scores achieved at the best-performing
number of training iterations for each method. This pro-
vides additional insight into the peak performance potential
of each approach.

Figure 4 visualizes the feature distribution of the tomato
dataset’s source and target data using t-SNE, at n = 10.
The visualization highlights how well each method aligns
the target domain features with the source domain, offering
a qualitative measure of domain adaptation effectiveness.

Discussion
When target data is not utilized, the diagnostic performance
remains extremely low, even when state-of-the-art ML clas-
sifiers are trained on 30,000–90,000 images per crop. This

reaffirms that automated plant disease diagnosis is inher-
ently a domain-shift-heavy problem, making it challenging
to achieve practical diagnostic accuracy without addressing
domain discrepancies.

Among the methods leveraging label information from
the test data, DANN-tune exhibited the lowest diagnostic
performance. DANN reduces domain discrepancy by train-
ing the feature extractor Gf to produce domain-invariant
features. However, this approach does not guarantee that tar-
get data with the same labels as source data will be mapped
to nearby locations in the feature space. As illustrated in the
feature distribution (Figure 4), DANN-tune incorrectly maps
target data into inappropriate class distributions, particularly
in datasets with significant domain shifts. Furthermore, the
DANN (Transductive Learning) setting, which utilized all
unlabeled target domain images, also performed worse than
the baseline w/o Target. This counterintuitive result suggests
that using unlabeled target data without proper alignment of
features can exacerbate domain shifts, leading to degraded
diagnostic performance. These findings highlight that UDA
approaches, such as DANN, are ineffective for tasks with
substantial domain discrepancies, such as the current task of
automated plant disease diagnosis.

In contrast, FMDA consistently achieved high diagnostic
performance regardless of the distance loss function used.
This was evident not only in its practical performance af-
ter a fixed number of training iterations but also in its best-
performing potential, where FMDA demonstrated a higher
upper limit of achievable performance compared to exist-
ing methods. Figure 4 demonstrates that FMDA effectively
leverages target label information to map target features ap-
propriately onto the source feature space. This indicates that
FMDA can successfully learn from limited target data, re-
ducing domain discrepancies while preserving diagnostic
accuracy.

Incorporating as few as three labeled target data sam-



Figure 4: Feature distribution for the tomato dataset. DANN-tune (left), FMDA(Triplet+) (right). Circles (⃝) represent source
data, and crosses (×) represent target data.

ples per disease resulted in an average F1 score improve-
ment of 9.8–16.9 points across methods, while using ten tar-
get samples yielded an average improvement of 15.5–22.3
points. Although performance improves as more target data
becomes available, even minimal amounts — such as three
samples per disease — significantly enhance diagnostic per-
formance. This underscores the importance of utilizing even
limited labeled target data in domain-shift-heavy tasks like
automated plant disease diagnosis.

Fine-tuning with a small amount of target data expe-
rienced a performance drop of 6.3 points due to overfit-
ting, whereas FMDA exhibited only a modest decline of
approximately 2.5 points. This suggests that fine-tuning is
highly susceptible to overfitting in low-data scenarios, while
FMDA effectively mitigates overfitting and facilitates stable
learning.

While FMDA demonstrates significant improvements in
diagnostic performance, certain limitations remain. For ex-
ample, its reliance on labeled target data, albeit in small
quantities, may not be feasible in real-world scenarios where
labeling is costly or impractical. Future research could in-
vestigate integrating FMDA with semi-supervised learning
techniques to harness a larger pool of unlabeled data. Ad-
ditionally, while this study focuses on plant disease diagno-
sis, FMDA’s framework could be extended to other domain-
shift-heavy tasks, such as medical imaging or remote sens-
ing. Validating FMDA in these domains would further assess
its generalizability and robustness under varied conditions.

Conclusion
In this study, we proposed Few-shot Metric Domain Adap-
tation (FMDA), a supervised domain adaptation method
designed to address tasks with significant domain shifts.
FMDA demonstrated its ability to effectively and reliably

learn from limited target domain information, even in sce-
narios where UDA-based approaches fail due to large do-
main discrepancies.
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