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Abstract  

The ever-evolving field of materials design and discovery has been 
revolutionized by the emergence of data-driven algorithms for gen-
erative designs of materials and explorations of structure-property 
relationships. In particular, AI-guided design frameworks have 
been successfully applied to the field of artificially structured elec-
tromagnetic composites known as metamaterials where their use 
has not only alleviated the computational burden associated with 
simulations based on first principles but also facilitated faster, 
more efficient sampling of vast parameter spaces to converge on a 
solution. MetaDesigner is a user-friendly web application which 
simplifies and automates the inverse design of metamaterials, i.e., 
it is a tool powered by generative and discriminative deep learning 
models for enabling ‘design-by-specification’. The practical appli-
cation of this framework is exemplified by the successful end-to-
end design of a metamaterial broadband absorber as well as the 
demonstration of plasmonic metasurface for generating structural 
color ‘at will’. We envision that MetaDesigner's user-friendly in-
terface will accommodate users with varying levels of expertise by 
providing access to multiple inverse algorithms and play a pivotal 
role in expediting the design and exploration of metamaterial-
based devices. As this work is still under development and the tech-
nologies underpinning its development are expected to change over 
time, this abstract is aimed primarily at explaining the overall phi-
losophy and design goals of this project. 

 Introduction 

Metamaterials and metasurfaces (the 2D planar equivalent 
of metamaterials), are artificially crafted, composite materi-
als designed to support unique, highly customizable interac-
tions with incoming electromagnetic (EM) waves. Over the 
past decade, these engineered materials have garnered tre-
mendous attention owing to their ability to demonstrate re-
markable, seemingly anomalous phenomena such as nega-
tive refraction and cloaking which are unattainable using 
naturally occurring substances (Cai etal. 2007; Pendry 
2000). The fundamental building block of metamaterials are 
referred to as meta units or ‘meta-atoms’ which essentially 
mimic atoms in conventional materials. The physical dimen-
sions of meta-atoms are designed to be smaller than the in-
teraction wavelengths of interest. Their electromagnetic re-
sponses are dictated primarily by the size, shape, and geom-
etry of their meta-atoms as opposed to the fundamental 
properties of their constituent materials and therefore, artifi-
cial structuring provides an intriguing pathway to tweak the 

material responses ‘by specification’. The capability to con-
trol EM waves unconventionally, coupled with the compact 
size and reduced environmental impact of metamaterials, 
has rendered them an appealing choice for replacing tradi-
tional electro-optic components in a wide range of systems. 
Examples of their applications include innovative ‘meta’ 
lenses that are essentially flat films capable of replacing con-
ventional bulky and expensive lens assemblies in imaging 
devices (e.g., cameras, smartphones). Additionally, met-
amaterial-based antennas have the potential to replace con-
ventional phased arrays in next generation communication 
systems. Metamaterials are typically fabricated using fairly 
complex, labour-intensive methods (typically top-down lith-
ographic techniques) and therefore, there is a real need for 
digital rapid prototyping tools that support a significant de-
gree of automation and have the ability to accurately define 
topological parameters before proceeding towards actual 
fabrication. At this juncture, it is useful to quickly review 
the landscape of open source as well as commercially avail-
able design and simulation packages for metamaterials. The 
major stages involved in the simulation and design of met-
amaterials include defining the problem (e.g., how do I want 
my material to ‘behave’ or respond), choosing the base ma-
terials in terms of properties such as the conductivity, elec-
tric permittivity, magnetic permeability etc. This is followed 
by the first major design step wherein which the geometry 
of the unit cell or meta-atom is defined via relevant geomet-
rical parameters. Up till this stage, the design process is 
guided mainly by knowledge, domain experience and intui-
tion of the user. Once the meta-atom is defined, a set of ex-
citation conditions are set up (akin to a virtual experiment) 
and the electromagnetic response of the material is simu-
lated, typically using iterative, numerical full wave simula-
tions such as the finite difference time-domain (FDTD) and 
finite element method (FEM). There are multiple commonly 
used engineering simulation packages that support capabili-
ties for modelling the structure  property relationships but 
not the inverse. As the complexity of the metamaterial struc-
tures increases, so does the demand on user expertise, design 
timescales and computational resources. The area of materi-
als design and discovery is therefore, ideally primed for 
data-driven, AI-guided methods. For metamaterials in par-
ticular, deep learning-based design frameworks have been 
the go-to approach for navigating complex structure  



property relationships. In general, a deep learning-aided de-
sign process can be approached in two different ways:  
• Forward ‘Predictors’: The input is provided in terms of 
the geometrical parameters describing the meta-atom struc-
ture and the model is trained to predict attributes such as the 
spectral response (amplitude, phase) or the distribution of 
scattered electric fields etc. In other words, the structure (ge-
ometry)  property (electromagnetic response) relation is 
mapped using data-driven techniques. 
• Inverse Design: these models are typically for scenarios 
where the solution cannot be obtained analytically; they 
treat the desired EM response as an objective function which 
needs to be optimized in accordance with appropriate con-
straints, e.g., by using the target functionalities and leverag-
ing neural networks to yield the topological parameters of 
the metamaterial. 
 

 
 
 

Figure 1: Flowchart illustrating the workflow of the de-
signed web application 

 
We describe our approach for developing a web applica-

tion named “MetaDesigner” which offers users both for-
ward as well as inverse design capabilities using multiple 
deep learning models (described in the next section). This 
tool is intended to provide an easy-to-use interface to users 
for designing devices such as near-unity absorbers, highly 
sensitive biosensors, polarization converters for next gener-
ation communication systems etc. Perhaps one of the big-
gest bottlenecks standing in the way of a wider adoption of 
technologies based on metamaterial platforms is the lack of 
easy-to-use design ‘co-pilot’ tools that offer a degree of au-
tomation and guidance for users thereby obviating the need 
for extensive trial-and-error parameter scans as well as do-
main expertise. As with the materials informatics field in 
general, there have been multiple efforts at various scales to 
build and deploy web-based toolboxes that can democratize 

the design process for users (Horton etal. 2023; http://materi-

alsatlas.org/). Inverse designing in particular, has been a long 
sought after goal for real-world applications that require 
ways to ‘reverse engineer’ composite designs for yielding 
‘on-demand’ functionalities. 

 

  
 

Figure 2: UI for accepting geometrical parameters for the 
forward predictor 

Methodology 

We have conceptualized, trained and validated multiple in-
verse architectures and integrated them into MetaDesigner. 
Here, it must be mentioned that the web app is work in pro-
gress and we are continuing to expand the library of devices 
the tool can handle as also seamlessly integrate more and 
more deep learning models into it. Here, we describe some 
of the tool’s current capabilities; one is to design broadband 
metamaterial absorbers that demonstrate near-unity absorp-
tion at specified frequencies (Tao etal. 2008; Pillai etal. 
2021). This functionality comprises of forward and inverse 
prediction blocks.  (target performance  structural param-
eters). The underlying model is based on a forward predic-
tor. This is based on a dual-model framework comprising a 
forward predictor that is trained using the meta-atom geom-
etry as the input and the corresponding spectral response as 
the output and an inverse problem is dealt as a single-input, 
multi-output model using a tandem decoder-encoder archi-
tecture based on a long short-term memory (LSTM) net-
work. The EM response plots are treated as sequential data 
and the LSTM is used to identify relevant pieces from the 
input EM data sequences. We created the training dataset 
which consisted of >5000 candidate geometries whose re-
sponses were simulated using a widely used, commercially 
available FEM solver. This dataset was subsequently split 
into training, validation, and test sets in the ratio 
0.7:0.15:0.15. The weights of the decoder were saved from 
the pre-trained forward model. The network was trained for 
1000 epochs with mean square error chosen as the loss func-
tion. A fivefold cross-validation was also performed to en-
sure that the model was generalized. The time taken for gen-
erating the training dataset was around 55 hours on a stand-
ard Intel Core i5-8250U CPU @ 1.60 GHz with 8 GB RAM, 



the training for the forward model took approximately 6 
hours and the total time to predict the spectral responses for 
the test set (~450 designs) took less than a second. This 
serves as a benchmark measure for demonstrating how well 
the forward predictor alleviates the computational burden 
for designing these devices. Additional details of this func-
tionality are beyond the scope of this abstract. We pose our 
spectrum-design-spectrum problem as a sequence-to se-
quence learning task.  
 

 
Figure 3: Comparison of the FEM Simulated (left) and 
model-predicted (right) absorptance plot for a candidate 

absorber design 
 
 
Another instance of MetaDesigner’s ability to digitally 
‘rapid prototype’ a metamaterial device without using rule-
based numerical methods is exhibited by the successful 
demonstration of the design of plasmonic metasurfaces that 
demonstrate structural color specified by the user. These 
surfaces have carefully designed nanoscale features that se-
lectively absorb or reflect specific wavelengths (dictated by 
the nanoscale geometry) thereby displaying selective color-
ation and are being increasingly considered as an environ-
ment-friendly, sustainable alternative to chemical dyes and 
pigments (Pillai etal. 2023). Here, the generated color is ex-
pressed in terms of the CIE 1931 color coordinate system 
wherein any color on the CIE chromaticity chart can be ex-
pressed as x and y coordinate pairs based on the three CIE 
primaries. In our design capability, we have used equally 
spaced polydimethylsiloxane (PDMS) nanopillars coated 
with a uniform aluminum layer as our candidate surface. For 
this particular device, we chose an approach wherein we 
generated a limited dataset comprising of the chromaticity 
coordinates corresponding to nanopillars of varying dimen-
sions. As this dataset was unevenly distributed, we further 
pre-processed the data to remove clustering. The inverse 
model, which empowers the user to specify a target color 
and retrieve the nanopillar dimensions that will generate that 
color, is based on a modified variational autoencoder 
(VAE). VAEs are generative models that can stochastically 
output multiple different predictions given the same input; 
this is particularly critical for actual fabrication scenarios 
wherein the robustness of design models to variations within 
fabrication tolerances becomes imperative. This model has 
been particularly optimized for situations where the training 

data is limited (as is typically the case for plasmonic 
nanostructured materials).  
 
We have used React (Meta Inc.) which is an open-source 
front-end JavaScript library for building our user interface. 
All the data, such as JSON files, bin files, and images, are 
stored locally for faster use. To handle page routing, we 
have used useNavigate, useLocation, Link, HashRouter, 
Routes, Route and useLocation functions from the “react-
router-dom” package. useSelector function from Redux 
stored the states in react.js. The most crucial part of devel-
oping this server-rendered web application is the integration 
of the forward and inverse models with the web page. This 
is done using tensorflow.js (version 4.8.0) library. Here, it is 
imperative to use the exact same version of the package in 
both ReactJS and Google Collaboratory. The flowchart ex-
plaining the workflow of the forward and inverse model is 
illustrated in figure 1. In the forward model, the user is 
prompted to enter the geometrical parameters required for 
their desired meta-atom structure. As an example, the ‘for-
ward design’ functionality for generating the spectral re-
sponse of a gold-on-dielectric metamaterial absorber (Tao 
etal. 2008) is shown in figure 2, the input parameters required 
from the user include the length(l) and linewidth (w) of the 
gold layer, dielectric substrate thickness(t) and width of the 
capacitor region(c) in the respective textboxes (figure 2). 
The model computes the absorptance vs frequency response 
plot. Also, if the user enters any invalid text or layer dimen-
sions exceeding the permissible range, an error message is 
displayed. A comparison between the FEM simulated (top) 
and predicted (bottom) plots for l = 21.9 μm, w = 3.75 μm, t 
= 6 μm and c = 11 μm is shown in figure 3. 

 

Figure 4: (a) Comparison between the user defined absorp-
tance plot and the plot corresponding to the parameters in-
versely predicted by the model (b) Geometrical parameters 

inversely predicted by the model 
 

In the inverse model, we upload our desired ab-
sorptance spectra as a csv file and the model outputs the l, 
w, t and c values of the absorber structure. In figure 4(a), the 
blue colored plot is the user defined desired response up-
loaded as csv file, where the first and second columns are 
frequency and absorptance respectively. Based on that in-
put, the model predicts the geometrical parameters as shown 
in figure 4(b). To validate the prediction, we performed a 
forward simulation (based on first principles) of the struc-



ture with the parameters given by the model and the re-
sponse is shown in red color (figure 4(a)). It can be observed 
from figure 3 and 4 that both the forward and inverse models 
perform very well in predicting the response and structural 
parameters.  

Discussion and Future Work 

Data-driven methods and algorithms have been at the fron-
tier of materials design and discovery in recent years. In 
spite of the increasing availability of data and source codes 
of these algorithms, considerable expertise is required for 
their implementation and deployment thereby impeding 
widespread adoption. Web-based applications have been 
widely acknowledged as an effective approach for enhanc-
ing the accessibility of these algorithms to users of all expe-
rience levels. The MetaDesigner web application is to the 
best of our knowledge – the very first tool that provides a 
user-friendly interface for designing metamaterial-based 
functional devices in an intelligent, automated and expe-
dited manner. As the development of this web app is still 
under progress, several functionalities will be made availa-
ble soon (in addition to the capabilities we have demon-
strated till date). The future scope includes the inclusion of 
a performance measure to indicate the prediction confidence 
of the models via a wide array of analysis tools, an expanded 
library of meta atoms and build templates, comprehensive 
documentation for assisting users (we have already imple-
mented a feature wherein relevant publicly available litera-
ture can be accessed from the query pages), integration of 
additional AI-assisted ‘click-and-run’ algorithms, utility 
tools for enhancing interactive explorations and pipelines 
for users to upload their datasets along with a recommenda-
tion engine for suggesting which pre-built models they can 
utilize based on target specifications. A short video demon-
strating MetaDesigner’s capabilities can be accessed at: 
https://youtu.be/Uy7TirvPvGk 
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