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Abstract

We develop an automated pipeline to streamline neural ar-
chitecture codesign for fast, real-time Bragg peak analysis in
high-energy diffraction microscopy. Traditional approaches,
notably pseudo-Voigt fitting, demand significant computa-
tional resources, prompting interest in deep learning mod-
els for more efficient solutions. Our method employs neu-
ral architecture search and AutoML to enhance these models,
including hardware costs, leading to the discovery of more
hardware-efficient neural architectures. Our results match the
performance, while achieving a 13× reduction in bit opera-
tions compared to the previous state-of-the-art. We show fur-
ther speedup through model compression techniques such as
quantization-aware-training and neural network pruning. Ad-
ditionally, our hierarchical search space provides greater flex-
ibility in optimization, which can easily extend to other tasks
and domains.

Introduction
With the rapid advance of machine learning tools, material
science researchers have significantly enhanced their exper-
imental methodologies and analysis. Particularly, locating
diffraction peak positions for X-ray diffraction-based mi-
croscopy proposes an interesting challenge. Common meth-
ods require large inference costs, thus sparking work in
building lightweight deep learning models as approxima-
tors. Liu et al. (2022) laid the foundation for this work,
training a transformer-like CNN on pseudo-Voigt fitting pre-
dictions (Bhakar, Taxak, and Rai 2023), using a diffrac-
tion scan from an undeformed bi-crystal gold sample (Shade
et al. 2016). This work has extensively been used, combined
with Liu et al. (2021), to integrate BraggNN with remote
data centers for faster model retraining and deployment,
enhancing real-time data analysis. Furthermore, Levental
et al. (2023) heavily optimized how the model is compiled
and deployed in hardware, providing a significant speed up
in their framework. OpenHLS compiles BraggNN into a
low-latency, register-transfer level format, which increases
model throughput. While these methods lay the foundation
for hardware optimization in high-energy diffraction mi-
croscopy (Park et al. 2017), there is considerable room for
improvement in the design of the neural architecture.
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Our pipeline incorporates neural architecture search
(NAS) (Elsken, Metzen, and Hutter 2019), hyperparame-
ter optimization (HPO), and model compression techniques,
including pruning (Blalock et al. 2020) and quantization-
aware training (Weng 2021). Deep learning models are op-
timized over a hierarchical search space, selecting high-
performing lightweight models with evolutionary strate-
gies. This automated pipeline streamlines neural architec-
ture codesign (NAC) from model to hardware optimization.
We demonstrate state-of-the-art performance for psuedo-
Voigt fitting estimation over previous work, while requiring
13× less bit operations (BOPs) (Baskin et al. 2021) than Liu
et al. (2022) for inference.

Our methodology employs a modular approach, based on
open-source packages, allowing for flexible and dynamic
construction. This adaptability facilitates the integration or
alteration of network components, allowing for bespoke
search spaces on new tasks. We believe in democratizing
edge AI for ML practitioners in science domains, especially
on specialized hardware such as field-programmable gate ar-
rays (FPGAs). To carry out this mission, our open-source
pipeline will be released in the camera-ready version.

Related Work
Neural Architecture Search Background. NAS aims to
optimize the structure of neural networks for specific tasks
and objectives. This includes searching over network sizes
or even constructing completely different model classes.
There are three critical components: search space, search
strategy, and architecture evaluation. The search space de-
termines the potential architectures that can be sampled (Ren
et al. 2021). While a narrow search space can be heavily
biased, a large one is extremely difficult to properly ex-
plore, necessitating a delicate balance. This space is ex-
plored by sampling architectures and evaluating them across
our objectives. Instead of evaluating high-cost objectives,
such as network performance, researchers often use a proxy
for such objectives like partial training or even zero-cost
methods (Abdelfattah et al. 2021). After validating, the
search strategy will update its beliefs and sample again.
Various strategies for this exist such as Bayesian optimiza-
tion (BO), evolutionary algorithms, or reinforcement learn-
ing. Each has their own use case; for instance, BO methods
tend to struggle with high combinatorial categorical hyper-
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Figure 1: Our automated pipeline for neural architecture search. Red components are human inputs, white as outputs, and
blue as search processes. The right side demonstrates the template of each candidate architecture in our search space. Each
subcomponent of the blocks also contain hyperparameters to optimize.

parameters, prompting the use of genetic algorithms instead
(Cai et al. 2020). However, BO, specifically tree-structured
Parzen estimators (TPEs) (Bergstra et al. 2011) perform ex-
ceptionally well on continuous hyperparameter optimiza-
tion tasks where sample efficiency is important (Akiba et al.
2019). In this paper, we utilize NSGA-II (Deb et al. 2002), a
genetic algorithm, for global search due to our discrete and
categorical search space, but use a TPE for the continuous
hyperparameters in training optimization.

Model Compression Background. Other than finding an
efficient model class, the small structures of a model can
be optimized through neural network pruning and quanti-
zation (Han, Mao, and Dally 2016). Pruning aims to re-
move superfluous parameters in our model, and these algo-
rithms can be categorized by the type of structure they re-
move (Blalock et al. 2020).

Structured pruning removes weights associated to larger
structures in the network, such as neurons, channels, or at-
tention heads, while unstructured pruning removes individ-
ual weights with no specific structure requirements. Un-
structured pruning leads to sparse matrices, which can often
limit gains in actual inference speed on GPUs despite the re-
duced number of parameters. However, on more versatile or
flexible hardware like FPGAs and CPUs, unstructured prun-
ing can provide significant speed up with a negligible drop
in performance. While structured pruning provides defini-
tive speed ups on general hardware, it can lead to a larger
decline in performance. To get around this, newer hardware
supports N : M or mixed sparsity (Zhang et al. 2022), such
as Nvidia’s A100 that supports 2:4 sparsity, which allevi-
ates the need to prune entire rows or columns as done with
dropping neurons or filters. Therefore, the choice of pruning

algorithm is closely tied to the target hardware for deploy-
ment.

Researchers also employ quantization to reduce the num-
ber of bits needed to represent the weights or activations.
Like pruning, quantization can be done post-training or dur-
ing training with quantization-aware training (QAT) (Coelho
et al. 2021). With QAT, the weights are quantized on the
forward pass, but use full-precision gradients on the back-
ward pass, allowing for further fine-tuning of the low-bit
representations. The effectiveness of quantization is heavily
dependent on hardware support of low-bit data types. This
framework aims to eventually support deployment on FP-
GAs, which can support sparse operations and a wide range
of reduced precision data types, thus unstructured pruning
with sub-8 bit QAT is used.

Method
We combine neural architecture search, hyperparameter op-
timization, quantization-aware-training, and neural network
pruning all into one automated pipeline, organizing these
methods into two stages: global and local search. This
pipeline is demonstrated in Fig. 1. The hierarchical search
space is constructed with similar principles as the base-
line architectures. Both Liu et al. (2022) and Levental et al.
(2023) use transformer-like CNNs, essentially replacing the
traditional linear layers transformers with convolutional lay-
ers and adding an MLP classifier.

Global Search
Search space. In this space, each candidate architecture is
defined by a feature extractor of up to 3 sequential blocks
and a final MLP classifier block. At the top level of the
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Figure 2: Performance of global search on the validation set
over time. Darker markers represent later trials. We evalu-
ate each architecture on mean distance and bit operations
(BOPs), demonstrating convergence to a pareto front. Previ-
ous work is plotted under the same partial training procedure
as the rest of the samples.

hierarchy, block types for each of these 3 layers are sam-
pled from either a conv block, a conv-attention block, or
a placeholder block, allowing us to sample shorter net-
works if needed. Both baselines can be constructed in this
search space with a single conv-attention followed by a tra-
ditional conv block. Within these modules search is per-
formed across block-specific parameters such as normal-
ization methods, activation functions, channel dimensions,
etc. Despite this space being extremely large—on the order
of 1023—possible architectures, the search process is eased
with the hierarchical structure and conditional sampling. In
the future, we plan to use methods similar to Monte Carlo
tree search to maximally exploit this hierarchy. This search
space is illustrated in Fig. 1 on the right and provide an ex-
haustive description of this space in the Appendix.

Search and Evaluation. To perform this search, NSGA-
II (Deb et al. 2002) with population size of 20 is used to
optimize our discrete multi-objective problem over 200 tri-
als. NSGA-II minimizes the number of bit operations used
at inference and minimizes the distance between our mod-
els prediction and the center given by pseudo-voigt fitting
on the validation set. BOPs is used as it generalizes well
across hardware and data types rather than FLOPs (float-
ing point operations). Our models are evaluated with partial-
training, using scores after 50 epochs rather than 300 epochs
as with full-training. Our performance on the validation set
and model efficiency over each trial in the search process is
shown in Fig. 2.

Local Search
Training Optimization. After finding a high performing
model class with global search, we now perform a hyper-
parameter optimization of the training procedure via tree-
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Figure 3: Performance versus efficiency for different QAT
precisions across pruning. We record a point at each pruning
iteration for a QAT run.

Model Mean distance MBOPs Parameters
BraggNN 0.202 1,106 45,274
NAC (ours) 0.201 85 17,226
Compressed NAC 0.207 5 3,445

Table 1: Comparison of mean Euclidean distance between
predicted peak and to psuedo-voigt fitting on the test set.
Efficiency is measured in MegaBOPs (MBOPS). Lower is
better for all. The best base architecture in each category is
bolded. Our compressed architecture is quantized to 7 bits
with 80% weight sparsity.

structured Parzen estimation. These hyperparameters consist
of learning rate, learning rate schedule, weight decay, etc.
This model is reported before any model compression as the
NAC base architecture. For a fair comparison, training the
BraggNN architecture is also optimized with 100 trials each.

Model compression. To improve the efficiency even fur-
ther, quantization-aware training can be paired with neu-
ral network pruning. Figure 3 illustrates the performance
trade off as we quantize to different precisions and sparsify
our model. For each bit precision, iterative magnitude-based
pruning is performed with quantization-aware training using
Brevitas (Pappalardo 2023) inside the inner loop, removing
20% of the parameters each iteration. The 7-bit quantized
model can match the performance of the dense model at up
to 80% sparsity, resulting in 17× less BOPs than the uncom-
pressed base model. In the future, we plan to deploy this on
FPGAs with frameworks like hls4ml (Duarte et al. 2018) to
achieve even better speed up, similar to the work in Levental
et al. (2023).

Results
In our study, NAC compared to the current state-of-the-art
in the field, BraggNN, as reported in Liu et al. (2022). To
reiterate the context of our task, we train our model using
images of Bragg peaks derived from a diffraction scan of
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Figure 4: Distribution of Euclidean distance difference be-
tween peak centers using NAC and BraggNN relative to the
pseudo-Voigt fit.

an undeformed bi-crystal Gold sample, as detailed in Shade
et al. (2016). This dataset comprises approximately 70,000
peaks across 1440 frames. Peak locations from pseudo-Voigt
fitting are used as the ground truth, which we optimize for
in training via mean squared error. For the evaluation of our
model, the data is partitioned into a training, validation, and
test set with an 80-10-10 split.

To provide a fair comparison, each baseline architecture
had their own hyperparameter optimization on the validation
set with 100 trials for optimal training. During evaluation,
we measure performance by calculating the Euclidean dis-
tance between our approximation and the psuedo-Voigt label
on the test set. In addition, the distribution of the Euclidean
distances on the test set is reported in Fig. 4, showcasing that
NAC matches the performance of BraggNN.

Once again, for efficiency BOPs is used as our main met-
ric, with parameter count provided strictly for reference. We
note that while Levental et al. (2023) has made some archi-
tecture changes, the main improvements of the paper is how
they compile it on target hardware, a topic outside of the
scope of this paper. We attempted to reimplement this ar-
chitecture, but found poor convergence with mean distances
> 4. We were able to find hyperparameters reporting 0.28
distance on the validation set; however, these did not gen-
eralize, resulting in 5.5 distance on the test set. Therefore,
this comparison was omitted from our results as we cannot
reproduce the model.

Neural Architecture Analysis BraggNN employs a
convolution-based attention unit, which exhibits quadratic
complexity relative to the token length, set at 32 in their
model. This complexity creates a significant bottleneck in
processing. However, our global search revealed that this
attention mechanism is not essential for achieving state-of-
the-art performance. Detailed architecture diagrams for each
model variant are provided in the Appendix. Instead of the
conventional sequence of a conv-attention block followed by
a standard convolutional block, our approach utilizes three
consecutive convolutional blocks that progressively reduce

the spatial dimensions. Additionally, batch normalization is
strategically incorporated earlier in the network, with layer
normalization subsequently applied. It is important to note
that while the global search provides a robust starting point,
it is not the final step in optimization. Our local search, fo-
cused on model compression, indicated that a significant
portion of the weights in the larger convolutional layers are
redundant for inference purposes. This insight guided us in
further refining the model, ensuring efficiency without com-
promising performance.

Conclusion
Our approach for neural architecture codesign addresses the
challenges of using deep learning models effectively in sci-
ence domains. The global search phase in our pipeline was
instrumental in identifying a model that not only excels in
performance, but also improves efficiency. Further optimiza-
tion through local search, including additional HPO, prun-
ing, and QAT significantly enhanced the model’s efficiency.
This modular approach allows researchers and ML practi-
tioners alike to optimize neural architectures without expert
knowledge. Since our metrics and search blocks are rela-
tively plug and play, our method is domain agnostic. We plan
to prove this with future work, demonstrating the framework
on a range of tasks such as jet classification and anomaly de-
tection (Duarte et al. 2022).

In future developments, the search space creation pro-
cess will be streamlined by sampling a variety of pre-made
model configurations to generate a useful block representa-
tion. There is signficant room for improvement in our search
strategy; we can fully exploit the hierarchical nature of the
space with reinforcement learning. The local search can also
be optimized: mixed-precision quantization has not yet been
explored, which is anticipated to enhance performance de-
spite enlarging the search space. We plan to deploy these
models eventually on FPGAs, particularly for the CERN
Large Hadron Collider Level-1 trigger (Sirunyan et al. 2020;
Aad et al. 2020). The utilization of FPGA-specific tools like
hls4ml (Duarte et al. 2018) is expected to significantly boost
the inference speed, as well. This ongoing research promises
to extend the utility of our approach to other scientific fields,
enabling higher quality experimental results.
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Appendix
Architectures
Below, we display the architectures for the BraggNN model
and the NAC base model.

Architecture 1: BraggNN model
Conv2d(1, 64, kernel_size(3x3), stride(1))
ConvAttn Block

Q Weight: Conv2d(64, 32, 1x1, 1)
K Weight: Conv2d(64, 32, 1x1, 1)
V Weight: Conv2d(64, 32, 1x1, 1)
Softmax()
Projection: Conv2d(32, 64, 1x1, 1)
LeakyReLU()

Conv Block
Conv2d(64, 32, 3x3, 1)
LeakyReLU()
Conv2d(32, 8, 3x3, 1)
LeakyReLU()

Flatten
MLP

Linear(200, 64)
LeakyReLU()
Linear(64, 32)
LeakyReLU()
Linear(32, 16)
LeakyReLU()
Linear(16, 8)
LeakyReLU()
Linear(8, 2)

Architecture 2: NAC base model
Conv2d(1, 32, kernel_size(3x3), stride(1))
Conv Block

Conv2d(32, 4, 1x1, 1)
ReLU()
Conv2d(4, 32, 1x1, 1)
BatchNorm2d(32)
LeakyReLU()

ConvBlock
Conv2d(32, 4, 1x1, 1)
BatchNorm2d(4)
GELU()
Conv2d(4, 32, 3x3, 1)
LayerNorm((32, 7, 7))
GELU()

ConvBlock
Conv2d(32, 8, 3x3, 1)
LayerNorm((8, 5, 5))
GELU()
Conv2d(8, 64, 3x3, 1)

MLP
Linear(576, 8)
LayerNorm((8,))
ReLU()
Linear(8, 4)
GELU()
Linear(4, 4)
LayerNorm((4,))
GELU()
Linear(4, 2)

Search Space Details

The hierarchical search space encompasses two distinct
stages. The initial stage selects which pre-designed blocks
will be incorporated into the model. This is followed by
identifying the optimal hyperparameters specific to the cho-
sen blocks. For each block, the set of tunable parameters are
detailed in Table 2. A common space for parameters, such as
channel dimensions, is frequently utilized due to the repet-
itive nature of convolutional layers in this architecture. As
demonstrated in Table 2, hyperparameters sampled for the
Conv block offers about 200,000 combinations. The atten-
tion block, restricted by the skip connection, has only 28
combinations due to the fixed kernel size and the need to
maintain the input’s spatial dimension. Excluding the MLP,
the search space for the three layers of blocks is roughly
1016. Including the MLP classifier (also in Table 2 the total
number of possible classifiers is approximately 2.5 million,
bringing our entire search space to 1023.

Table 2: Comprehensive parameter space values

Parameter Space or description
General parameter space

Block {Conv, Attention, None}
Channel dimension {1, 2, 4, 8, 16, 32, 64}
Kernel size {1, 3}
Normalization method {Batch, Layer, None}
Activation function {ReLU, GELU, LeakyReLU, None}
Linear layer dimension {4, 8, 16, 32, 64}

Conv block parameters
Conv1 in channels Previous dimension
Conv1 out channels Sample channel dimension
Conv1 kernel Sample kernel size
Norm1 Sample normalization method
Act1 Sample activation function
Conv2 in channels Sample channel dimension
Conv2 out channels Sample channel dimension
Conv2 kernel Sample kernel size
Norm2 Sample normalization Method
Act2 Sample activation function

Attention block parameters
QKV Dimension Sample channel dimension
Skip Activation Sample activation function

MLP classifier parameters (all 4 layers)
FC1 in dimension Previous dimension
FC1 out dimension Sample linear space
Norm1 Sample normalization method
Act1 Sample activation function
FC2 In Dimension Previous dimension
FC2 Out Dimension Sample linear space
Norm2 Sample normalization method
Act2 Sample activation function
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