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Abstract

Artificial Intelligence techniques have been rapidly progress-
ing in the past decade and have become an important tool for
discovery within the scientific community. The adoption of
these techniques within the material science community has
been critical in enabling high throughput research through
rapid characterization and discovery of materials. Machine
(Deep-) learning techniques are being used not only for
characterizing materials but also for extrapolating structure-
property relationships as well as for generating new structures
from existing material structure data. We discuss two case
studies where we demonstrate the use of deep learning tech-
niques for modeling and optimizing the design of graphene-
reinforced polyurethane (PU) foams. Specifically we demon-
strate both forward and inverse design techniques through the
use of image regression and Generative Adversarial Networks
applied to SEM images of graphene-reinforced polyurethane
foams. The dataset and analysis further opens up a wide ap-
plication of Al for the microstructural studies of PU foams.

Introduction

While Artificial Intelligence (AI) has had major successes
in fields such as computer vision, natural language process-
ing (NLP) and autonomous driving to name a few, Al ap-
proaches are still in their infancy when applied to materi-
als science (Himanen et al. 2019). The application of Al
to material science problems is an emerging area of active
research, primary directions including the use of Al tech-
niques for better understanding of material properties, ac-
celerated material discovery and efficient development of
advanced materials. In contrast to the traditional trial-and-
error approach to material discovery, Al enabled methods
offer the promise of a much reduced turnaround time for
material discovery and commercialization of novel materi-
als. This has also been demonstrated by (Hiszpanski et al.
2020) where they show that NLP techniques can extract ma-
terial synthesis insights from scientific literature and predict
synthesis parameters and outcomes on new materials sys-
tems, vastly outperforming heuristic strategies. Other exam-
ples of Al techniques applied to material science include Al-
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based screening and experimental validation of thermoplas-
tic polymers (Wu et al. 2019), inorganic phosphor host ma-
terials for solid-state lighting (Zhuo et al. 2018), and high-
entropy alloys for structural applications (Rickman et al.
2020).

While AI methods require substantially more data than
conventional methods, material scientists have traditionally
worked with small datasets that are also noisy and sparse. Al
based techniques such as data augmentation, transfer learn-
ing (Jha et al. 2019), generative models (Schwalbe-Koda
and Gémez-Bombarelli 2020), physics informed neural net-
works (PINNs) (Pun et al. 2019) along with fast sensing and
data acquisition systems (Stein and Gregoire 2019) are nec-
essary to alleviate the severe data bottleneck problem. Em-
bedding physics within neural network models guarantees
that symmetries and conservation laws, present in the phys-
ical system being studied, are not violated in the models.
Physics aware Al models also improve computational effi-
ciency and prediction accuracy. Data efficiency in the in-
verse design can also leverage recent advances in molecu-
lar design and optimization (Gémez-Bombarelli et al. 2018;
Yang et al. 2020).

In most Al models, the way inputs are transformed into
outputs are often opaque resulting in black box solutions
(Holm 2019; Iwasaki et al. 2019; Xie and Grossman 2018).
As such, to increase the transparency and robustness of Al
models for scientific users, interpretability and explainabil-
ity have become key criteria in model development. Some
techniques are Grad-CAM (Selvaraju et al. 2017) which pro-
duces coarse localization heatmaps highlighting the impor-
tant regions in the image used for the predictions and an
ablation study where, by removing some “feature” of the
model or algorithm, one quantifies the effects on model per-
formance.

In this study, we implemented an integrated approach that
combines material science experimentation and artificial in-
telligence techniques. In particular we use deep learning
(DL) methods of image regression and generative adver-
sarial networks (GANs) to provide mechanistic and physi-
cal insights from multi-modal, in-situ characterization data
and SEM microstructure images. These methods are applied
for accelerating material discovery and optimizing physical
properties in graphene-reinforced polyurethane foam com-
posites.



Table 1: A summary of the tests and their standards.

Test
Compression Force Deflection
Compression Modulus
Tensile Stress at Maximum Load
Tensile Modulus
Tear Resistance

Standard
ASTM D3574 Test C
ASTM D3574 Test C
ASTM D3574 Test E
ASTM D3574 Test E

Ford Specification WSS-M15P20-B1, 3.3.5

Table 2: Polyurethane foam materials and formulations summary.

Component Type Weight Percentage
Petroleum Polyol  Voranol 4701 62.2 %

Cell Opener Lumulse POE (26) GLYC 0.6%
Surfactant Tegostab B4690 0.3%

Cross Linker Diethanolamine (DEA) 0.9%
Catalyst Niax A300 0.4%
Catalyst Niax Al 0.2%
Blowing Agent Deionized Water 1.9%
Diisocyanate Rubinate 7304 33.5%
Additive Graphene (0, 0.01, 0.025, 0.05)%

Materials Synthesis and Characterization

Polyurethane (PU) foams are a well-known class of poly-
mers with a wide variety of automotive applications includ-
ing seat cushions, headliners, engine covers etc. due to their
excellent mechanical properties, lightweight nature, high
levels of acoustic dampening, thermal stability and reduced
cost to name a few (Zachary D. 2019). The customizable na-
ture and versatility of PU foams such as in the choice of cata-
lysts, fillers, isocyanate component, and nature of degree of
cross-linking sites, polyol molecular weight, viscosity, etc.
has led to the development of various polyurethane mate-
rials tailored to meet specific industry needs. Recent stud-
ies (Alasti Bonab, Moghaddas, and Rezaei 2019; Kucheyev
et al. 2006; Luo et al. 2017) have shown changes in foam mi-
crostructural features such as cell size, density, morphology,
etc. accompany enhancement in mechanical, electrical, and
thermal properties. By synthesizing PU foams reinforced
with varied amounts of graphene, we aim to develop here,
an image-based Al solution for foam material design and
property prediction from SEM images and physical property
multi-modal data, as well as, generate realistic synthetic mi-
crostructure images based on user-input physical/processing
parameters.

PU foam samples were synthesized by reacting polyols
with isocyanate in a lab scale production. The polyol is first
combined with a few additives including a cell opener, a
surfactant, a crosslinker, two catalysts, and a blowing agent
before reacting with a diisocyanate. The reader is referred
to (Zachary D. 2019) for the detailed synthesis conditions,
preparation, and mixing of the polyols and additives The
PU foams were cut to comply with ASTM standard test-
ing procedures to obtain physical and mechanical properties
of each foam formulation. The PU foam samples were an-
alyzed based on mechanical testing. Density was measured,
and tensile, tear, and compression properties were tested us-
ing an Instron 3366 machine. Six samples were selected and

tested from each foam formulation. A summary of the tests
and their standards are summarized in Table 1 !. Glass tran-
sition temperature and storage modulus were examined us-
ing DMA. Three foam samples were analyzed at 10 Hz and
1% strain using Rheometric Scientific Dynamic Mechanical
Thermal Analyzer I'V.

Deep learning methods for images frequently require
datasets in the order of thousands of images. However, a
careful selection of labelled images, data augmentation and
pre-designed prototypical neural networks can reduce the
amount of data needed. Here we mainly impalement geo-
metric data augmentation techniques that include rotation,
flips, etc. as the properties of the SEM images under study
are invariant to these operations.

Image Regression for Physical Properties

Material science image data processing and analysis of-
ten require prior subject matter expertise and are labor and
time intensive. Recently, various techniques leveraging com-
puter vision and machine learning techniques have been
implemented as an efficient alternative for high through-
put study of microstructural data such as in (Gola et al.
2018). Herein we implement a state-of-the-art Al based
image regression technique to predict the amount of GNP
(Graphene Nanoplatelets) additive (wt %) and selected me-
chanical properties of tensile stress and tensile modulus,
based solely on given SEM images of GNP-reinforced PU
foams. The mechanical properties of PU foams can vary
with changes in foam cell microstructure such as cell size,
density, surface morphology and texture which in turn are
correlate to their physical properties.

As such scanning electron microscope (SEM) images of
the top surface of the above synthesized foams (c.f. Ta-
ble 2) were obtained using JEOL JSM-6610 scanning elec-

'Parenthesis indicates standard deviation.



Table 3: Polyurethane foam mechanical and thermal test results data.

Measured Property Units 0%
Mechanical

Comp. Stress @ 25% strain  kPa

Comp. Stress @ 50% strain ~ kPa

2.794 (0.163)
4.102 (0.252)

Comp. Stress @ 65% strain  kPa 6.178 (0.407)
Comp. Modulus MPa 0.0309 (0.0018)
Tensile Stress @Max Load kPa 117.97 (6.400)
Tensile Modulus MPa 0.197 (0.029)
Tear Resistance N/mm  0.502 (0.045)
Thermal
Tg °C -41.633 (1.293)
Tg Max Point °C 0.375 (0.023)
SM at RT Pa 114,340 (1,2200)
SM at Tg Pa 581,496 (85,900)

tron microscope instrument at Ford Research and Advanced
Engineering. The SEM images were taken under SE2 sec-
ondary electron detector at fixed beam energy and working
distance. . The brightness and contrast levels were held con-
stant across all images and samples; see also Table 3 . We
collected 200 grayscale SEM images from four samples with
varied amounts of additive (Control, 0.01%, 0.025%, 0.05%)
as shown in Table 4. The SEM data acquisitions specifi-
cations include high resolution fixed depth of focus, SED
mode with high magnification (25x, approx. 10.3 pix/mi-
cron). The resulting dataset was augmented by geometric
operations of rotation, flips etc and physical property data
were measured for each sample.

Additive% Tensile Stress(kPa) Tensile Modulus(MPa) Additive% Tensile Stress(kPa) Tensile Modulus(MPa)
Ground-truth  0.05% 94.78 0.20 0.025% 112.40 1
Predicted 0.049% 94.54 0.19 0.024% 112.80 0.21

Figure 1: GNP-PU foam SEM image regression of additive
percentage and mechanical properties.

We consider an end-to-end deep learning (DL) image re-
gression technique with raw SEM image pixels as input and
a supervised training procedure using the mechanical mea-
surements as labels of the SEM images. The DL image re-
gression technique comprises a ResNet34 network (He et al.
2016) pretrained on ImageNet (Krizhevsky, Sutskever, and
Hinton 2012) using a PyTorch implementation. The SEM
images are normalized with respect to ImageNet stats and
the number of outputs is set to three corresponding to ad-
ditive %, tensile stress and tensile modulus. The loss func-
tion is chosen to be mean-squared error loss (MSE) and the
model is trained for 100 iterations with resulting R-squared
greater than 0.98 for each of the outputs.

The performance of the model is tested by predicting ad-

3.965 (0.632)
6.520 (1.201)

935,327 (129,000)  962,087(384,000)

0.01% 0.025 % 0.05%

3.889 (0.225)
7.182 (0.515)

4.151 (0.569)
7.109 (1.178)

10.957 (2.885) 13.030 (1.832) 12.247 (2.894)
0.0565 (0.0218)  0.0676 (0.0180)  0.0736 (0.0076)
77.450 (6.402) 88.675(15.863)  105.325 (38.298)
0.190 (0.020) 0.200 (0.005) 0.227 (0.033)
0.512 (0.040) 0.539 (0.026) 0.508 (0.070)
-40.805 (2.794) 43250 (1.964)  -43.480 (0.078)
0.438 (0.022) 0.374 (0.031) 0.372 (0.028)
98,600 (12,500) 123,440 (24,000) 144,923 (23,400)

1,545,173 (599,000)

ditive % and tensile properties on previously unseen exam-
ples (20% of the dataset) as shown in Fig. 1. Even though
the model currently can be a black-box solution, it performs
with high accuracy. The mechanism and explainability of
the model shall be investigated further as in (Liu et al. 2020)
to gain previously unknown insights or for other materials
applications such as in multi-functional polymer composite
materials design.

Synthesizing Microstructures from
Experimental Parameters: GANs for Inverse
Materials Design

In the previous section, we implemented an image regres-
sion method where given an SEM image of a material sam-
ple, we are able to accurately predict material attributes such
as the mechanical performance or graphene additive percent.
In this section we implement a generative model that out-
puts a hypothetical SEM image corresponding to a given
material attribute such as synthesis/processing condition or
physical properties. This can significantly help domain sci-
entists visualize and understand how changes in material at-
tributes, synthesis/processing conditions impact the sample
microstructure features which in turn determine its mechan-
ical, thermal and electrical properties. This is all done with-
out actually performing tests in the lab as well as to discover
materials with optimal target properties through investiga-
tion of counterfactual relationships (Liu et al. 2020) (i.e. de-
termining material features that control changes in the pre-
diction).

Specifically, we use an image editing generative adver-
sarial network, AttGAN (He et al. 2019), to synthesize re-
alistic SEM images by varying a synthesis parameter, e.g.
graphene additive weight percent. Different from other types
of GANs which generate images starting from a noise vec-
tor, AttGAN is trained on input images along with the at-
tributes encoding the desirable changes, thus reducing the
heavy computational resources requirement during training
as well as amount of image data. The reader is referred to
the original work on AttGAN (He et al. 2019) for details
on model architecture. As shown in Figure 2, the AttGAN



Table 4: SEM image dataset summary for GNP-reinforced PU foam.

Samples (GNP-reinforced Foam)

Control (0.0%)
0.01%
0.025%
0.05%

Train Attribute Classification Constraint

> cross_entropy(b, b) =

Adversarial Loss

a Original Attributes

b Desired Attributes

Test 2 a=0.1,...0,..].0:01%,

b=10.1,..,1,.)0-05%

Figure 2: AttGAN model architecture for synthesizing mi-
crostructures with specified additive percentage attributes,
adapted from (He et al. 2019).

contains three main components at training, i.e. the attribute
classification constraint (correct attribute manipulation on
the generated image), the reconstruction learning (preserv-
ing the attribute-excluding details) and the adversarial learn-
ing (for visually realistic generation). The overall objective
function for the encoder and decoder (G epe, Ggec) shown in
the figure is formulated as below,

min - Lenedec = M Lrec + /\2£clsg + Eadvga (D
ence,Gdec

while the objective function for the discriminator and the
attribute classifier (D, C) is formulated as below,

in L4 = A3l L 2
I[I)l}él dis,cls 3Lcis, + Ladvgs 2)

with A1, Ao and A3 are the hyperparameters for balancing
the losses. We trained the AttGAN in the PyTorch imple-
mentation with the following model hyperparameters com-
pared to the original implementation: learning rate of 0.002,
batch size of 32, number of epochs = 60; for the Genera-
tor: attribute loss weight = 10.0; reconstruction loss weight
= 100.0; for the Discriminator: gradient penalty weight =
10.0; attribute loss weight = 1.0 and using an Adam opti-
mizer. The results of the training are shown in Fig. 3 where
a realistic visualization of the SEM image appearance of
the material and subtle effect of the synthesis parameter
change is shown given the previously unseen image (from
the 20% of the dataset) for 0.01 % graphene additive rein-
forced PU foam. This can be further extended to demonstrate

SEM Image Dataset Size
50
50
50
50

#synthetic image
prediction for 0.025%

#real image
for 0.01%

#synthetic image
prediction for 0.05%
e

0 250 500 750 1000 1250 1500 1750 2000

Figure 3: Synthetic image generation of SEM foam mi-
crostructure based on varied additive percentages; scale
units in gm.

attribute/property-driven image generation process so as to
design materials with target optimal properties such as high
peak tensile modulus etc.

Conclusion

We demonstrated that state-of-the-art machine learning and
deep learning techniques can be leveraged to model and
optimize the design of graphene-reinforced polyurethane
foams. A deep-learning image regression technique is
used to predict mechanical properties of various graphene-
reinforced polyurethane foams (PU) based solely on scan-
ning electron microscopy (SEM) images with image regres-
sion B2 ~ 0.99. An image editing generative adversarial net-
work, AttGAN, in the PyTorch implementation was imple-
mented to generate realistic synthetic microstructure images
showing subtle effect of the varied synthesis parameter of
graphene additive % from 0.01% to 0.025% and 0.05%. This
allows domain scientists to visualize and understand how
changes in material attributes, synthesis/ processing condi-
tions impact the sample microstructure features which in
turn determine its properties and thus can further be opti-
mized. Further applications of Al coupled with multi-criteria
multi-objective property optimization, optimal design of ex-
periments and active learning as well as investigation of the
explainability of the models built will be subjects of future
research.
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