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Abstract
Chemical reaction yield, defined as the percentage of reac-
tants turned into products, is the main criterion for selecting
reaction conditions and evaluating success of a synthesis. Var-
ious machine learning (ML) models have been reported to
predict reaction yields based on high-throughput experiment
datasets. However, in the face of sparse and insufficient data
typical for regular laboratory experiments, the performance
and applicability of such models remain limited. More re-
cently, the capabilities of large language models (LLMs) have
been explored in predictive chemistry. Following up on this
work, we investigate how LLMs perform in the generalized
yield prediction task treated as a binary classification prob-
lem. In this regard, we engineer four different chemical re-
action datasets to systematically evaluate performance of the
top rated LLMs. We demonstrate that in the few-shot clas-
sification task LLMs outperform baseline approaches in F1-
score up to 9% and show competitive performance in terms
of accuracy. Moreover, we observe superiority of ML mod-
els trained on LLM embeddings with the best average accu-
racy of 0.70 versus 0.67 achieved with current state-of-the-art
approaches on the USPTO data. In this context, we discuss
the potential of LLM embeddings to become the new state-
of-the-art chemical reaction representations. Additionally, we
share our empirical results on practical aspects of the few-
shot LLM classifiers, such as the optimal size of the training
set, and discuss peculiarities and prospects of the proposed
methods.

Introduction
Chemical reaction yield estimation plays a crucial role in
chemical synthesis planning (Zhang et al. 2023; Noyori
2009). It allows assessing the amount of product that can
be obtained with a particular chemical reaction, which is es-
sential for optimizing reaction conditions and designing effi-
cient synthesis routes (Schwaller et al. 2021; Meuwly 2021).

In the last decade, machine learning has made significant
strides in prediction of reaction yields. The main idea be-
hind the existing works is to formulate and solve a regres-
sion problem of predicting the yield values based on re-
action representations and/or reaction parameters, such as
temperature, solvent, reagents and others (Haywood et al.
2021; Sato, Miyao, and Funatsu 2022). Nevertheless, es-
timating reaction yields remains a rather challenging task
(Voinarovska et al. 2023). The complexity of chemical ex-
periments and the extensive number of factors involved both

contribute to the difficulty of the regression problem (Chen
et al. 2023). However, the primary reason why yield pre-
diction still remains a challenge is the lack of reliable data
available for training the machine learning models (Bustillo
and Rodrigues 2023).

High-throughput experimentation (HTE) is often used to
generate training data and power deep learning applications
(Callaghan 2021; Eyke, Koscher, and Jensen 2021). Allow-
ing large numbers of experiments to be run simultaneously,
HTE provides high-quality reaction datasets containing de-
tailed and organized information on the reaction conditions
and the corresponding product yields (Biyani, Moriuchi, and
Thompson 2021). However, HTE datasets have one signif-
icant drawback: they usually focus on a particular reaction
type and offer information for only a small number of reac-
tion templates applied to a limited set of reactant combina-
tions (Schwaller et al. 2021). For this reason, models trained
on such datasets usually perform very well but cannot gen-
eralize to other datasets (Schwaller et al. 2021; Fitzner et al.
2023).

In contrast, there are datasets of reactions covering a wide
chemical space. Public ones include ORD (Kearnes et al.
2021) and ChEMU (Nguyen et al. 2020). Reaxys (Good-
man 2009) and CAS (CAS 2008) belong to commercial
databases. However, the most commonly used data is the
US Patent and Trademark Office (USPTO) dataset (Lowe
2012). USPTO found many applications in the context of
retrosynthesis (Lin et al. 2020; Karpov, Godin, and Tetko
2019), and since the topics of synthesis planning and pre-
diction of reaction yields largely overlap, the same dataset
was used for yield prediction as well (Schwaller et al. 2021;
Probst, Schwaller, and Reymond 2022). Unlike many of the
aforementioned datasets, USPTO is public, well-structured
and contains a large number of organic reactions of vari-
ous types. However, since the data originates from different
studies, it also suffers from sparse and noisy chemical reac-
tion information as well as biases in the reported yield val-
ues. Consequently, although models trained on such data are
more universal and widely applicable, they achieve rather
modest results and cannot be put into practice. This fact is
confirmed by several studies where no satisfactory results
were obtained regardless of the complexity of the machine
learning techniques applied (Schwaller et al. 2021; Probst,
Schwaller, and Reymond 2022; Yarish et al. 2023; Jiang



et al. 2021).
Large language models (LLMs) have made a pivotal

breakthrough in the development of AI in recent years. Nat-
urally, this technology has started to extend its reach into
various non-linguistic highly-specialized domains such as
physics, biology or material sciences (Latif, Parasuraman,
and Zhai 2024; Li et al. 2024; Jablonka et al. 2023). Recent
studies reveal the potential for LLM-based approaches in
predictive chemistry as well (Zhao et al. 2024; M. Bran et al.
2024; McNaughton et al. 2024). Therefore, for the first time
in the field, we investigated how large language models per-
form in the generalized yield prediction task formulated as a
binary classification problem. In certain scenarios, knowing
whether a reaction is high-yielding or not without requiring
precise yield values can be sufficient. In HTE, for instance,
assessing whether a reaction is high-yielding or not provides
quick feedback and allows to prioritize reactions for further
optimization (Collins and Glorius 2015). In addition, in rou-
tine synthetic operations where the main objective is to pro-
duce sufficient quantities of a compound for further appli-
cations, knowing whether a reaction consistently yields high
amounts of product is often more critical (Schwaller et al.
2021).

The main contributions of this paper can be summarized
as follows:
1. We explore the predictive capabilities of six state-of-the-

art market-leader LLMs in reaction yield prediction us-
ing few-shot approaches. For this, we design four re-
actions datasets and conduct a comparative analysis of
LLM-based approaches against several baseline models.
We demonstrate the competitive performance of LLMs
with an average accuracy value of 0.61. Moreover, we
show that few-shot classification surpasses baselines in
F1-scores by a maximum of 9%.

2. We are the first to predict reaction yields based on two
state-of-the-art LLM embeddings. We showcase an in-
crease in accuracies and F1-scores up to 10% obtained
with the models trained on LLM embeddings compared
to the baseline approaches. Based on our empirical re-
sults, we hypothesize that LLM embeddings could be-
come novel state-of-the-art representations of chemical
entities.

3. In addition, we provide practical considerations on us-
ing LLMs and identify the optimal size of the train-
ing set required to achieve competitive performance in
the few-shot setting. These findings can be especially
helpful for chemists seeking to employ LLM-based re-
action yield prediction for their own experimental data.
The code and data used in this study are available at:
https://github.com/ai-chem/LLMYieldPred.

Related Work
Yield Prediction for Specific Reaction Types
Cross-coupling reactions are the fundamental part of
the pharmaceutical synthesis (Ruiz-Castillo and Buchwald
2016). Modern pharmaceutical laboratories usually screen
cross-coupling reactions with the help of HTE setups, mak-
ing this reaction class a popular basis for yield prediction

tasks. Ahneman et al. (2018) were among the first to predict
yields based on HTE cross-coupling reactions data. Having
collected a dataset of 4.6k reactions, they trained a Ran-
dom Forest model achieving a coefficient of determination
(R2) of 0.92. In the study of Fu et al. (2020) a feed-forward
neural network showed impressive results in the predic-
tion of Suzuki-Muyaura cross-coupling reactions’ yields and
scored with R2=0.95 on the test set. Apart from classical ma-
chine learning approaches, complex deep learning architec-
tures such as transformers (Schwaller et al. 2020, 2021) and
graph neural networks (Kwon et al. 2022; Sato, Miyao, and
Funatsu 2022; Zhao et al. 2021; Saebi et al. 2021) were pro-
posed. Despite the fact that all the aforementioned models
cope with yield prediction within a specific reaction type,
they cannot generalize to other reaction classes. This limi-
tation makes them hardly applicable in general practice of
experimental laboratories. For this reason, we opt for using
the USPTO and ORD datasets with many reaction types in
our study.

Generalized Yield Prediction
Some considerable work has been done in the field of
general-purpose yield prediction without binding to a spe-
cific reaction class. An early attempt to predict reaction out-
comes for a multi-type reaction dataset was made by Sko-
raczyński et al. (2017). In this study ML models were trained
to solve a simpler binary classification task. Still, their work
reached a conclusion that existing ML-methods do not cope
well with the task due to insufficient number of descriptors
and the unsystematic way of reporting reactions in organic
chemistry literature. Schwaller et al. (2021) were the first
to predict reaction yields given text-based representations of
reactions. Although the proposed Yield-BERT transformer
attained outstanding results for HTE cross-coupling reac-
tions, the model failed on the USPTO data with R2 value
of 0.195 due to the strong difference of reaction yields for
close reactions. Lu and Zhang (2022) followed the idea
of Schwaller et al. and introduced T5Chem model based
on Text-to-Text Transfer Transformer borrowed from NLP
(Raffel et al. 2020). The authors created a special multi-task
dataset based on the USPTO data. Even though the number
of reaction classes in this dataset was reduced, the suggested
model only managed to achieve R2 of 0.47 in yield predic-
tion. Although this metric is higher than those of other au-
thors, they could not be fairly compared as the problem was
significantly narrowed. Another BERT-based model called
Egret was suggested by Yin et al. (2024). It was reported
to achieve R2 of 0.128 on the USPTO dataset. At the same
time, the study of Probst, Schwaller, and Reymond (2022)
proved that classical ML models, such as XGBoost, outper-
form transformer-based architectures when trained on the
novel differential reaction fingerprints (DRFP) as opposed
to SMILES strings. However, the overall predictive perfor-
mance of such method remains rather low with R2 of 0.197.
It can be observed that regression problem continues to be
a difficult undertaking in yield prediction (also confirmed
by our own regression experiments described in Appendix
A.1), which motivated us to opt for classification task in our
study.



LLMs in Reaction Yield Prediction
Some recent studies have investigated the potential of LLMs
to predict chemical reaction yields based on SMILES rep-
resentations of reactions. In the research of Guo et al. few-
shot classification was carried out to evaluate several LLMs
on two benchmarking HTE datasets. GPT-4 was reported to
show the best results among other LLMs and achieved com-
petitive performance to the baseline graph neural network.
Additionally, authors raised the need for future research and
improvement in the performance of LLMs on challenging
chemistry datasets, which motivated us to consider the task
of generalized yield prediction. Similar to Guo et al., we for-
mulate this task as a classification problem and apply a few-
shot approach. However, since the problem we are solving
is more universal and practically oriented, we try alterna-
tive sampling techniques, experiment with data formats and
complement our research by investigating the optimal size
of the training subset.

The alternative approach for evaluating LLMs perfor-
mance in predictive tasks is to extract embeddings from
LLMs and train ML models on them. The success of this
method has already been proved in some text classifica-
tion and clustering tasks (Petukhova, Matos-Carvalho, and
Fachada 2024; Keraghel, Morbieu, and Nadif 2024). To the
best of our knowledge, however, we are the first to use LLMs
embeddings for reaction yield prediction.

It is important to note we intentionally opted for general-
purpose LLMs in this work. Beside their strong performance
demonstrated across various chemical tasks (Dubrovsky
et al. 2024; Liu et al. 2024a; Jablonka et al. 2023), such
LLMs possess major advantages such as broad accessibil-
ity and ease of use, regular updates improving their perfor-
mance over time, as well as state-of-the-art generalization
capabilities. Models pretrained or fine-tuned on chemical
data lack those benefits and do not always provide top re-
sults (Sadeghi et al. 2024; Liu et al. 2024b; Schwaller et al.
2021; Yu et al. 2024).

Preparation of Datasets
Public datasets containing a wide range of reaction classes
are usually quite large and may contain several thousands
of reactions in a test set. In this study, however, we de-
signed four smaller datasets based on two public reactions
databases. This choice is particularly suitable for few-shot
classification tasks, where the goal is to assess the model’s
ability to generalize from a limited number of examples it is
presented with. Moreover, this setup provides a clearer un-
derstanding of how well LLMs can perform in real-world
scenarios where labeled data is often scarce.

Two datasets were obtained using the USPTO dataset
(Schwaller et al. 2018) containing over 1M organic reactions
in the format of canonicalized Simplified Molecular-Input
Line-Entry System (SMILES). The dataset was additionally
processed resulting in more than 526k entries. Another pair
of datasets were derived from the ORD database (Kearnes
et al. 2021) including only reactions that do not overlap with
USPTO dataset and include reported yields as well as two
reactants maximum.

Figure 1: Visualization of the datasets: A) USPTO-C; B)
USPTO-R; C) ORD-C; D) ORD-R

We used two techniques to sample reactions from the
USPTO and ORD datasets. The first technique involved ran-
dom sampling. We randomly selected 5300 reactions from
ORD (ORD-R dataset) and 11300 reactions from USPTO
(USPTO-R dataset). The second sampling technique was
based on clustering. We employed differential reaction fin-
gerprints (DRFP) with radius of 2 and length of 2048 bits
as reaction representations using the drfp Python frame-
work. DRFP is an NLP-inspired representation that has pre-
viously been shown well suitable for reaction clustering
tasks (Probst, Schwaller, and Reymond 2022). We reduced
fingerprints dimensionality to 2D space with UMAP algo-
rithm (McInnes, Healy, and Melville 2018) and clustered
the embeddings with HDBSCAN (McInnes et al. 2017). Re-
actions for the final datasets were sampled proportionally
from each cluster, resulting in the ORD-C dataset containing
7313 reactions and USPTO-C dataset containing 9329 reac-
tions. From each dataset a validation (300 reactions) and a
test (100 reactions) subsets were sampled either randomly
(for USPTO-R and ORD-R) or based on the proportion of
the obtained clusters (for USPTO-C and ORD-C). Visual-
izations of the obtained datasets are represented in Figure 1.
A thorough description of the datasets’ preparation process
is provided in Appendix A.2.

Similar to Guo et al., we categorize reaction yields into
two distinct classes: ”Not high-yielding” for reactions yield-
ing below 70%, and ”High-yielding” for reactions yielding
70% and above. This division not only minimizes the imbal-
ance of classes, but also corresponds to the commonly ac-
cepted practices among chemists: reactions with yields be-
low 70% are typically called “fair” or “poor”, while reac-
tions with yields above 70% are considered “good”, “very
good” and “excellent” (Vogel 1974).



Experiments
Few-shot Classification
Experimental Settings Few-shot classification is a task
where the model is prompted to classify objects (or data
points) into predefined categories, but with the constraint of
having access to only a limited number of training samples
(shots) (Mar and Liu 2022).

In our experiments, we selected three market leader
providers of LLMs, namely, OpenAI, Anthropic and Mis-
tral AI. We employed two models from each provider: a
top performant one and another smaller one that is more af-
fordable. More specifically, we conducted experiments with
GPT-3.5 Turbo, GPT-4, Claude 3 Haiku, Claude 3 Opus,
Mistral Small and Mistral Large.

The models were prompted with a few example reactions
from the training set and asked to predict yield categories
for reactions in the test set. We used two types of reaction
representations: SMILES strings (as in the original dataset)
and text descriptions. The latter were obtained by converting
SMILES strings of molecules into their chemical names us-
ing the PubChem API. A few examples of such conversions
are given in Appendix A.3.

For each type of reaction representation, we adapted
prompts previously proposed by Guo et al. (2023). The
prompt for the textual data format was as follows:

You are an expert chemist. Based on text descriptions of
organic reactions, you predict their yields using your expe-
rienced reaction yield prediction knowledge. You can only
predict whether the reaction is ’High-yielding’ or ’Not high-
yielding’. ’High-yielding’ reaction means the yield rate of
the reaction is above 70%. ’Not high-yielding’ means the
yield rate of the reaction is below 70%. You will be provided
with several examples of reactions and the corresponding
yield rates. Please answer with only ’High-yielding’ or ’Not
high-yielding’, no other information can be provided.

For SMILES representations, some information about ba-
sic SMILES rules was included in the prompt (see Appendix
A.4).

We experimented with the number of shots k =
{2, 4, 6, 8, 10} and two sampling strategies. The Tanimoto
sampling strategy involves calculating Tanimoto similarity
(Bajusz, Rácz, and Héberger 2015) between DRFPs and ran-
dom selection of k reactions with Tanimoto similarity not

Figure 2: Comparison of different LLMs with the following
prompting strategy: textual data format, Random sampler

less than 0.8. Such sampling technique selects examples
from the chemical point of view. In the Random sampling
strategy, we randomly selected at least one reaction from
each yield category, which provides examples based on the
general classification idea with no regard to the nature of
reactions. For the SMILES data format, both Tanimoto and
Random sampling strategies were applied, while for the tex-
tual data format we used only the Random sampling strategy.

USPTO-R dataset was used to select the best prompting
strategy as it is the largest and the noisiest dataset among
the others. We evaluated performance using standard clas-
sification metrics: accuracy and F1-score. Each experiment
was conducted 5 times with different random states to cal-
culate mean and standard deviation of classification metrics.
The same algorithm was performed for all the further exper-
iments, which are represented in the format of mean ± std in
this paper.

Results The comparison of prompting strategies revealed
that the textual data format with Random sampling tech-
nique outperformed other approaches by up to 12% in ac-
curacy (Table 1). Although SMILES data format along with
Random sampler demonstrated the highest F1-scores, the
combination of the textual data format with Random sam-
pler was selected as the optimal strategy due to the smaller
gap between the two classification metrics. To our surprise,
however, two smaller LLMs (i.e., Claude 3 Haiku and Mis-

Prompting
strategy

SMILES
Tanimoto sampler

SMILES
Random sampler

Text descriptions
Random sampler

Metrics Accuracy F1-score Accuracy F1-score Accuracy F1-score

Claude 3 Haiku 0.55 ± 0.04 0.63 ± 0.06 0.55 ± 0.00 0.69 ± 0.00 0.55 ± 0.02 0.67 ± 0.02
Claude 3 Opus 0.53 ± 0.02 0.63 ± 0.11 0.51 ± 0.00 0.68 ± 0.00 0.53 ± 0.03 0.64 ± 0.07
Mistral Small 0.49 ± 0.03 0.64 ± 0.03 0.50 ± 0.00 0.66 ± 0.00 0.61 ± 0.02 0.63 ± 0.04
Mistral Large 0.53 ± 0.03 0.62 ± 0.04 0.54 ± 0.02 0.65 ± 0.02 0.59 ± 0.02 0.66 ± 0.03
GPT-3.5 Turbo 0.51 ± 0.01 0.52 ± 0.20 0.51 ± 0.00 0.68 ± 0.00 0.51 ± 0.00 0.68 ± 0.00
GPT-4 0.50 ± 0.02 0.58 ± 0.16 0.51 ± 0.00 0.68 ± 0.00 0.51 ± 0.01 0.67 ± 0.00

Table 1: Comparison of prompting strategies on the USPTO-R dataset. For each LLM, only results with k corresponding to the
highest sum between accuracy and F1-score are included. Results for all k values are presented separately in Tables 4, 5, 6 of
the Appendix A.5. For each LLM, the best accuracy and F1-score are highlighted in bold.



LLM Data format USPTO-C USPTO-R ORD-C ORD-R

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Mistral 7B SMILES 0.56 ± 0.01 0.50 ± 0.02 0.54 ± 0.04 0.59 ± 0.04 0.66 ± 0.04 0.71 ± 0.04 0.59 ± 0.02 0.52 ± 0.04

Text 0.65 ± 0.01 0.61 ± 0.02 0.62 ± 0.04 0.64 ± 0.05 0.66 ± 0.02 0.71 ± 0.02 0.60 ± 0.01 0.55 ± 0.01

text-embedding-
3-large

SMILES 0.66 ± 0.03 0.62 ± 0.04 0.58 ± 0.01 0.57 ± 0.01 0.61 ± 0.02 0.66 ± 0.01 0.67 ± 0.01 0.60 ± 0.02

Text 0.70 ± 0.02 0.68 ± 0.02 0.59 ± 0.02 0.61 ± 0.01 0.59 ± 0.01 0.66 ± 0.00 0.71 ± 0.01 0.67 ± 0.01

Table 2: Results of classification based on LLM embeddings of reactions

tral Small) provided top performance in terms of average
accuracy and F1-score (Figure 2). Due to their high pre-
dictive power and minimal costs (a detailed comparison of
LLMs pricing is summarized in Table 7 of the Appendix
A.5), Claude 3 Haiku (k = 6) and Mistral Small (k = 6)
(see Figure 4 of the Appendix A.5) were selected for further
evaluation of the few-shot approaches on all four datasets.
The corresponding results are shown in Table 8 of the Ap-
pendix A.5.

Embeddings Classification
Experimental Settings In large language models, embed-
dings refer to the representation of words, phrases, or to-
kens as dense, low-dimensional vectors in a continuous vec-
tor space. These embeddings capture semantic and syn-
tactic relationships between words and are learned during
the training process of the language model. To obtain re-
action embeddings, text-embedding-3-large from
OpenAI with the embeddings size of 3072 and the public
Mistral-7B with 4096 dimensions were utilized. The choice
of the models was motivated by several factors. Firstly, we
wanted to compare few-shot and embeddings results for the
same providers (Anthropic does not provide any embedding
models). Secondly, in order to fairly compare embeddings
models between each other, we opted for models of differ-
ent sizes and costs.

Similar to few-shot experiments, we used SMILES strings
and text descriptions of reactions as input reaction represen-
tations. Embeddings classification was performed using the
XGBoost algorithm (see Appendix A.7 for details).

Results The results are shown in Table 2. Models trained
on the textual data representations demonstrated signif-
icantly better performance in comparison with SMILES
embeddings, when trained on the USPTO-C, USPTO-R
and ORD-R datasets. In the case of the ORD-C dataset,
metrics obtained with text embeddings were identical to
those of SMILES representations, but had lower stan-
dard deviations, which indicates improved consistency. The
impressive average accuracy of 0.71 was achieved by
text-embedding-3-large on the ORD-R dataset.

In an attempt to find an explanation for this outcome,
we visualized the space of USPTO-R embeddings reduced
to 3D with UMAP. We did the same for the USPTO-R
DRFP representations (one of the most common and com-
putationally efficient ways of representing reactions (Probst,
Schwaller, and Reymond 2022)) and applied a colormap
highlighting chemical reaction yield values (Figure 3a).

Strikingly, we observed a clear gradient from low to high
yielding reactions for the Mistral-7B embeddings, whereas
DRFPs appeared as a random cloud of data points. This find-
ing holds a great promise for the future of chemical reaction
representations, already serving as the new state of the art
for the generalized reaction yield prediction.

Comparison with Baseline Approaches
Fingerprints Fingerprints are one of the most popular and
efficient representations of chemical substances. In particu-
lar, the XGBoost model trained on differential reaction fin-
gerprints was shown to deliver top performance in general-
ized yield prediction task (Probst, Schwaller, and Reymond
2022), which motivated us to use this combination as one of
our baseline models. A description of the models’ optimiza-
tion process is presented in Appendix A.8.

Transformers The transformer architecture was intro-
duced in 2017 and was repeatedly reported to achieve state-
of-the-art performance on various NLP tasks (Van Nguyen
et al. 2021; Ramos-Pérez, Alonso-González, and Núñez-
Velázquez 2021; Grail, Perez, and Gaussier 2021). Trans-
formers have been evaluated in yield prediction task as well.
The most interesting works on this topic include Yield-
BERT and Egret, which were discussed in subsection . Both
models were also trained on the USPTO data, so we used
them as additional baselines. Since the models were origi-
nally created to solve the regression problem, we converted
their outputs into yield categories and thus evaluated their
classification performance. The weights of the pre-trained
models were taken from the official GitHub repositories and
the forward pass was performed once for each of our test
sets to calculate the corresponding performance metrics.

Results The comparison of LLMs with baseline ap-
proaches is shown in Table 3. Notably, the two transformer-
based state-of-the-art approaches showed rather modest
performance, despite being trained on the USPTO data.
Our own baseline model achieved comparable metrics and
even outperformed the transformer-based approaches on the
USPTO-C and ORD-R datasets. These empirical results
suggest poor generalization power of the existing models in
the reaction yield prediction task.

Conversely, the LLM-based approaches produced the best
scores across all the datasets. Interestingly, we observed
competitive performance of the LLM few-shot approach
with accuracy of 0.61 and overall best F1-score of 0.68
achieved on the USPTO-R dataset. The few-shot perfor-
mance on ORD-based datasets was slightly lower compared



Figure 3: a) Visualization of UMAP-reduced reactions representations: DRFPs (on the left) and Mistral-7B embeddings derived
from texts of reaction descriptions (on the right); b) Investigation of the optimal training subset size with Mistral Small model

USPTO-C USPTO-R ORD-C ORD-R

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Yield-BERT* 0.58 0.57 0.61 0.59 0.60 0.60 0.59 0.55
Egret* 0.59 0.55 0.51 0.42 0.62 0.61 0.54 0.51

XGB + DRFP** 0.67 ± 0.03 0.67 ± 0.03 0.51 ± 0.02 0.53 ± 0.02 0.58 ± 0.02 0.61 ± 0.02 0.69 ± 0.03 0.68 ± 0.03

LLM few-shot 0.62 ± 0.02a 0.65 ± 0.07b 0.61 ± 0.02a 0.68 ± 0.03b 0.51 ± 0.01a 0.65 ± 0.02b 0.53 ± 0.04a 0.57 ± 0.04b

XGB + LLM emb. 0.70 ± 0.02d 0.68 ± 0.02d 0.62 ± 0.04c 0.64 ± 0.05c 0.66 ± 0.02c 0.71 ± 0.02c 0.71 ± 0.01d 0.67 ± 0.01d

Table 3: Performance of LLMs and baseline approaches on ORD-C, ORD-R, USPTO-C, USPTO-R datasets: a) Mistral Small
(Random sampler, k = 6); b) Claude 3 Haiku (Random sampler, k = 6); c) Mistral-7B embeddings derived from text descrip-
tions; d) text-embedding-3-large derived from text descriptions. *reproduced baseline state-of-the-art models, **our
own trained baseline models

to USPTO data. To make sure that the prompting strat-
egy we have chosen is appropriate for all datasets, we con-
ducted additional experiments with a wider range of k values
and LLMs, that revealed no significant changes for ORD-R
dataset (see Appendix A.6 for details).

The best accuracy was consistently achieved by the XGB
trained on LLM embeddings. Strikingly, we obtained up
to 12% increase in accuracy (for ORD-R) and F1-score
(for USPTO-C and ORD-R) compared to the transformer-
based approaches. This highlights the enriched information
contents of the LLM embeddings compared to DRFP and,
likely, molecular fingerprints in general.

Optimal Training Set Investigation
Experimental Settings While LLM embeddings provide
the best results according to our experiments, the few-shot
approach is especially interesting for applications due to its
strong performance and the ease of use. Rather than training
and optimizing machine learning models, one can just pro-
vide an LLM with examples from the training set and ask
a question of interest. In this regard, knowing the minimum
size of the training set required to achieve acceptable results
is of great importance. Particularly in scenarios when the
data has to be experimentally generated.

We used the USPTO-R dataset to evaluate the optimal
training set size with Mistral Small model (textual data for-
mat, Random sampler, k = 6). Apart from the original
USPTO-R dataset containing 10900 reactions, we randomly

sampled from it to obtain four other datasets, each time re-
ducing the number of training samples by half. This proce-
dure resulted in datasets of 5450, 2725, 1362 and 681 train-
ing reactions. The test subset was never changed.

Results To compare Mistral Small performance on
datasets with different training sizes, we calculated mean ac-
curacy and F1-score as well as the maximum of these met-
rics across 5 random states. The results are shown in Figure
3b. Somewhat intuitive, we observed a positive correlation
between the scores and the train subset sizes with the worst
predictions corresponding to the smallest dataset of 681 re-
actions. Increasing the number of reactions in the training
subset leads to improved performance with maximum accu-
racy achieved at 1362 samples and best average accuracy -
at 2725 samples. Thus, the training size can be reduced by
8 times without considerable losses in accuracy. This dis-
covery not only streamlines the preparation of training data
but also significantly reduces the time required to conduct
experiments.

Surprisingly, a drop in average accuracy and maximum
F1-score was observed at 5450 reactions. The emergence
of such performance anomalies serves as a reminder of the
complexity of the LLM-based solutions. In this regard, we
strongly recommend conducting practically oriented exper-
iments for each individual application to ensure consistent
and stable predictions.



Discussion
Are LLMs Embeddings the Novel State-of-the-Art
Reaction Representation?
Comparison of models trained on reaction fingerprints with
those trained on LLM embeddings revealed the superior per-
formance of the latter. One plausible explanation for this
phenomenon is the enhanced context of reaction represen-
tations reflected in LLM embeddings. Unlike reaction fin-
gerprints, which primarily capture structural information
based on atom connectivity, LLM embeddings grasp the
nuanced semantics present within chemical reactions. By
representing reactions as sentences, LLMs capture not only
the molecular structures involved but also the relationships,
transformations, and conditions dictating the yield of the re-
action.

This astonishing result opens a new research horizon for
the yield prediction and potentially many other tasks of pre-
dictive chemistry. Similarly to the 8 benchmarking tasks for
the few-shot applications proposed by Guo et al. (Guo et al.
2023), it is essential to formulate a comprehensive set of
benchmarks to evaluate the performance of LLM embed-
dings in different areas of chemistry.

Peculiarities of LLMs in Few-Shot Reaction Yield
Classification
During our experiments with the few-shot classification ap-
proach, we noticed some curious aspects of LLM behavior,
which we would like to discuss in this section.

First, we observed that standard deviations of the few-shot
metrics are, in some cases, lower than those of XGB and
DRFP combination (Table 3). It suggests that a proper con-
figuration of the few-shot approach offers competitive ad-
vantages to traditional approaches not only in terms of ac-
curacy, but also reflected in consistency and reliability of
predictions.

Second, we took some notes on the performance of GPT
models. Even with the best prompting strategy (Random
sampler with the textual data format), GPT-4 and GPT-3.5
Turbo produced the highest standard deviations up to 56%
of the mean value for F1-scores (see Figure 5 of the Ap-
pendix A.5). Strikingly, in some cases the standard devia-
tions of F1-scores for GPT-3.5 Turbo exceeded the mean
values. GPT models are known for their high complexity and
capacity to capture intricate patterns in data. This complex-
ity might lead to a wider range of behaviors when adapting
to specialized few-shot tasks, resulting in higher variability
in performance. Moreover, we noticed that in some cases
GPT-4 provided the same response for all the reactions in
the test subset resulting in almost zero F1-scores. Therefore,
we would not recommend using GPT models for the gener-
alized yield prediction task.

Finally, we came to a conclusion that in certain scenar-
ios LLMs with a smaller number of parameters cope better
with the task than generally more performant models of the
same provider. Apparently, more advanced models in classi-
cal NLP tasks do not always excel in chemistry-related prob-
lems. The researchers should take this observation into ac-
count when designing their own LLM-based solutions.

Advantages and Limitations of the Proposed
Methods
Using LLMs for reaction yield prediction has undoubted ad-
vantages over traditional ML approaches. Existing yield pre-
diction models often rely on handcrafted features derived
from molecular descriptors or reaction conditions, which
take a lot of time and computational resources to prepare. In
the few-shot approach, on the other hand, only the original
training reactions are needed, possibly in the textual format.
Another benefit of using LLMs is their ability to capture re-
lationships between chemical substances in reaction descrip-
tions. Such ability is often absent in fingerprints and graphs,
which only encode the structures of molecules involved in
a particular reaction. Finally, as opposed to traditional ap-
proaches, LLMs can be used effectively for both general-
ized and type-specific yield prediction, as they are originally
trained on a diverse range of texts and have a higher gener-
alization ability.

Despite the aforementioned benefits, LLM-based ap-
proaches have certain limitations. The first one is the lack
of domain-specific expertise. LLMs are typically trained on
a wide range of general-purpose public texts, which may not
fully capture the nuanced knowledge required for such a spe-
cific field as chemistry. Additionally, LLMs may struggle
with novel scientific achievements (for example, novel reac-
tions) that appeared after the model had been trained. One
other drawback of LLMs is the lack of interpretability. De-
cisions made by LLMs in the few-shot classification as well
as interconnections encoded in LLM embeddings are diffi-
cult to comprehend. We encountered this limitation in our
study when a mysterious drop in LLM performance with
5450 training reactions was observed. However, it is note-
worthy that many of the traditional approaches have similar
limitations, perhaps to a lower extent.

Conclusion and Future Work
In this study, we explored the efficacy of general-purpose
LLMs in the domain of chemical reaction yield prediction
without binding to a specific reaction class. We demon-
strated the superior performance of LLM-based approaches
over baseline models, investigated their robustness and prac-
tical applicability in scarce data scenarios. We also discussed
the limitations of the presented approaches and the prospects
of even broader use of LLMs in predictive chemistry.

While our study provides valuable insights into the effi-
cacy of the few-shot approach and LLM embeddings in gen-
eralized yield prediction, several avenues for future research
emerge from our findings. One promising direction is to ex-
plore the reasoning behind the LLM answers to grasp the
aspects of key importance in the LLM decision making. Pre-
dicting reaction yields based on the complete descriptions of
synthesis procedures represent another avenue for future re-
search with potentially high impact.
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S.; Gajewska, E. P.; Grzybowski, B. A.; and Gambin, A.
2017. Predicting the outcomes of organic reactions via ma-
chine learning: are current descriptors sufficient? Scientific
reports, 7(1): 3582.
Van Nguyen, M.; Lai, V. D.; Veyseh, A. P. B.; and Nguyen,
T. H. 2021. Trankit: A light-weight transformer-based
toolkit for multilingual natural language processing. arXiv
preprint arXiv:2101.03289.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Vogel, I. 1974. Practical organic chemistry. Citeseer.
Voinarovska, V.; Kabeshov, M.; Dudenko, D.; Genheden, S.;
and Tetko, I. V. 2023. When yield prediction does not yield
prediction: an overview of the current challenges. Journal
of Chemical Information and Modeling, 64(1): 42–56.
Yarish, D.; Garkot, S.; Grygorenko, O. O.; Radchenko,
D. S.; Moroz, Y. S.; and Gurbych, O. 2023. Advanc-
ing molecular graphs with descriptors for the prediction of
chemical reaction yields. Journal of Computational Chem-
istry, 44(2): 76–92.
Yin, X.; Hsieh, C.-Y.; Wang, X.; Wu, Z.; Ye, Q.; Bao, H.;
Deng, Y.; Chen, H.; Luo, P.; Liu, H.; et al. 2024. En-
hancing Generic Reaction Yield Prediction through Reac-
tion Condition-Based Contrastive Learning. Research, 7:
0292.
Yu, B.; Baker, F. N.; Chen, Z.; Ning, X.; and Sun, H. 2024.
LlaSMol: Advancing Large Language Models for Chemistry
with a Large-Scale, Comprehensive, High-Quality Instruc-
tion Tuning Dataset. arXiv preprint arXiv:2402.09391.
Zhang, S.-Q.; Xu, L.-C.; Li, S.-W.; Oliveira, J. C.; Li, X.;
Ackermann, L.; and Hong, X. 2023. Bridging chemical
knowledge and machine learning for performance prediction
of organic synthesis. Chemistry–A European Journal, 29(6):
e202202834.
Zhao, Y.; Liu, X.; Lu, H.; Zhu, X.; Wang, T.; Luo, G.; Zheng,
R.; and Luo, Y. 2021. An optimized deep convolutional neu-
ral network for yield prediction of Buchwald-Hartwig ami-
nation. Chemical Physics, 550: 111296.
Zhao, Z.; Ma, D.; Chen, L.; Sun, L.; Li, Z.; Xu, H.; Zhu,
Z.; Zhu, S.; Fan, S.; Shen, G.; et al. 2024. ChemDFM:
Dialogue Foundation Model for Chemistry. arXiv preprint
arXiv:2401.14818.



A Appendix
A.1 Prediction of Reaction Yields as a Regression

Problem
In order to demonstrate challenges in predicting the ex-
act value of reaction yield we conducted experiments using
three state-of-the-art approaches described in subsection 2.1
of the main part, namely Yield-BERT, Egret and XGBoost
regressor trained on DRFPs (XGB + DRFP). Models were
evaluated using 4 reactions datasets described in section 3.

In case of XGB and DRFP combination, the optimal
fingerprints length was determined with default XGB
parameters for each dataset (see Figure 1). Then grid-
search over the following XGB parameters was ran:
n estimators, max depth, learning rate,
gamma, colsample bytree. The parameters grid is
represented in Table 1. Best parameters set was searched
using validation subsets of the datasets, while the overall
models performance was evaluated on the test subsets.
Best hyperparameters for each dataset are represented in
Table 2. Each experiment with the best hyperparameters
was conducted 5 times with different random states and
mean and standard deviation of regression metrics were
calculated. The results are represented in Table 3.

Figure 1: XGBoost regressor performance depending on
DRFP length. DRFPs radius is consistent and equals 2. Best
configuration for each dataset is circled.

It can be observed, that the overall efficacy of the models
is quite low. XGBoost models trained on DRFPs show top
performance among other approaches, however such level of
predictive ability remains unsatisfactory for practical tasks
where precise yield values are required. Possible reasons for
that could be strong dependence of yield values on reaction
conditions (such as temperature, pressure, the choice of sol-
vents, catalysts etc.) as well as the uneven distribution of
yields in datasets with prevalence of higher values due to
the tendency of scientists to publish only successful results
of syntheses. The yields distributions in the USPTO-R and
ORD-R datasets are shown in Figure 2.

parameter values

n estimators 100, 200, 300, 400, 500
max depth 2, 4, 6, 8, 10
learning rate 0.01, 0.05, 0.1
gamma 0.1, 0.5, 1, 1.5
colsample bytree 0.5, 0.7, 0.9

Table 1: Parameters grid for grid-search

USPTO-C USPTO-R ORD-C ORD-R

n estimators 300 500 200 500
max depth 4 6 10 10
learning rate 0.01 0.05 0.01 0.05
gamma 0.1 1.5 1.5 1.5
colsample bytree 0.9 0.9 0.9 0.5

Table 2: Best hyperparameters of XGBoost regressors
trained on DRFPs

(a)

(b)

Figure 2: Distribution of yield values: a) USPTO-R; b)
ORD-R



USPTO-C USPTO-R ORD-C ORD-R

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Yield-BERT 0.020 25.404 -0.030 25.913 -0.017 24.750 0.009 28.305
Egret -0.070 26.542 -0.161 27.509 -0.054 25.195 -0.043 29.035

XGB + DRFP 0.092 ± 0.002 24.454 ± 0.026 -0.029 ± 0.012 25.902 ± 0.156 0.084 ± 0.003 23.478 ± 0.043 0.109 ± 0.003 26.829 ± 0.049

Table 3: The performance of state-of-the-art methods in prediction of reaction yields treated as a regression problem. We do
not provide mean and standard deviation of metrics obtained with Yield-BERT and Egret since they were reproduced using
pre-trained weights available on the official GitHub repositories of these models

(a) (b)

Figure 3: Clustering of UMAP embeddings with HDBSCAN: a) USPTO; b) ORD

A.2 Preparation of Datasets
Chemical Reaction A chemical reaction includes several
components: i) reactants - chemically interacting organic
molecules consumed in the reaction process to make prod-
ucts; ii) reagents - substances added to cause a reaction that
are not necessarily consumed and not always present in a
reaction. Reagents usually include solvents, salts, catalysts
etc.; iii) products - substances produced as a result of a reac-
tion.

USPTO Data Processing The USPTO dataset was ad-
ditionally processed to remove erroneous and ambiguous
yields. All miscalculated and misprinted values as well as er-
roneous yields (containing no measurement units, negative,
zero or exceeding 100% values) were removed. If a yield
was reported two times for the same reaction or reported as
a range, the larger value was preserved. As a result, approx-
imately 50% of incomplete or missing values were filtered
out. Reactions containing more than two reactants were also
removed, since they made up only 6.7% of the dataset. The
resulting dataset contained more than 526k reactions repre-
sented as SMILES strings.

ORD Data Processing The original ORD database con-
tained around 2.3M reactions. We filtered out reactions
where no yields and no reaction SMILES were reported. We
also dropped reactions with multiple yields and canonical-
ized reaction SMILES using RDKit package. Then, we ex-
cluded reactions that overlap with the USPTO dataset and
the resulting ORD dataset contained around 21k reactions.

USPTO and ORD Clustering Reactions from
ORD dataset represented as DRFPs were com-
pressed to 2 components using UMAP algorithm
with sokalmichener metric for binary data. HDB-
SCAN with parameters min cluster size=225,
max cluster size=10000 was used for clustering
UMAP embeddings resulting in 12 clusters. The same oper-
ations were performed on the USPTO dataset kulsinski
metric for UMAP and min cluster size=2000,
max cluster size=60000 for HDBSCAN resulting
in 28 clusters. The ”-1” cluster was not taken into account
when USPTO-C and ORD-C datasets were engineered.
Visualization of clustering results for USPTO and ORD is
shown in Figure 3.

A.3 Conversion of Reaction SMILES into Text
Descriptions

Example 1:
SMILES: NN.O=C(Cl)c1c(F)ccc(F)c1F>CCO.CO.

ClCCl.O>NNC(=O)c1c(F)ccc(F)c1F
Text description: Hydrazine and 2,3,6-trifluorobenzoyl

chloride react together in the presence of ethanol,
methanol, dichloromethane, oxidane to produce 2,3,6-
trifluorobenzohydrazide.

Example 2:
SMILES: C#CCBr.COCCc1nc2cnc3ccccc3c2n1CCO>

> C#CCOCCn1c(CCOC)nc2cnc3ccccc3c21
Text description: 3-bromoprop-1-yne and 2-[2-(2-

methoxyethyl)imidazo[4,5-c]quinolin-1-yl]ethanol react



together to produce 2-(2-methoxyethyl)-1-(2-prop-2-
ynoxyethyl)imidazo[4,5-c]quinoline.

A.4 Instruction Prompt for SMILES Data
Format

In the study of Guo et al. (2023) it was shown, that it is diffi-
cult for LLMs to generate accurate responses when SMILES
strings appear in prompt. In an attempt to improve this sit-
uation, we added some information about reaction SMILES
into the instruction prompt. In particular, we explained the
order and meanings of the reaction SMILES components.
The prompt is as follows:

You are an expert chemist. Your task is to predict reac-
tion yields based on SMILES representations of organic re-
actions. Reaction SMILES consist of potentially three parts
(reactants, agents, and products) each separated by an ar-
row symbol ’>’. Reactants are listed before the arrow sym-
bol. If a reaction includes agents, such as catalysts or
solvents, they can be included after the reactants. Prod-
ucts are listed after the second arrow symbol, representing

the resulting substances of the reaction. You can only pre-
dict whether the reaction is ’High-yielding’ or ’Not high-
yielding’. ’High-yielding’ reaction means the yield rate of
the reaction is above 70%. ’Not high-yielding’ means the
yield rate of the reaction is below 70%. You will be provided
with several examples of reactions and corresponding yield
rates. Please answer with only ’High-yielding’ or ’Not high-
yielding’, no other information can be provided.

A.5 Few-Shot Classification Results
Results for few-shot classification experiments with differ-
ent prompting strategies are shown in Tables 4, 5 and 6.

Comparison of LLMs pricing is represented in Table 7.
Performance analysis of GPT-4 and GPT-3.5 Turbo in

few-shot classification is shown in Figure 5.
The choice of the optimal number of shots for Mistral

Small and Cluade 3 Haiku can be observed in Figure 4. Re-
sults for Mistral Small and Claude 3 Haiku with the best
prompting strategy across all datasets are represented in Ta-
ble 8.

k = 2 k = 4 k = 6 k = 8 k = 10

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Claude 3 Haiku 0.52 ± 0.02 0.51 ± 0.29 0.55 ± 0.03 0.47 ± 0.28 0.52 ± 0.01 0.63 ± 0.07 0.55 ± 0.04 0.63 ± 0.06 0.54 ± 0.04 0.62 ± 0.08
Claude 3 Opus 0.51 ± 0.02 0.54 ± 0.30 0.50 ± 0.01 0.47 ± 0.26 0.51 ± 0.02 0.56 ± 0.16 0.53 ± 0.02 0.63 ± 0.11 0.50 ± 0.02 0.48 ± 0.30
Mistral Small 0.49 ± 0.03 0.64 ± 0.03 0.49 ± 0.06 0.48 ± 0.13 0.44 ± 0.03 0.39 ± 0.14 0.43 ± 0.02 0.37 ± 0.18 0.44 ± 0.03 0.36 ± 0.19
Mistral Large 0.51 ± 0.02 0.12 ± 0.06 0.51 ± 0.03 0.29 ± 0.07 0.54 ± 0.05 0.58 ± 0.09 0.53 ± 0.03 0.6 ± 0.05 0.53 ± 0.03 0.62 ± 0.04
GPT-3.5 Turbo 0.49 ± 0.04 0.48 ± 0.30 0.49 ± 0.02 0.28 ± 0.36 0.49 ± 0.02 0.39 ± 0.36 0.51 ± 0.01 0.52 ± 0.20 0.50 ± 0.02 0.45 ± 0.32
GPT-4 0.51 ± 0.01 0.46 ± 0.31 0.50 ± 0.01 0.30 ± 0.35 0.50 ± 0.01 0.40 ± 0.37 0.50 ± 0.02 0.58 ± 0.16 0.50 ± 0.01 0.50 ± 0.29

Table 4: The performance of LLMs with the following prompting strategy: SMILES data format, Tanimoto sampler

k = 2 k = 4 k = 6 k = 8 k = 10

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Claude 3 Haiku 0.55 ± 0.00 0.69 ± 0.00 0.49 ± 0.01 0.14 ± 0.07 0.55 ± 0.03 0.58 ± 0.09 0.56 ± 0.02 0.59 ± 0.09 0.54 ± 0.04 0.61 ± 0.05
Claude 3 Opus 0.51 ± 0.00 0.68 ± 0.00 0.50 ± 0.02 0.17 ± 0.09 0.53 ± 0.01 0.59 ± 0.19 0.52 ± 0.01 0.52 ± 0.22 0.51 ± 0.0 0.51 ± 0.23
Mistral Small 0.50 ± 0.00 0.66 ± 0.00 0.48 ± 0.03 0.35 ± 0.06 0.48 ± 0.04 0.51 ± 0.13 0.46 ± 0.03 0.48 ± 0.11 0.47 ± 0.04 0.49 ± 0.13
Mistral Large 0.48 ± 0.00 0.07 ± 0.00 0.51 ± 0.02 0.25 ± 0.08 0.54 ± 0.03 0.57 ± 0.04 0.53 ± 0.04 0.62 ± 0.07 0.54 ± 0.02 0.65 ± 0.02
GPT-3.5 Turbo 0.51 ± 0.00 0.68 ± 0.00 0.48 ± 0.00 0.00 ± 0.00 0.51 ± 0.02 0.50 ± 0.28 0.50 ± 0.03 0.41 ± 0.36 0.49 ± 0.02 0.43 ± 0.33
GPT-4 0.51 ± 0.00 0.68 ± 0.00 0.49 ± 0.00 0.00 ± 0.00 0.52 ± 0.02 0.53 ± 0.29 0.50 ± 0.01 0.41 ± 0.37 0.50 ± 0.01 0.41 ± 0.36

Table 5: The performance of LLMs with the following prompting strategy: SMILES data format, Random sampler

k = 2 k = 4 k = 6 k = 8 k = 10

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Claude 3 Haiku 0.52 ± 0.00 0.68 ± 0.00 0.57 ± 0.02 0.59 ± 0.04 0.55 ± 0.02 0.67 ± 0.02 0.54 ± 0.03 0.68 ± 0.01 0.53 ± 0.01 0.65 ± 0.03
Claude 3 Opus 0.48 ± 0.00 0.63 ± 0.00 0.57 ± 0.04 0.57 ± 0.04 0.53 ± 0.03 0.64 ± 0.07 0.53 ± 0.02 0.61 ± 0.09 0.52 ± 0.04 0.59 ± 0.11
Mistral Small 0.51 ± 0.00 0.66 ± 0.00 0.59 ± 0.03 0.60 ± 0.04 0.61 ± 0.02 0.63 ± 0.04 0.56 ± 0.03 0.62 ± 0.02 0.57 ± 0.03 0.61 ± 0.05
Mistral Large 0.58 ± 0.00 0.61 ± 0.00 0.56 ± 0.03 0.40 ± 0.11 0.61 ± 0.02 0.57 ± 0.05 0.59 ± 0.02 0.66 ± 0.03 0.57 ± 0.03 0.62 ± 0.04
GPT-3.5 Turbo 0.51 ± 0.00 0.68 ± 0.00 0.54 ± 0.03 0.39 ± 0.07 0.53 ± 0.02 0.61 ± 0.13 0.53 ± 0.04 0.55 ± 0.21 0.52 ± 0.04 0.56 ± 0.16
GPT-4 0.51 ± 0.01 0.67 ± 0.00 0.51 ± 0.01 0.07 ± 0.04 0.55 ± 0.01 0.53 ± 0.2 0.55 ± 0.02 0.51 ± 0.25 0.52 ± 0.03 0.48 ± 0.27

Table 6: The performance of LLMs with the following prompting strategy: text data format, Random sampler

Claude 3 Haiku Claude 3 Opus Mistral Small Mistral Large GPT-3.5 Turbo GPT-4

Price per 1M input tokens, USD 0.25 15 1 4 0.5 30
Price per 1M output tokens, USD 1.25 75 3 12 1.5 60

Table 7: Comparison of LLMs pricing for input and output tokens



USPTO-C USPTO-R ORD-C ORD-R

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Claude 3 Haiku
(k = 6) 0.58 ± 0.06 0.65 ± 0.07 0.56 ± 0.01 0.68 ± 0.03 0.51 ± 0.01 0.65 ± 0.02 0.50 ± 0.03 0.57 ± 0.04
Mistral Small
(k = 6) 0.62 ± 0.02 0.64 ± 0.05 0.61 ± 0.02 0.63 ± 0.04 0.51 ± 0.01 0.53 ± 0.06 0.53 ± 0.04 0.46 ± 0.03

Table 8: Results for the best models and corresponding prompting strategies on all datasets

Figure 4: The average between accuracy and F1-score for each k for Mistral Small and Claude 3 Haiku. The optimal configu-
ration for each LLM is circled.
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Figure 5: F1-scores and their standard deviations for GPT-3.5 Turbo and GPT-4: a,d) SMILES data format, Tanimoto sampler;
b,e) SMILES data format, Random sampler; c,f) textual data format, Random sampler



A.6 Verification of the Prompting Strategy on
ORD-Based Datasets

Through experiments on the USPTO-R dataset Mistral
Small (k = 6) and Claude 3 Haiku (k = 6) were selected
as the best models for few-shot classification task. To ensure
that the choice of LLMs and corresponding k values was
appropriate for ORD-based datasets as well, we addition-
ally explored the performance of Mistral Small and Claude 3
Haiku with k = {4, 8} and Mistral Large with k = {4, 6, 8}.
Results are represented in Figure 6.

It can be seen, that changes in the k values do not signifi-
cantly influence LLMs performance. Moreover, standard de-
viations of metrics within k = {4, 8} are higher that within
k = 6 in some cases. It indicates, that the prompting strategy
was selected correctly and does not contribute to the differ-
ence in few-shot performance on USPTO- and ORD-based
datasets.

(a)

(b)

Figure 6: Performance of Claude 3 Haiku, Mistral Small,
and Mistral Large on the ORD-R dataset: a) Average accu-
racies; b) Average F1-scores

A.7 Embeddings Classification
Grid-search over the parameters grid as in Table 1 was ran.
Best parameters set was searched using validation subsets
of the datasets, while the overall models performance was
evaluated on the test subsets. Hyperparameters leading to
the models overfitting were excluded from grid-search re-
sults. Best hyperparameters for each dataset are represented
in Tables 9, 10, 11 and 12.

USPTO-C USPTO-R ORD-C ORD-R

n estimators 400 100 100 100
max depth 2 8 4 4
learning rate 0.1 0.05 0.1 0.1
gamma 0.1 1.5 0.5 1
colsample bytree 0.5 0.5 0.7 0.9

Table 9: Best hyperparameters of XGBoost classifiers
trained on Mistral 7B embeddings derived from reaction
SMILES

USPTO-C USPTO-R ORD-C ORD-R

n estimators 500 100 300 500
max depth 6 6 4 2
learning rate 0.01 0.05 0.05 0.1
gamma 0.5 0.1 0.5 0.5
colsample bytree 0.9 0.9 0.7 0.7

Table 10: Best hyperparameters of XGBoost classifiers
trained on Mistral 7B embeddings derived from text descrip-
tions of reactions

USPTO-C USPTO-R ORD-C ORD-R

n estimators 100 200 100 200
max depth 6 4 4 2
learning rate 0.05 0.1 0.1 0.05
gamma 0.5 1 1.5 0.1
colsample bytree 0.9 0.9 0.5 0.9

Table 11: Best hyperparameters of XGBoost classifiers
trained on text-embedding-3-large embeddings de-
rived from reaction SMILES

USPTO-C USPTO-R ORD-C ORD-R

n estimators 100 500 200 100
max depth 10 8 10 8
learning rate 0.1 0.05 0.05 0.1
gamma 0.5 1 0.1 0.5
colsample bytree 0.7 0.7 0.9 0.9

Table 12: Best hyperparameters of XGBoost classifiers
trained on text-embedding-3-large embeddings de-
rived from text descriptions of reactions

A.8 Comparison with Baseline Models
For XGB classification models trained on DRFPs, the op-
timal fingerprints length was determined with default XGB



parameters for each dataset. The results are shown in Figure
7.

Figure 7: XGBoost performance depending on DRFPs
length. DRFPs radius is consistent and equals 2. Best con-
figuration for each dataset is circled.

After that, grid-search over the parameters grid as in Ta-
ble 1 was ran. Best parameters set was searched using vali-
dation subsets of the datasets, while the overall models per-
formance was evaluated on the test subsets. Best hyperpa-
rameters for each dataset are represented in Table 13.

USPTO-C USPTO-R ORD-C ORD-R

n estimators 100 500 200 100
max depth 10 8 10 8
learning rate 0.1 0.05 0.05 0.1
gamma 0.5 1 0.1 0.5
colsample bytree 0.7 0.7 0.9 0.9

Table 13: Best hyperparameters of XGBoost classifiers
trained on DRFPs

Each experiment with the best hyperparameters was con-
ducted 5 times with different random states and mean and
standard deviation of regression metrics were calculated.

A.9 Technical Details

CPU AMD EPYC 7763 64-Core Processor
GPU NVIDIA RTX A6000
RAM 512 GB
Operating system Linux
Python 3.10

Table 14: Computing infrastructure used for the experiments

A.10 Societal Impacts of the Study
The use of LLMs in reaction yield prediction presents a
range of societal impacts. On the positive side, LLMs have
the potential to revolutionize various industries by signif-
icantly accelerating the process of drug discovery and de-
velopment. This can lead to faster production of better
medications, ultimately improving public health and sav-
ing lives. Moreover, LLMs enable optimization of chemical
processes, which can reduce waste and thus minimize en-
vironmental harm, contributing to more sustainable indus-
trial practices. The cost savings achieved through accurate
prediction of reaction yields can make high-quality prod-
ucts more affordable, benefiting consumers and enhancing
economic accessibility. Additionally, the democratization of
scientific knowledge facilitated by LLMs allows researchers
worldwide, especially in resource-constrained settings, to
access advanced predictive tools, fostering innovation and
collaboration across borders.

However, these advancements come with potential neg-
ative societal impacts as well. The adoption of LLMs may
lead to job displacement, particularly for professionals in-
volved in traditional data analysis roles. In addition, ethical
concerns arise, such as the risk of data privacy breaches, in-
herent biases in model predictions, and the misuse of tech-
nology for harmful purposes. There is a danger of over-
reliance on these models, which could undermine critical
thinking and problem-solving skills in scientific research.
Security risks are another critical concern, as malicious ac-
tors could exploit vulnerabilities in LLMs to disrupt chem-
ical processes or introduce errors intentionally. Thus, it is
crucial to address the accompanying challenges through eth-
ical guidelines and robust security measures.
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