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Abstract

The main goal of seismic inversion is to predict subsurface
rock properties from seismic data. Seismic inversion algo-
rithms have served as a viable reservoir characterization tool
for decades . Neural network based inversion techniques has
become widely popular in recent years. Compared to tradi-
tional inversion methods, neural networks provide a high-
resolution estimation of rock properties in a reasonable time.
But they give a single solution, which is a “best” estimate
or the most likely value of the property of interest. However,
seismic inversion is a one-to- many problem. Thus the inverse
problem is ill-posed and non- unique. Several probabilistic
algorithms have been developed over the years to tackle the
issue of non-uniqueness. Probabilistic inversion algorithms,
for example the Markov Chain Monte Carlo (MCMC) meth-
ods, give a probability distribution of the model parameters
of interest. Thus we get uncertainty estimates along with the
most likely value. But the solution from MCMC methods
are generated at a significant computational cost. To over-
come such issues, we investigate the use of Invertible Neu-
ral Networks (INNs) for uncertainty quantification. INNs can
solve probabilistic inverse problems and can provide approx-
imations to complicated posterior distributions. Tests on our
model demonstrate that the developed method can accurately
predict elastic properties well, and can quantify uncertainty.
We also compare our uncertainty es- timates with those found
using MCMC methods and find them to be consistent.

Introduction
Geoscientists use well and seismic data to develop subsur-
face models for carbon sequestration, natural resources ex-
ploration and scientific studies for evolution of the earth.
Seismic inversion is an important tool that enables us to
combine the well data with seismic data to generate mod-
els of subsurface properties. Pre-stack seismic data can be
converted to elastic subsurface properties using Amplitude-
vs-Offset inversion. Several deterministic and probabilistic
algorithms (Grana et al. 2022) have been developed through-
out the decades for Amplitude-vs-Offset (AVO) inversion.
Recently, several authors have proposed different flavours of
Deep Neural Networks (DNN) for the problem of AVO in-
version. Neural networks based inversion methods can suc-
cessfully generate a high resolution estimate of the model
parameters by learning a mapping between data and model
parameters. But seismic inverse problems have nonunique

solutions due to data noise, nonlinearity of the physical pa-
rameters and data, and the fundamental physics of the prob-
lem. Therefore, uncertainties in AVO inversion need to be
quantified to interpret inversion results. However, most neu-
ral network based methods trained using a supervised ap-
proach do not provide reliable uncertainty estimates. Proba-
bilistic inversion methods like Markov Chain Monte Carlo
(MCMC) based sampling methods can be used to derive
useful posterior probability statistics because they can gen-
erate a set of samples from the posterior probability den-
sity function of the elastic model parameters. The probabil-
ity density function (pdf) can describe the nonuniqueness
of the parameters. But the solution from MCMC methods
are generated at a significant computational expense since
MCMC methods require several forward modeling runs to
generate samples.This motivated us to use Invertible Neu-
ral Networks (INNs) to solve the probabilistic AVO inverse
problem. Ardizzone et al. (2018) first used invertible neu-
ral networks to solve the inverse problem and demonstrated
that the method can provide accurate approximation to mul-
timodal posterior distribution. Unlike the conventional neu-
ral network which learns only the inverse mapping from data
to model parameters, INNs provide bijective mapping be-
tween data (input) and models (output). Since the network
also learns the forward mapping between input and output, it
uses the information loss during the forward mapping to im-
prove its prediction. Moreover, because of the additional la-
tent variables introduced by the network on the output side it
is possible for the network to learn the full posterior distribu-
tion. Subsequently, INNs have been applied to solve several
inverse problems, for example, Zhang and Curtis (2021).
However, the success of such applications has been limited
to low dimensional problems. In this work, we investigate
the use of Invertible Neural Networks for two kinds of high-
dimensional AVO inversion problems : post-stack inversion
and pre-stack inversion. The goal of post stack inversion is
to get an estimate of P-impedance. While prestack inversion
is more complex and generates estimates of P-impedance, S-
impedance and density. The INN framework is not designed
to estimate uncertainty due to data noise. We overcome this
issue by including noise as an additional parameter in train-
ing. Our examples demonstrate that once an INN is trained,
it can produce posterior distribution much faster compared
to MCMC based methods. We also compare our INN results



with that of MCMC and find them to be consistent.

Methodology
Problem
Our aim here is to solve the AVO inverse problem for elas-
tic properties, which are the model parameters, m based on
the observed data, i.e., seismic measurements dobs. The for-
ward model G defines the relation between the model pa-
rameters and the data.

d = G(m) + ed, (1)

where ed is the modeling error.
For the forward modeling G, we use the following equation
to generate reflectivity in case of post-stack inversion

Rpp(t) =
d ln zp(t)

dt
(2)

where zp(t) is the P-impedance as a function of time. For the
pre-stack case, we use the (Zoeppritz 1919) equation to cal-
culate the reflectivity from elastic model properties and then
we generate seismic data at a particular time t as a convolu-
tion of the reflectivity Rpp(t, θ) and the wavelet s(t, θ).
Since the inverse problem is non-unique, an infinite num-
ber of models can produce acceptable solutions. So, we use
the Bayesian approach which gives a measure of uncertainty
in the estimation of our model parameters, by generating a
posterior probability distribution (PPD) of model parameters
(m). This PPD is estimated by generating samples. The pre-
dominant methodology for sampling from such a probability
density is Markov chain Monte Carlo (MCMC) (Chen and
Hoversten 2012).

Invertible Neural Networks
Invertible neural networks have several properties that make
them useful for probabilistic inverse problem. They have bi-
jective mappings between input and output. We build our
INN using a set of GLOW coupling blocks (Kingma and
Dhariwal 2018).The basic unit of GLOW block is a re-
versible block consisting of two complementary affine cou-
pling layers. A GLOW coupling block consists of actnorm
step, followed by an invertible 1 × 1 convolution layer and
affine transformation layer. Given an input vector m, the
affine transformation layer splits it into two halves m1 and
m2, which are transformed by an affine function with coef-
ficients exp(si) and ti (i ∈ 1, 2), using element-wise multi-
plication (⊙) and addition:

v1 = m1 ⊙ exp(s2(m2)) + t2(m2) (3)

v2 = m2 ⊙ exp(s1(v1)) + t1(v1) (4)
In our implementation, the mappings si and ti could be

a succession of two fully connected layers or two convolu-
tional layers (depending on the position of the network) with
Sigmoid activations. Our deep invertible network is com-
posed of a sequence of four reversible blocks with invertible
flatten and reshape layers in between. To increase model ca-
pacity, we insert permutation layers between the reversible
blocks, which shuffle the elements of the subsequent layer’s
input in a randomized, but fixed way.

INN based probabilistic AVO inversion
Our AVO inverse problem has a non-unique solution. To ac-
count for uncertainties in the solution, the d vector is aug-
mented with additional latent variables z (Ardizzone et al.
2018). AVO inversion is a one-to-many process. The la-
tent variables make the pair comprising the augmented data
(d, z) and model m and unique. So, the network can now
map a unique model parameter m to a unique pair (d, z)
of measurements and latent variables. The output of the net-
work in the forward direction is given by f(m; θ)d. Our net-
work is trained to approximate the forward modeling. After
training, f(m; θ)d ≈ G(m) where subscript d represents
the data estimate from the network, and the latent variable z
predicted by the network is constrained to be a normal dis-
tribution. We run the network in the reverse direction with
our specific measurement dobs and latent variable z selected
randomly from the same normal distribution to obtain the
model parameters corresponding to the data:

m = f−1(dobs, z, θ), z ≈ N (0, I) (5)

We take many samples of (dobs, z) with a constant dobs

and multiple samples of z generated from normal distribu-
tion. The trained network then gives the posterior distribu-
tion p(m|dobs) by transforming the distribution prior p(z).
With the posterior distribution, we can characterize the un-
certainty in the estimation of the model parameters. The
original INN only accounted for innate uncertainties in pa-
rameter estimation because of the physics. To account for
uncertainty because of data noise, we follow Zhang and Cur-
tis (2021) and treat the noise as additional model parameter.
Our INN architecture is shown in Figure 1. Just like conven-
tional inversion, the low frequency is also given as input to
the network. To apply the INN to our AVO inversion prob-
lem, we go through the following steps:

• The first step is training data set generation. To generate
a training dataset, we use the statistics from the well logs
and generate pseudo well logs using the statistics. From
the pseudo well logs we generate seismic data using a
known wavelet.

• To train the network, we use our generated pseudo well
logs and the seismic data. The network training is bidi-
rectional. Suppose the network output distribution in the
forward direction is q(d, z; θ) and the output of the net-
work in the forward direction is f(m, ϵ; θ) , (ϵ is the noise
realization and θ are the network weights) the training
loss in the forward direction can be defined as:

Lfwd =

N∑
i=1

||di
obs − f(mi, ϵi; θ)||+

MMD[q(di, zi; θ), p(di)p(zi)]

(6)

where each model vector corresponds to single data vec-
tor and single latent vector. N is the net batch numbers.
p(di) is the prior distribution of data in the ith batch.
p(zi) is typically a Normal distribution. Maximum Mean
Discrepancy (MMD) which is a measure of dissimilarity
of two distributions. We also include two loss function



Figure 1: INN maps between m and d conditioned by Low
Frequency Model (LFM). ϵ is the data noise realization.

on the input side to facilitate convergence.

Lrev = MMD[q(mi, ϵi; θ), p(mi)p(ϵi)]− γlog(p[(mi, ϵi)

= f−1(di, zi; θ)]|detJf−1(d
i, zi; θ)|)

(7)

where the first term matches the input distribution pre-
dicted by the network acting in the reverse direction to
the true distribution of the model parameters and the sec-
ond term is the likelihood term which matches the pre-
dicted model parameters to the true model parameters.
We noticed that adding the likelihood term increases the
rate of convergence. The total loss is a combination of
both forward and backward loss

Ltotal = Lfwd + Lrev (8)

Experiments and Results
Uncertainty estimation in post stack inversion Our ex-
periments are based on model from Kuito field in Angola.
We start with post-stack inversion. Our goal is to estimate
P-impedance given our post-stack seismic data. To generate
training data, we use a low frequency P-impedance model
and perturb it using a gaussian distribution. The seismic data
was generated with a wavelet of peak frequency 25 Hz. We
used 10000 traces for training. 9500 traces were kept for
training and 500 was used for testing. Finally we apply the
trained network on our synthetic model. We first tested a
case where the seismic had low noise with a Signal-to-Noise
(S/N) ratio of 30. We also looked at the case when the seis-
mic had a S/N ratio of 1. Figure 2 compares the result of
the mean of all realizations (orange) from invertible neural
networks to the true P-impedance (blue). The LFM model is
shown in green and the lower and upper bounds of the 95%
confidence interval shown in cyan. We compare the uncer-
tainty bounds of the data with low noise to the one with high
noise. The uncertainty bounds of P-impedance inversion is
higher for the data with noise. From the histogram of the re-
sulting set of samples of m at 550 ms time stamp, we notice
that when noise affects the data, the posterior distribution is
wider with values at the tails of the distribution.

Uncertainty estimation in pre-stack inversion Next, we
implemented our neural network on the problem of pre-stack
inversion. We consider prestack data ranging from 3o to 30o

with 6 equally placed angles. To train the network, we use
Gaussian mixture model with three components and fit it to
the well-log data at a location. Using the Gaussian mixture

model parameters, we create 16000 pseudo well logs for P-
impedance, Vp/Vs and Density. From the pseudo well-log,
we generated pre-stack data. frequency to generate pre-stack
data. We train the network using 15500 samples and keep
500 samples for testing. Now we apply the trained network
to estimate P-impedance, velocity ratio and density for our
2D model. The seismic data and the results of the inversion
are shown in figure 3a and 3b respectively. The top figure
shows the true P-impedance, velocity ratio and density while
the bottom plots show the mean P-impedance, velocity ratio
and density samples from our invertible neural network. We
plot the traces at CDP 800 in figure 4.

Comparison to MCMC We compare marginal pdfs by
histogramming samples from INN based inversion and
MCMC based approach for the same problem. The MCMC
approach is discussed in detail in Chen and Hoversten
(2012). We look at the samples from a window length of 10
ms at two time stamps (Figure 3). The posterior distribution
from the two methods looks similar. The MCMC method
took 848 seconds whereas the run time for the INN was 0.5
seconds to generate results for one location.

Conclusion
We investigated the use of INNs to solve AVO inverse prob-
lems in this project. We also looked at the posterior pdfs
given by the network and compared the results to posterior
pdfs estimated by MCMC. The INN and MCMC based in-
version show similar posterior distribution. After training,
INNs can predict posterior pdfs in less than a second thus
making them an attractive tool for uncertainty estimation.
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Figure 2: Poststack inversion : a) SNR 30 b) SNR 1. Posterior distribution at 550 ms with c) SNR 30 d) SNR 1

Figure 3: a) Prestack data b) Prestack inversion result: mean of realizations compared against true properties

Figure 4: Prestack inversion : Posterior distribution comparison at two locations


