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Abstract

Data is a critical element in any discovery process. In the last
decades, we observed exponential growth in the volume of
available data and the technology to manipulate it. However,
data is only practical when one can structure it for a well-
defined task. For instance, we need a corpus of text broken
into sentences to train a natural language machine-learning
model. In this work, we will use the token dataset to desig-
nate a structured set of data built to perform a well-defined
task. Moreover, the dataset will be used in most cases as a
blueprint of an entity that at any moment can be stored as a ta-
ble. Specifically, in science, each area has unique forms to or-
ganize, gather and handle its datasets. We believe that datasets
must be a first-class entity in any knowledge-intensive pro-
cess, and all workflows should have exceptional attention to
datasets’ lifecycle, from their gathering to uses and evolu-
tion. We advocate that science and engineering discovery pro-
cesses are extreme instances of the need for such organization
on datasets, claiming for new approaches and tooling. Fur-
thermore, these requirements are more evident when the dis-
covery workflow uses artificial intelligence methods to em-
power the subject-matter expert. In this work, we discuss an
approach to bringing datasets as a critical entity in the discov-
ery process in science. We illustrate some concepts using ma-
terial discovery as a use case. We chose this domain because it
leverages many significant problems that can be generalized
to other science fields.

Introduction
Data is a critical element in any discovery process – it ap-
pears at the beginning of the process as input for experi-
mentation, and at the end, as evidence to support the results.
In the last few decades, we observed exponential growth in
the volume of available data and the technology to gener-
ate and manipulate it (according to IDC, about 64 zettabytes
were created or copied in 2020 (Overberg and Hand 2021)).
However, data is only practical when one can use it for a
well-defined task.

Besides the sheer volume, data can be unstructured and
get more complex according to the domain, particularly in
science applications. Moreover, organizing data and taking
care of their entire lifecycle is especially vital when Artifi-
cial Intelligence (AI) techniques start to be critical in scien-
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tific processes. For instance, recently, the chemical industry
has augmented traditional human-intensive work with auto-
mated, parallel, and iterative processes driven by AI to ac-
celerate the materials-discovery (Pyzer-Knapp et al. 2022).
This incorporation of AI in the materials-discovery work-
flow brought a set of novel problems in handling data, for
example, how to qualify and filter thousand of molecule
candidates created by machine learning generative tech-
niques (Hoffman et al. 2021; Tadesse et al. 2022).

Nowadays scenario, where there is a high demand to ac-
celerate scientific discoveries, which depends on a massive
quantity of data, we advocate that it is paramount to look
at data from a new perspective, bringing together data and
tasks to remodel the concept of the dataset. To be used in
any discovery process, data must have a well-defined struc-
ture, associations with domain knowledge, and a set of oper-
ations and analytics to evolve it. However, many methods to
give such effects to data will strongly depend on the task
we will perform with the data. For instance, representing
a molecule is an enormous issue in chemical applications,
and its choice must consider the final task (O’Boyle et al.
2011). Another common problem for working with data is
how to define its lifecycle, and again we notice good prac-
tices for using the task to define it. We must create a dataset
guided by the task that we will perform. Furthermore, while
the operations executed on it are still creating information
related to the original task, we consider it a natural evolu-
tion of the dataset, keeping its versioning. In summary, we
propose working with datasets as first-class entities in the
discovery workflow, using the task as its main characteristic
to guide its complete lifecycle.

Our View
We are proposing an approach to the problem of managing
data in the discovery process, where the task must guide the
data lifecycle. Then, from now on, a dataset is defined as a
set of data structured to perform a well-defined task. Which
can be viewed as a blueprint of the actual data, that can be
stored as tables at any time. In this text, we do not split
the concept of dataset blueprint and dataset tables, but for
critical discussion about how to implement such concepts
it is paramount. In Figure 1, we illustrate the main compo-
nents of our approach and their relationship. Our proposed
approach to dataset engineering splits it into three critical



Figure 1: The relationship between the main components of
our proposal to dataset engineering, the rectangles are in-
stances, and ellipses represent sets of processes. FAIRness
is a meta element that touches all components.

dimensions Data Collection, Dataset Curation, and Dataset
knowledge. The data collection is responsible for collecting
and organizing the data and creating the datasets from a task.
It combines many challenges like data discovery and match-
ing with domain settings, which is the set of processes re-
sponsible for connecting the data with the specificities of the
task for scientific domains, such as material discovery. The
dataset curation component is the set of processes to analyze
datasets and enable their evolution. It focuses on the syn-
ergy between analytics and dataset transformation, support-
ing knowledge augmentation. The dataset knowledge piece
is responsible for extending and connecting a dataset with a
knowledge base, managing its lineage, and versioning. It is
also vital feedback on the data collection dimension with the
knowledge gathered in all components to improve the entire
workflow closing the cycle. Furthermore, another critical el-
ement that we consider is the FAIR principles (Wilkinson
et al. 2016), which touch all components helping to guide
the dataset development. Although it is a meta part of our
framework, in this work, we will discuss FAIRness in the
context of the dataset knowledge.

The following sections present each main component
from the material discovery perspective. This use case is rich
in many aspects. For instance: (i) Computational chemistry
is a vibrant field with critical issues that create significant
challenges for dataset engineering, like how to represent a
molecule (O’Boyle 2012). (ii) The amount of consumed and
created data is enourmos (Ruddigkeit et al. 2012). (iii) The
great potential to apply AI in many problems creates a new
set of questions directly related to datasets (Suh et al. 2020).

Data Collection
Given that several organizations worldwide continuously
produce new data as part of their discovery and engineer-
ing processes, collecting and aggregating such data comes
with several challenges. Here we highlight some challenges

that the scientific community has been trying to address.

Discovery Finding new repositories that host relevant data
involves crawling the Internet. Such a task demands the use
of an infrastructure with an efficient storage stack, a fast net-
work bandwidth, and enough processing power to parse the
retrieved pages. Once potential datasets have been found,
one needs to identify the terms of use of such data and
somehow assess the quality of that data. An initiative from
bioschemas.org attempts to improve the website indexing
process by defining a markup vocabulary for websites that
host datasets from life sciences (Brickley, Burgess, and Noy
2019). On the other hand, many data providers keep falling
back to manual curation steps when processing pipelines
flag chemical structures with serious errors. Automatically
assessing the quality of new data remains an open problem
that we believe to be of critical importance for a high-quality
data collection task.

Data matching Commonly, researchers attempt to im-
prove upon results published by other organizations. This
means that, once results of that new research are made
public, the original data can be augmented by aggregating
the new information. Unfortunately, data matching is not a
straightforward task, as the following issues observed in ma-
terial discovery indicate:
• Different notations to enumerate chemical structures:

mapping between popular text-based notations such as
SMILES, SMARTS, InChI and InChIKey is required, as
publications are free to choose which notation to use
(Saldivar-Gonzalez, Huerta-Garcı́a, and Medina-Franco
2020);

• Multiple representation for the same molecular graph ex-
ist: SMILES strings are pervasive across data sources,
yet one cannot simply resort to string comparison to tell
if two SMILES represent the same molecule. A set of
standardization rules allow the generation of canonical
SMILES that converge to the same string. In practice,
though, standardization rules differs between programs
and, consequently, across data providers (Bento et al.
2020);

• Compounds may have different names and several syn-
onyms: for instance, while a publication may refer to
[CH3][CH2][OH] as ethanol, others may refer to that
same compound as alcohol, ethyl hydrate, anhydrol,
among several different alternative names (and possibly
written in other languages);

• Typos and conversion errors: supplemental material, of-
ten shared via spreadsheets, are prone to conversion er-
rors (such as gene names mistakenly converted to dates
by Microsoft Excel (Abeysooriya et al. 2021)) and ty-
pographical errors that further difficult the task of auto-
mated data matching;

• Inaccurate cross-references among databases (Dashti
et al. 2019).

Effectively, the data matching process becomes a pipeline
where different techniques apply. Ongari et al. (2022), for
instance, attempt matches by conventional name, by the pub-
lication venue and ID, by comparing the molecular graph’s



substructures, and even the pore volume of the crystal struc-
tures. It is clear that this is an open problem with several
opportunities for improvement.

Domain settings To be useful, data retrieved from any
given source repository must be transformed to meet the
needs of the target domain. For instance, transformations
like the normalization of relation units and standardization
of compounds depend not only on predefined rules and con-
ventions but also on ontologies that help establish a mapping
from the source data to the desired output format. Automat-
ically determining which functions provide this mapping is
a key feature of a dataset engineering platform.

Dataset Curation
The dataset curation step is essential for the understanding
of the data as well as the knowledge extraction from it. This
step is composed by two different groups which are further
detailed: Dataset Analytic, and Dataset Transformation.

Dataset Analytic
The dataset analytic process is composed by different meth-
ods which aims to uncover useful insights to experts. This
step comprises the following analysis methods: Clustering
Analysis, Covering Analysis, Causality Analysis, Data Vi-
sualization, Similarity Analysis, and Uncertainty quantifica-
tion.

Clustering Analysis The clustering analysis is part of an
unsupervised strategy used to discover existing patterns in
a given dataset and group objects with similar characteris-
tics given a context. According to (Hadipour et al. 2022),
compounds clustering is vital to validate the diversity of the
dataset, identify the similarity and heterogeneity among the
objects contained in the dataset, and improve the challeng-
ing and costly process of establishing datasets for machine
learning tasks (Elshawi et al. 2018). Understanding the cat-
egories of the compounds that need to be included in the
dataset can significantly reduce the number of molecules
that should be screened while, at the same time, ensuring
the quality of the dataset. Different clustering techniques
can be used at this step, including: CheS-Mapper (Gütlein,
Karwath, and Kramer 2014), K-Means (Nugent and Meila
2010), Graph-based clustering (Tanemura, Das, and Merz Jr
2021), autocoencoders (Hadipour et al. 2022), and others.

Covering Analysis This step regards to the use of eval-
uation metrics and further insights to understand better the
under- or over-generation of the data (Tadesse et al. 2022).
It also helps to understand their characterizations at different
levels of evaluation. Moreover, at this step the completeness
of the data can be verified if necessary.

Therefore, such insights can benefit the quality of the data
through improved interactions between machine learning re-
searchers and domain experts in new molecules discovery
(Tadesse et al. 2022).

Causality Analysis Understanding complicated interac-
tions of chemical components is essential to new molecules
discovery (Dang et al. 2015). Therefore, to detect the causal

relations in the molecular structures play essential role for
the description of molecular mechanisms and comprehend
their functioning (Kelly et al. 2022).

The causality analysis favors the explainability of the
dataset and may benefit the process of science discovering
through machine learning models (Holzinger et al. 2021).

Data Visualization Data visualization is crucial for the
dataset analysis and the advance of scientific researches
(Fox and Hendler 2011). In terms of new molecules dis-
covery field, data visualization enables decision-makers to
discover design patterns, comprehend information, and form
an opinion about potential new scientific discovery candi-
dates(Ekins et al. 2016).

Designing new and better compounds requires under-
standing of the mechanism by which the molecules exert
their biological effects. This also involves consideration of
the uncertainty contained in the data, which data visual-
ization helps to provide interpretability of it and allow re-
searches to understand better the nature of the data (Rhein-
gans and Joshi 1999).

Similarity Analysis Similarity-based methods are part of
a feedforward reasoning process that relies on the proxim-
ity (in the feature space) of a target object to a given object
(Angelov and Soares 2020). In terms of molecules analy-
sis, molecular similarity implies that molecules of “similar”
structure tend to have similar properties to their analogues
(Samanta et al. 2020). Therefore, a common question that a
researcher can make is: “Given a target molecule M which
has a specific chemical activity, can I find the 30 molecules
that are most similar to M so I can assess their behavior in a
relevant quantitative-structure-activity (QSAR) analysis?”.

The traditional strategy to calculate molecular similarity
regards to encode the molecule as a vector of numbers. If fin-
gerprints, for example Extended Connectivity FingerPrint-
ing (ECFP) (Rogers and Hahn 2010), are used to produce
a vector of bits which that describes molecule structure the
Tanimoto similarity is commonly applied. However, as fin-
gerprints just produce binary information regarding to the
molecule structure, molecular descriptors as Mordred de-
scriptor (Moriwaki et al. 2018) or PaDEL-descriptor (Yap
2011) richer information for the calculation of an improved
similarity ranking. These interpretable features provided by
molecular descriptors also favors human-in-the-loop as ex-
perts can incorporate their knowledge in the data to obtain
a set of similar molecules that best fits the context that they
are working.

Ranking metrics also serve an important purpose in eval-
uating the similarity of compounds. Distinct chemical do-
mains are typically best described by different molecular
features. Therefore, to provide experts with guided decision-
making capabilities, various techniques can be used to eval-
uate the quality of any given (encoding, similarity function)
pair for some class of compounds (Wassenaar et al. 2022).

Uncertainty Quantification Uncertainty quantification is
a key component to provide measures of confidence neces-
sary to complex decisions (Begoli, Bhattacharya, and Kus-
nezov 2019). Uncertainty estimation in predictions can have



the potential to save considerable time and effort during the
decision-making process. Additionally, applications and ad-
vances in the field of new molecules discovery has addi-
tional safety requirements that are demanding from scien-
tists (Hirschfeld et al. 2020).

Indeed, model interpretability including associated con-
fidence in output predictions is recognised as a principal
shortcoming of current approaches for new molecules dis-
covery (Wan, Sinclair, and Coveney 2021). Therefore, bet-
ter communication of uncertainty positively contributes to
the adoption of machine learning systems to accelerate sci-
entific discoveries.

Dataset Transformation
Data transformation is a key step which embraces the pro-
cesses of changing the format, structure, or values of data
through Interactive AI and Batch Operations.

Interactive AI This step encompass solutions and algo-
rithms where experts influences AI systems and vice-versa
(Çelikok et al. 2019). This includes decision support solu-
tions, recommender systems, and dialogue systems with fo-
cus on explainability, interpretability, and interaction lever-
aging the user experience with the dataset (Bellamy et al.
2019). This includes the operations of adjudication (Schaek-
ermann 2020) and data aggregation (Edge, Larson, and
White 2018). Interactive AI benefits the human-in-the-loop
as it allows experts to incorporate useful, meaningful hu-
man interaction into the dataset (Zanzotto 2019). This task
is specifically important for high stake applications as the
dataset engineering to advance science.

Batch Operations Batch operations for data transforma-
tion includes processes for data cleaning, reduction, expan-
sion, and generation (Fink 2009). Such operations are essen-
tial to guarantee the quality of the data and the best usability
of them by machine learning approaches and experts. Batch
operations gives a sense of how data is distributed, both from
visual or quantitative perspectives (Yu 2010). Therefore, we
can consider that data transformations of variables to ease
both interpretation of data analyses and the application sta-
tistical and machine learning models to the dataset.

Dataset Knowledge
Knowledge Augmentation concerns the enhancement of the
current knowledge base by acquiring/ingesting new data
from other sources, and creating new knowledge by rea-
soning over the current base and over the new ingested
data. To achieve Knowledge Augmentation, it is required to
perform several tasks, like knowledge acquisition, formal-
ization, storage/retrieval, learning, and reasoning (Silva de
Oliveira, Sanin, and Szczerbicki 2022).

The knowledge base dataset may reside on disparate loca-
tions in heterogeneous data stores represented by different
data models. A middleware that provides a seamless inter-
face with an independent data model and data schemes is
required to access heterogeneous data stores, like polystore
systems (Stonebraker 2015; Özsu and Valduriez 2020).

Although exists well-curated, deeply-integrated, special-
purpose repositories, many important datasets emerging

from traditional, low-throughput bench science do not fit
in the data models of these special-purpose repositories. It
results in a diverse, less integrated, data ecosystem, exac-
erbating the discovery and re-usability of datasets for both
humans and computation stakeholders. As an example, if a
researcher wants to compare a dataset resulting from his/her
experiment with other datasets, several questions should be
answered, such as: (i) Where might the existing dataset have
been published? (ii) How to start the search and using what
search tools? (iii) Which characteristics should be used to
filter the datasets? (iv) Are the datasets described with meta-
data, and metadata in what formats? After the dataset is
found, other questions arise, like: (i) Can the dataset be
downloaded? (ii) What is the data format? (iii) What are the
requirements to integrate the data with local data? (iv) Can
the data be automatically integrated? (v) Does the researcher
have permission to use the data? Under what license condi-
tions? Therefore, it is a grand challenge of data-intensive
science to improve knowledge discovery for humans and
computational agents in the discovery, access, integration
and analysis of task-appropriate scientific data (Wilkinson
et al. 2016). In 2016, Wilkinson et al. (Wilkinson et al.
2016) published the FAIR principles, a set of 15 recommen-
dations for improving Findability, Accessibility, Interoper-
ability, and Reusability of digital resources (Jacobsen et al.
2020). The principles are domain-independent and aim to fa-
cilitate reuse by humans and machines (Trojahn et al. 2022).

In another perspective, scientists struggle in perform-
ing comprehensive data analyses over their experiments if
there is no information collected during the experiment
workflow executions. To overcome this issue, they embrace
provenance techniques on their experiments. Provenance
(also referred to as lineage) data management techniques
help reproduce, trace, assess, understand, and explain data,
models, and their transformation processes (Herschel, Di-
estelkämper, and Lahmar 2017; Moreau et al. 2008; Bune-
man and Tan 2019). The provenance research community
has evolved significantly to provide for several strategic
capabilities, including experiment reproducibility (Thavasi-
mani and Missier 2016), user steering (i.e., runtime moni-
toring, interactive data analysis, runtime fine-tuning) (Souza
et al. 2019b), raw data analysis (Sousa et al. 2016), and data
integration for multiple workflows generating data in a data
lake (Souza et al. 2019a).

Final Remarks

We argue that datasets should have a central role in
knowledge-intensive processes, especially in scientific dis-
covery. Moreover, we define its lifecycle in a task-oriented
way, creating a synergy between the natural dataset evolu-
tion and its uses. The tasks and data combination is a power-
ful driver. It helps us finding many solutions to reuse data
workflows, empower experts in the dataset lifecycle, and
create data tooling. There are still many questions about the
practical issues of datasets. However, this dataset definition
can significantly impact many real-world problems support-
ing the acceleration of scientific discovery.
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