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Abstract

Evaluating the potential of a prospective candidate is a com-
mon task in multiple decision-making processes in different
industries. We refer to a prospect as something or someone
that could potentially produce positive results in a given con-
text, e.g., an area where an oil company could find oil, a com-
pound that, when synthesized, results in a material with re-
quired properties, and so on. In many contexts, assessing the
Probability of Success (PoS) of prospects heavily depends
on experts’ knowledge, often leading to biased and inconsis-
tent assessments. We have developed the framework named
KARA (Knowledge-augmented Risk Assessment) to address
these issues. It combines multiple AI techniques that con-
sider SMEs (Subject Matter Experts) feedback on top of a
structured domain knowledge-base to support risk assessment
processes of prospect candidates in knowledge-intensive con-
texts.

Introduction
The assessment of the risk of failure or its opposite, the Prob-
ability of Success (POS), plays a crucial role in deciding
which prospects are worth investing in. In many critical con-
texts, the prospect risk assessment process carries the char-
acteristics of the so-called Knowledge-intensive process (Ci-
ccio, Marrella, and Russo 2015). When this is the case, there
is a strong dependency on the tacit knowledge of multiple
experts in different areas, and a relevant part of the available
data is heavily uncertain. Methods that don’t correctly han-
dle this inherent complexity often lead to biased and incon-
sistent assessments. The challenge is to develop a methodol-
ogy and supporting technology for prospect risk assessment
in knowledge-intensive contexts that is consistent, reduces
biases, controls uncertainty, and often leads to the selection
of successful prospects (or discoveries). This work describes
a framework that aims to address these issues. We called it
the Knowledge-augmented Risk Assessment (KaRA) frame-
work.

The recent advances in AI and Knowledge Engineering
provided the basis for the development of KaRA. Knowl-
edge engineering practices and technologies are applied to
represent and integrate the domain knowledge from multi-
ple data sources and stakeholders and provide easy access
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to this knowledge. At the same time, AI provides the appro-
priate tools for inference, prediction, uncertainty reduction,
consensus reaching, etc. Then, KaRA combines multiple AI
techniques that consider SME’s (Subject Matter Experts)
feedback on top of a structured domain KB (Knowledge
Base) to support the risk assessment processes of prospect
candidates in knowledge-intensive contexts.

The KaRA framework is a generalization and extension
of the work we developed for supporting the assessment of
the geological success of prospects (see Silva et al. (2019)
and Vital Brazil et al. (2021)). Next, we detail the general
problem that KaRA approaches.

Knowledge-intensive Prospect Risk Assessment
In this work, we refer to a successful prospect as a dis-
covery. Finding discoveries generally starts with many can-
didates from which very little is known. These candidates
pass through a triage process that selects those worth fur-
ther investigation. Given the number of candidates, the triage
often involves some form of automatic filtering combined
with experts’ simple evaluations. The candidates that pass
triage became what we refer to as prospects. A prospect can
pass through a detailed assessment that involves analyzing
the many risk factors that could prevent it from succeeding.
This process requires experts’ analysis from different areas
and probably new data acquisition. These resource require-
ments imply the existence of a limited number of prospects.
Then, a final investment is made to an even smaller number
to become discoveries or failures. For instance, in oil and
gas exploration, this last investment would mean drilling a
well, while in materials discovery, that would mean synthe-
sizing a new compound. Both examples are very resource-
demanding, but they could generate high rewards on the
other side. Therefore, the prospect selection process is es-
sential to creating a successful business. At each step of
the process the number of candidates decreases, while at
the same time, more is known about them. Another essen-
tial aspect is that each step requires increasing resource in-
vestments. In Figure 1, we detail the workflow for assessing
prospects’ POS. It starts with acquiring new data related to
the prospect to be analyzed. The available data is then pro-
cessed and interpreted by experts from different areas. This
process is carried out to detail relevant information and char-
acteristics resulting in a prospect characterization suited for



Figure 1: Prospect Risk Assessment Workflow

the risk assessment methodology. It’s worth noting that the
available data is often limited and uncertain. The experts’ in-
terpretation compensates for these limitations with their ex-
perience and tacit knowledge. But the final characterization
is still subject to uncertainty and may be biased by the ex-
perts’ opinions. The risk assessment methodology then takes
the characterization as input and produces the prospect’s
POS itself. It is also a process that depends on experts’ opin-
ions and knowledge. It becomes only a guessing exercise for
experts if done in an unstructured form, often leading to in-
consistent and biased assessments (Milkov 2015).

The prospect’s POS helps decision-makers decide if they
should invest, discard, or need more information/data and
then another round of assessment. This last decision is rep-
resented in Figure 1 by the backward arrow. Essentially an
enduring decision (invest or discard) is made when there is
enough confidence in the current knowledge of the prospect
and, consequently, in the assessment. Some risk assessment
methodologies use the metric Level-of-Knowledge (LOK)
to represent how much is known about the prospect explic-
itly (Lowry, Suttill, and Taylor 2005).

Structure
In the next section, we detail the related literature with a
focus on the works in the Oil & Gas exploration space.
We assume that it is the most advanced industry regarding
prospect risk assessment. In the section KaRA Framework,
we present an overview of the proposed methodology de-
veloped in KaRA. Subsequent sections are dedicated to de-
tail the methodology phases, that are, prospect characteri-
zation, Level-of-Knowledge assessment, and Probability-of-
Success assessment.

Related Literature
The generalization that we proposed for knowledge-
intensive prospect risk assessment was derived from the Oil
& Gas exploration domain. In this context, a prospect is a re-
gion containing a potentially recoverable oil accumulation.
To confirm or discard the hypothesis of oil accumulation in
the prospect region, the company must drill a well, which is
very resource demanding. It is a high-risk, high-reward sit-

uation, so this industry treats it very carefully. We believe
that prospect risk assessment in the Oil & Gas exploration
space is mature compared to other prospect exploration do-
mains. Therefore, we will use its literature as a reference in
this section.

Given the complexity involved in assessing a prospect, a
common approach adopted by the industry is to break the as-
sessment into different geological (or risk) factors, evaluat-
ing the POS of each one and then combining the correspond-
ing probabilities to obtain the POS for the prospect itself.
The factors correspond to geological features that should ex-
ist to form an oil accumulation. One common assumption to
facilitate the analysis is to adopt independence between the
risk factors. In this case, the prospect’s POS is the multi-
plication of all individual factor’s POS values. So, choosing
how to break the assessment into different factors plays a
crucial role in the methodology. An excessive number may
result in very small and hard to differentiate prospects’ POS
values, while a small number may neglect essential dimen-
sions of the risk evaluation. So, the methods adopted across
different organizations vary in the number of geological risk
factors analyzed. Milkov (2015) presents a table comparing
various methodologies found in the literature. To illustrate
this variation, the method proposed by Lowry, Suttill, and
Taylor (2005) considers the assessment of 19 geological risk
factors, while Rose (2001) analyzes only five.

The methodologies also vary in the strategy that guides
POS assessments for each geological factor. They must bal-
ance the quality and quantity of the available data with the
geological model characteristics to fine-tune the range of
possible values experts could adopt for the POS. In (Milkov
2015) and (Jan-Erik, Bundiit, and Simplicil 2000), the au-
thors propose using reference tables. To use a geological fac-
tor reference table, one must identify which cell the prospect
maps based on the available data and geological model char-
acteristics. While in (Milkov 2015), the cell specifies the
POS value itself, in (Jan-Erik, Bundiit, and Simplicil 2000),
they provide a range of possible values that POS could as-
sume. Although adopting these tables may improve the con-
sistency and repeatability of the assessment process, they are
not suitable to accommodate new disruptive knowledge. One
clear example of this problem is that the tables become out-
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Figure 2: Overview of KaRA – methodology workflow and features.

dated when new technologies are developed.
Another popular method is the use of the metric Level-of-

Knowledge (LOK) to assess data availability, quantity, and
quality (see (Paltrinieri, Comfort, and Reniers 2019)). Some
approaches use the LOK metric to constrain the possible
range of values assigned to the POS. In (Rose 2001), we find
a matrix specifying a relation where the POS is restricted to
the middle of the scale (around fifty percent) when the LOK
is low. At the same time, at high LOK levels, the POS value
should be either very low (around zero percent) or very high
(around a hundred percent). The rationale is that in a low
confidence situation, one should not be conclusive about the
POS value, while in high confidence cases, one must be very
assertive. In (Lowry, Suttill, and Taylor 2005), they apply the
same rationale and create a graphic that specifies a LOK and
POS relationship by delimiting a region of allowed LOK and
POS assessment pairs. The same work also presents alterna-
tive LOK/POS relationships that implement different ratio-
nales. The authors also recognize that making quantitative
assessments of LOK and using it to manipulate POS is chal-
lenging both in theory and practice.

The KaRA framework aims at addressing the limitations
of the described methods. The main objective is to provide a
methodology that guarantees consistency, decreases biases,
and continuously improves given new relevant knowledge
obtained from data sources and or SMEs, all supported by
practical and meaningful LOK quantitative scales.

KaRA Framework
The KaRA framework is a generalization and extension of
the work we developed for supporting the assessment of the
geological success of prospects (see Silva et al. (2019), and
Vital Brazil et al. (2021)). It combines multiple AI tech-
niques that consider SMEs’ feedback on top of a structured
domain knowledge base to support the risk assessment pro-
cesses of candidates in knowledge-intensive contexts. The
recent advances in AI and Knowledge Engineering provided

the basis for the development of KaRA. Knowledge en-
gineering practices and technologies are applied to repre-
sent and integrate the domain knowledge from multiple data
sources and stakeholders and provide easy access to this
knowledge. At the same time, AI provides the appropriate
tools for inference, prediction, uncertainty reduction, con-
sensus reaching, etc.

The methodology implemented by KaRA divides the as-
sessment into multiple risk factors. Individual risk factor
evaluation encompasses three phases: risk factor characteri-
zation, LOK assessment, and POS assessment. Different AI
agents support expert decisions at each one of them. As men-
tioned, the domain knowledge is structured and integrated
by the KB. The KB also handles all the data used by KaRA
components. KaRA aims to enable a co-creation environ-
ment for SMEs and AI agents to support the risk assessment
process. Figure 2 summarizes the architecture, the method-
ology workflow, and some of the main features of KaRA.
We discuss those features in the sequence according to each
phase.

Risk Factor Characterization
We adopted a similar approach to (Milkov 2015) and (Jan-
Erik, Bundiit, and Simplicil 2000) in the risk factor char-
acterization phase. For each risk factor, experts should an-
swer a standard questionnaire showcasing the data analy-
sis workflow results that could influence LOK or POS as-
sessments. The characterization questionnaires structure the
candidates in the KB, providing an easy way to represent
them for supervised and unsupervised machine learning al-
gorithms. One representative example used in the following
phases is retrieving similar candidates in terms of characteri-
zation for comparison purposes. The differentiator of KaRA
will be the ability to query and reason through the KB to re-
trieve and rank relevant evidence that may help the experts
answer the characterization questions. The expert will curate
the evidence recovered from the KB, keeping only the ones
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Figure 3: Workflows for expert and global LOK scores.

relevant to the answer. This feedback feeds the ranking algo-
rithms used in the evidence retrieval, which are continuously
improved. This mechanism establishes a co-creation process
where AI and experts collaborate to accurately characterize
the candidate risk factors taking advantage of available evi-
dence stored in the KB and the expert’s tacit knowledge.

LOK Assessment
The role of the LOK assessment phase is to establish fair
and consistent LOK score scales dependent on the risk fac-
tor characterizations produced in the previous step to support
the POS assessment process, such as done in (Lowry, Suttill,
and Taylor 2005) and (Rose 2001). The LOK scales are cre-
ated based on pairwise comparisons made by the experts and
previously assessed, and peer-reviewed candidates present
in KB. These candidates serve as training examples for a
supervised machine learning algorithm that gives an initial
LOK estimate, the so-called reference LOK. Experts’ pair-
wise LOK comparisons calibrate this estimate by solving a
Linear Programming (LP) model that determines the small-
est overall adjustments in the LOK values needed to respect
the comparisons. A rule-based inference strategy maintains
the consistency of comparisons for a particular individual.
The comparisons at the individual level capture the ranking
opinions of each expert. The reference LOK estimates cal-
ibrated by these comparisons create the expert LOK scale.
The system also determines the subset of consistent LOK
comparisons that best represent experts’ consensus by solv-
ing an Integer Programming (IP) model that minimizes the
conflicts between the output comparisons and the overall
expert opinions. We obtain the so-called global LOK scale
when these comparisons calibrate the reference LOK esti-
mates with the same LP model previously described. Ad-
ditional candidates and comparisons continuously adjust ex-
pert and global LOK scales. Figure 3 summarizes expert and
global LOK workflows. This approach is another example of
a human-AI co-creation strategy applied to support an essen-
tial step in the discovery process.

LOK comparisons consistency trough rule-based infer-
ence As previously mentioned, when evaluating a risk fac-
tor of a target prospect, experts compare pairwisely the risk
factor characterization of the target prospect with other sim-
ilar risk characterizations present in the KB. In the pairwise
comparison, the expert answers which risk characterization
should receive a higher LOK score or if their LOK scores
should be the same. A rule-based approach keeps the con-
sistency of LOK comparisons for each expert. Given risk
factor characterizations a, b, and c, and Li representing the
LOK score of characterization i, the consistency rules for
pairwise LOK comparisons are:

• (La < Lb) ∧ (Lb < Lc) =⇒ La < Lc

• (La = Lb) ∧ (Lb = Lc) =⇒ La = Lc

• (La < Lb) ∧ (Lb = Lc) =⇒ La < Lc

In figure 4, we show a graph representation of canonical ex-
pert’s LOK comparisons. The nodes represent the risk factor
characterizations, directed edges from a node i to a node
j represent a LOK comparison where Li > Lj , while the
bi-directional ones represent a LOK comparison Li = Lj .
Figure 5 shows the graph representation after applying LOK
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Figure 4: Canonical LOK comparisons graph

consistency rules. The inference of those rules could be ob-
tained by polynomial-time graph-based algorithms such as
the ones found in (Mohr and Henderson 1986).

Reference LOK and LOK Calibration LP Reference
LOK scores provide a first quantitative estimation of LOK
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Figure 5: Consistent LOK comparisons graph after inference

based on peer-reviewed examples, which means that a group
of experts validated their final LOK assessment scores. Us-
ing a one-hot encoding representation of risk-factor charac-
terizations, we apply supervised machine learning (ML) al-
gorithms to estimate the reference LOK scores. The model
is re-trained whenever a new peer-reviewed assessment is
stored in the KB. We use the average loss of a ten-fold
cross-validation test to choose the best ML model (i.e., al-
gorithm and parametrization). Despite the usefulness of ref-
erence LOK, we adopt in KaRA an approach that prioritizes
expert feedback. We create individual LOK scales by cali-
brating the reference LOK estimates with the expert’s con-
sistent LOK comparisons. Given a set of risk factor charac-
terizations P , reference LOK estimates LRi (∀i ∈ P ), a set
of consistent greater than GT and equals EQ pairwise (i, j)
LOK comparisons, the following LP is used to estimate the
expert’s LOK scores Li (∀i ∈ P ):

Min
∑
i∈P
|Li − LRi| (1)

s.t.

Li − Lj ≥ t ∀(i, j) ∈ GT (2)
Li − Lj = 0 ∀(i, j) ∈ EQ (3)
0 ≤ Li ≤ 1 ∀i ∈ P (4)

The objective function (1) minimizes the absolute difference
between the expert’s LOK scores Li and the reference LOK
LRi. Constraints (2) guarantee that the LOK score of i is
greater than the LOK score of j by at least a threshold t
for each greater than comparison (i, j) ∈ GT . Similarly,
constraints (3) guarantee that equality pairwise comparisons
(i, j) ∈ EQ are respected. Constraints (4) define the domain
of LOK scores to be between 0 and 1. Despite the absolute
value function (1), we can transform this formulation into a
standard form LP following strategies such as described in
(Bertsimas and Tsitsiklis 1997).

Global LOK Conflicts Minimization (or Consensus) IP
As previously explained, the framework maintains a set of
consistent LOK comparisons for each expert. So, the opin-
ions of different experts may conflict regarding the LOK
pairwise relation for pair of characterizations a and b, which
could be higher (La > Lb), lower (La < Lb) or equal
(La = Lb). In this context, achieving overall consistency

would mean discovering the set of pairwise LOK relations
that minimizes the conflicts with all expert opinions. In
(Brancotte et al. 2015), authors proposed an Integer Pro-
gramming (IP) model to solve a ranking aggregation prob-
lem with ties and partial orderings. We used this formulation
as a reference to create a new one with fewer constraints
and suitable for our context. Next, we describe each element
used in the formulation and present it in the sequence:
• xa≤b – binary decision variable that indicates if La ≤ Lb.
• xa=b – binary decision variable that indicates if La = Lb.
• wa≤b – constant representing the number of experts that

chose lower than or equal as pairwise LOK relation be-
tween a and b.
• wa=b – constant representing the number of experts that

chose equal as pairwise LOK relation between a and b.

Min
∑
a

∑
b

(wa≤b ∗ xb≤a+

wb≤a ∗ xa≤b − 2(wa=b) ∗ xa=b) (5)
s.t.

−xa≤b − xb≤a ≤ −1 ∀a ∈ P , b ∈ P (6)
2xa=b − xa≤b − xb≤a ≤ 0 ∀a ∈ P , b ∈ P (7)
xa≤b + xb≤a − xa=b ≤ 1 ∀a ∈ P , b ∈ P (8)
xa≤c + xc≤b − xa≤b ≤ 1 ∀a ∈ P , b ∈ P, c ∈ P (9)

xa≤b ∈ {0, 1} ∀a ∈ P , b ∈ P (10)
xa=b ∈ {0, 1} ∀a ∈ P , b ∈ P (11)

The rationale of this formulation is to guarantee that xa≤b =
1 and xb≤a = 1 implies xa=b = 1. This way, a strict lower
relation happens when xa≤b = 1 and xa=b = 0. The objec-
tive function (5) considers this assumption to represent the
minimization of conflicts. The constraints (6) ensures that at
least one relation is adopted for each pair of elements a and
b. The constraints (7) and (8) guarantees that, if both xa≤b
and xb≤a are one, than xa=b will be as well. Finally, con-
straint (9) ensures that transitivity is maintained throughout
the solution.

POS Assessment
In the last phase, experts’ should collaborate to give a fi-
nal POS value to the risk factor of the target candidate.
The process collects individual POS assessments of multi-
ple experts, and then a peer-review evaluation is conducted
to reach a consensus value. Both steps constrain the experts’
possible POS assessment values given a certain LOK level.
The specification of how the LOK constrains the POS values
is part of the specialization of the framework. KaRA’s de-
fault method uses the so-called confidence-likelihood plot,
a strategy devised in the oil and gas industry (see Rose
(2001) and Lowry, Suttill, and Taylor (2005)). In this ap-
proach, POS values are constrained to the middle of the scale
(around fifty percent) when the LOK is low, while at high
LOK levels, the POS value should be either very low (around
zero percent) or very high (around a hundred percent). The
rationale is that in a low confidence situation, one should not
be conclusive about the POS value, while in high confidence
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Figure 6: Confidence-likelihood plots.

cases, one must be very assertive. The plots shown in Figure
6 specify this relationship by delimiting a region (in white)
of allowed LOK (y-axis) and POS (x-axis) assessment pairs.

Figure 6a shows the supporting plot for the individual ex-
pert’s POS assessment step, while Figure 6b presents the
one for the peer-review POS assessment. In Figure 6a, we
use the expert’s LOK score to position the line on the y-
axis. The expert is then constrained to give a POS value in
the intersection between this line and the white region. The
blue squares represent the assessments of similar candidates,
where the blueness is proportional to the similarity with the
target candidate. They serve as a reference to possibly main-
tain consistency with prior assessments. In Figure 6b, the
global LOK score determines the position of the LOK line,
and the circles represent the multiple assessments of the dif-
ferent experts. With both information, the peer-review step
may reach a final consensus driven by the multiple experts’
opinions, potentially decreasing the biases in the process.

Conclusions and Future Work
We described a knowledge-intensive prospect risk assess-
ment that can be applied to critical business decisions in
multiple domains. To the best of our knowledge, KaRA is
the first framework to address this problem in a general
sense. The methodology proposed in the KaRA framework
combines AI and knowledge engineering to address the limi-
tations of the methods found in the literature. Guarantee con-
sistency, decreasing biases, capturing experts’ knowledge,
being flexible to adapt to technology disruptions, and pro-
viding a practical and meaningful LOK quantitative scale are
some of the most relevant objectives of the research around
KaRA. It may become essential and provide a competitive
edge in multiple accelerated discovery pipelines. We have
tested KaRA in two domains, petroleum exploration, and
material discovery, demonstrating the flexibility of our ap-
proach. Moreover, We have feedback from many experts in
both areas about the positive impact of our system. How-
ever, unfortunately, we do not have quantity results to be
discussed at this point. Even though we have experts using
KaRA nowadays, capturing data to analyze the system’s ef-
fectiveness is problematic because it involves knowledge-
intensive tasks. To approach this issue, we plan to organize
studies to measure the effects of the KaRA using controlled
data and focus groups. We also will develop a link between

the process of creating the methodology (the questionary)
and the knowledge base. There is a synergy between creat-
ing the questions and feeding an ontology that can enrich
the system, enabling reasoning about data already captured
to support answering some questions.
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