
The BACON system for equation discovery from scientific data: Reconciling
classical artificial intelligence with modern machine learning approaches

Jonah Miller 1, Soumya Banerjee 1

1University of Cambridge, UK
sb2333@cam.ac.uk

Abstract
BACON is a heuristic-based computational scientific discov-
ery system, which aims to find invariants in multivariable sys-
tems. We rebuilt BACON in a modern computing language,
and we improve the noise-resilience of BACON. We demon-
strate how such classical AI systems can be understandable,
yet powerful. We applied our framework to a number of ex-
emplar problems in physics and mathematics. Our BACON
also outperformed PySR - a modern method utilising sym-
bolic regression on a neural network - conclusively in specific
environments on small datasets.
We suggest that there is potential in these forgotten ap-
proaches that modern deep learning systems can learn from.
Integrative approaches that combine heuristic approaches like
BACON with modern deep learning can be very helpful. We
suggest integrating modern deep learning approaches and
large-language models with heuristic-based classical AI ap-
proaches as a way to analyse large scientific datasets.

Introduction
Discovering the numeric laws that shape experimental ob-
servations is a time-consuming endeavour filled with trial
and error. Attempts at this are seen as early as the 16th cen-
tury when astronomer Johannes Kepler deduced that plan-
etary motion was an ellipse only after years of studiously
trying to understand the observations of fellow astronomer
Tycho Brahe. In the current age of computers this task can be
deferred to programs which can spot patterns, relations and
invariants in data, whilst performing the task faster and more
accurately than any human. The initial program pioneering
this field was BACON (Langley 1977).

Fast-forward to the modern day, deep learning algorithms
form the recent research in this area. Classical AI techniques
like those used in BACON have been forgotten. Modern deep
neural networks (DNNs) lack the explainability that BACON
offers. Another issue is the time and computational com-
plexity taken to train DNNs is immense in comparison to
heuristic-based classical AI methods such as BACON.

Methods
The core functionality of BACON.1 is based on one heuris-
tic applied repeatedly. To find the relationship between two

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

variables X and Y , if X increases whilst Y decreases (or
vice versa), consider their product XY . If both increase or
decrease, then consider the divisor X

Y . Table 1 demonstrates
the path BACON.1 takes to uncover Kepler’s 3rd law for
synthetic variables D and P . Langley’s explanation of why
this works is that BACON.1 is a trend detector (Nordhausen
and Langley 1990). It systematically analyses and ranks the
trends found, which allows it to uncover further patterns
leading to the true relationship. The algorithms used to com-
pare two variables are referred to as the Space of Laws. Lan-
gley also introduced another solution to the Space of Laws
– BACON.6. It uses correlation coefficients to rank the most
accurate form of an equation, given that the general relation
(without coefficients) is already known.

Planet Distance (D) Period (P) D
P

D2

P
D2

P 2
D3

P 2

A 1.0 1.0 1.0 1.0 1.0 1.0
B 4.0 8.0 0.5 2.0 0.25 1.0
C 9.0 27.0 0.333 3.0 0.111 1.0

Table 1: An example of the BACON.1 algorithm discovering
Kepler’s 3rd law from a noiseless planetary system. The pro-
gram is acting on 3 different synthetic planets which obey
the same laws of motion (data from (Langley et al. 1987)).

BACON can also function with multiple variables and this
functionality was first show in BACON.3. It automatically
sorts the data into a tree with the branches between repre-
senting different variables, with the dependent variable as
the lowest layer. The program iterates through the layers in
the tree plugging them into BACON.1 to form a new re-
lationship for the dependent variable. A demonstration of
how this works is in Figure 3. BACON.5 was an advance on
BACON.3 considering symmetry in the tree it cherrypicks
branches to use, reducing the complexity of iteration. The
space of functions used to iterate through the tree is referred
to as the Space of Data.

The DNN used as comparison in this project is PySR
(Cranmer 2023). PySR uses symbolic regression to find in-
variants. Symbolic regression works by imagining the search
space as possible mathematical expressions. The expres-
sions are narrowed down to the most accurate and often
have a bound on complexity and simplicity in the final re-
sult. PySR is also a much more versatile and powerful pro-

gram with customisability and the ability to run in large and
complex search spaces where the only bound is the com-
putational power. As such, it can handle invariants such as
in differential equations and discontinuous environments.
BACON cannot compete. However there are downsides. As
it is trained on a deep neural network (Cranmer et al. 2020)
there is no interface or explainability giving a reason for its
outputs. This reduces the trustworthiness of the model.

The final product, BACON.7, uses BACON.1 as the
Space of Laws and various layer-based approaches to tra-
verse the Space of Data. These work by starting at the lower
level of the tree and recursing upward. The expressions
found at each layer are ranked with one chosen as truth, and
then symmetrically applied. The output is then averaged,
and a tree is formed. This is done until the tree has been
fully manoeuvred. A visualisation of this in Figure 3. Mul-
tiple novel approaches were used to select the expression at
each layer. Additional details regarding this are available in
the Appendix. The Appendix also details other experiments
such as a Monte Carlo Tree Search (MCTS) method overlaid
on the BACON framework to choose the correct expression.

Results
Criterion for success
Langley’s approach to testing prescribes that BACON can
find an invariant if one combination of the hyperparameters
inputted into the system allows the detection of the invari-
ant. A similar metric is used for determining if PySR can
find the equation; the correct form has to appear in its list
of found equations. For α and β unknown constants the cor-
rects forms to be found are:

VBACON =
M (αT + β)

P
, IBACON =

αTD2

(L+ β)
(1)

VBACON are BACON’s predictions for V when fed the noisy
dataset. VPySR is correspondingly used later for PySR’s
predictions.

The Ideal Gas Law
Figure 1 is a graph of the MSE differences between the
equations that BACON.7 and PySR predict from inputted
noisy data (V + n), against the true data (V) and the noisy
data. There’s a seemingly linear increase in the log of the
MSE found as noise increases in all aspects. On the noisy
data BACON.7 is less accurate than PySR. It implies that
PySR overfits on the dataset. This is verified when compar-
ing VPySR with V + n where its model is more accurate
than BACON.7. BACON.7 does a better job of deducing the
true V in a noisy environment. Moreover, it does this con-
sistently over all the noise percentages tested on. On this
dataset BACON.7 outperforms PySR by creating a model
that is an order of magnitude more accurate through its su-
perior ability to remove the noise. 1

Ohm’s Law
The results on Ohm’s laws are displayed in Figure 2. They
display similar trends for BACON.7. PySR could not find
the correct equation form apart from for 0% noise so instead

1A more detailed discussion analysing the results can be found
in the Appendix .

Figure 1: For V = M(T+273)
P and denoting the volume with

noise added as V + n, the graph demonstrates the MSE
between predicted models from BACON.7 and PySR with
V + n and V . The MSE with V + n is how well the model
predicts the data it is trained on (solid lines). The MSE with
V describes how it predicts the true data (dashed lines).
In each case the model is better at predicting the true data
with BACON.7 creating a model an order of magnitude
more accurate than PySR . We hypothesise this is due to
BACON.7’s averaging through the Space of Data inciden-
tally cancelling Gaussian noise, whereas PySR is trained to
overfit on the data as it has no prior knowledge of there be-
ing noise. The latter explains as well why PySR displays a
better model when compared with V + n than BACON.

the results from the best prediction PySR returns is shown.
PySR is consistently at least an order of magnitude worse in

Figure 2: The results for Ohm’s Law when using the same
methodology as the Ideal Gas Law in Figure 1. BACON.7
again is better at predicting the I than I + n. Here PySR
is not able to deduce the correct form of Ohm’s Law so the
results are taken from the best prediction it gives. In almost
each case PySR’s predictions are worse than BACON.7’s
against both the noisy and true data . The likely reason is
that the correct form of the equation cannot be inferred by
PySR from only 27 datapoints as PySRwas built to function
efficiently on larger, more complicated datasets. BACON.7
works best at this scale, where its strips out noise through
averaging.

accuracy, than BACON.7 on I . Also, the difference between
the noisy and noiseless forms for PySR is imperceptible.
BACON.7 finds the correct form and as before, improves
when run against the noiseless data. BACON.7 again pro-
duces a model that strips away the noise more accurately
than PySR. Moreover PySR cannot even deduce the correct

form of the equation.
Ramanujan birthday problem

We also applied our BACON.6 reconstruction to the Birth-
day Problem. This is demonstrated through the Birthday
Problem: in a year of n ≥ 1 days, what is the minimal num-
ber of people in a room such that the probability of at least
two sharing a birthday is over 50%. This is extrapolated to,
assuming each person enters the room sequentially, what is
the expected number of people to enter, for a birthday to first
be shared. Ramanujan discovered the answer is ⌊Q(n) + 1⌋
(Brink 2012), where Q(n) =

∑n
k=1

n!
(n−k)! nk

=
√

πn
2 − 1

3 + 1
12

√
π
2n − 4

135n +O
(

1

n
3
2

)
≈ 1.253

√
n−0.333+ 0.104√

n
− 0.030

n When given an appropri-
ate answer form without coefficients to BACON.62 with dat-
apoints for n ∈ {2, 3, 4, 5, 6, 7, 8, 9} and associated Q(n), it
discovers that:

QBACON.6 = 1.252
√
n− 0.326 +

0.086√
n

− 0.012

n
(3)

The MSE between QBACON.6 and the real Q(n) is
5.4e− 9. PySR comparatively struggles. Given the same
data, and the binary operators from Figure 15 expanded to
include powers, the best result it finds is:

QPySR = n0.557 +
0.324

5.28
n

n
(4)

This has MSE 3.8e− 5 to the true form – 4 orders of magni-
tude worse than BACON.6. This further lends credibility to
the idea seen throughout that PySR does not function well
on few datapoints. This also demonstrates the strength of
BACON’s heuristic mechanisms to be incredibly accurate in
an environment where the state-of-the-art performs poorly.

Summary and conclusions
For smaller datasets, BACON consistently thrives whilst
PySR struggles. BACON is made for this environment,
whereas PySR is made to overfit on complicated, large
datasets whilst applying their biases towards simplicity.
When approaching this threshold, it is PySR that thrives
whilst BACON suffers (see experiments in the Appendix on
Black’s Law). Here is an - albeit niche - situation where clas-
sical methods outperform modern techniques. It amplifies
the need to reproduce, study and understand these seemingly
anachronistic mechanisms and see what lessons can be taken
going forward.

We applied this framework to a number of exemplar prob-
lems in physics and mathematics. Our results suggest that
BACON is good at reducing noise and inferring the correct
equation in smaller datasets, whereas PySR is significantly
more successful on larger, noisier, datasets.

The broad goal of this research project was to combine
modern approaches to AI with the classical. Both have

2The form is:

nQ(n) = αn
3
2 + βn+ γn

1
2 (2)

strengths which, when efficiently combined, could lead to
refined systems, able to analyse large datasets effectively.
We suggest that in the future, combining large-language
models with classical AI approaches such as those presented
here may help solve more complex scientific and mathemat-
ical problems.

References

Brink, D. 2012. A (probably) exact solution to the Birthday
Problem. In The Ramanujan Journal.

Conroy, M. 2012. Determining Quadratic Func-
tions. https://sites.math.washington.edu/∼conroy/m120-
general/quadraticFunctionAlgebra.pdf.

Cranmer, M. 2023. Interpretable Machine Learning
for Science with PySR and SymbolicRegression.jl. In
arXiv:2305.01582.

Cranmer, M.; Sanchez-Gonzalez, A.; Battaglia, P.; Xu, R.;
Cranmer, K.; Spergel, D.; and Ho, S. 2020. Discovering
symbolic models from deep learning with inductive biases.
In Proceedings of the 34th International Conference on Neu-
ral Information Processing Systems.

Falkenhainer, B.; and Michalski, R. 1986. Integrating Quan-
titative and Qualitative Discovery: The ABACUS System. In
Machine Learning.

Ha, S.; and Jeong, H. 2021. Unraveling hidden interactions
in complex systems with deep learning. In Scientific Re-
ports.

Koehn, B.; and Zytkow, J. 1986. Experimeting and theoriz-
ing in theory formation. In Proceedings of the International
Symposium on Methodologies for Intelligent Systems.

Langley, P. 1977. BACON: A production system that discov-
ers empirical laws. In Proceedings of the Fifth International
Joint Conference on Artificial Intelligence.

Langley, P.; Simon, H.; and Bradshaw, G. 1987. Heuristics
for empirical discovery. In L. Bolc (Ed.), Computational
models of learning.

Langley, P.; Simon, H.; Bradshaw, G.; and Zytkow, J. 1987.
Scientific Discovery: Computational Explorations of the
Creative Process.

Nordhausen, B.; and Langley, P. 1990. A robust approach to
numeric discovery. In Proceedings of the Seventh Interna-
tional Conference on Machine Learning.

Washio, T.; and Motoda, H. 1997. Discovering admissable
models of complex systems based on scale types and identity
constraints. In Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence.

Appendix / supplemental material

Figure 3: Consider the Ideal Gas Law V = M(T+273)
P . It is

placed in a noiseless environment where V is a dependent
variable, P,M and T are independent variables each con-
signed to 3 specific values - ultimately giving 27 values for
V . At the lowest level it runs the simple BACON.1 heuris-
tic between P and V , here the sets share the same value in
M and T . For example, the first set has T = 10, M = 1
and are the 3 points defined by P = 1000, V = 0.28,
P = 2000, V = 0.14 and P = 3000, V = 0.09. All 9
sets in this layer determine invariant PV . BACON.3 detects
the agreement, then forms a new tree with PV as the depen-
dent variable. It then proceeds to run a new heuristic check
between PV and T . Here all 3 sets determine PV − aT
is invariant for new dependent variable a. As both a and
PV − aT can be a function of M , BACON.3 forms two
new trees at this level. The last BACON.1 heuristic check
finds a = M , PV − aT = 273M . These are collated to
form the Ideal Gas Law.

Design, Algorithmic Details and Implementation
This section will outline the algorithm and mechanisms im-
plemented to reproduce BACON, including adaptations to
make it significantly more noise-resilient. Then we will dis-
cuss key features of the implementation to emphasise under-
standability, especially compared to PySR.

BACON.1
BACON.1 is an algorithm that deciphers the relationship be-
tween two symbols X and Y with associated datasets d(X)
and d(Y) and no prior knowledge of how they interact. It
is an iterative process, where the two symbols X and Y are
steadily combined to attain the correct form. This is demon-
strated in Table 1 for symbols D and P . We built BACON.1
due to it being the simplistic backbone of BACON.

It consists of two components. The heuristic-layer deter-
mines the next step in the process from symbols X and Y .
It outputs either a function f(X,Y) with associated dataset

f(d(X), d(Y)), or null if X and Y don’t share a valid rela-
tion. The managing-layer lies on top of the heuristic-layer
and chooses which variables and hyperparameters to pass to
it. It controls the complexity and scope of relationships that
can be found.

Heuristic-layer
Overview
The heuristic-layer is handed two symbols, X and Y , re-
spective datasets d(X) and d(Y) and hyperparameters δ, ϵ
and cval. The order of its run is in flowchart Figure 4.

Figure 4: The full algorithm for the heuristic-layer. When
the data is returned via f(d(X), d(Y)) the function is acted
on element-wise. Also, the state return for a linear relation-
ship, includes a list of the parameters of the relationship,
such as the gradient and y-intercept. The consistency check
determines if d(Y) is constant, and the linear proportion-
ality check determines if the data is related linearly. The
novel relation check determines if a new symbols has been
found. These checks implicitly use the hyperparameters the
heuristic-layer is initialised with, where appropriate.

The logic behind the consistency check, linear proportion-
ality check and novel relation check are described below.

Consistency check
For MY = mean (d(Y)). If for each value in d(Y):

MY (1− δ) < value < MY (1 + δ) (5)

then Y is defined as constant. Increasing δ increases the
frequency in which relationships are found. To deal with
negative values, the absolute value of the datasets are used
throughout. A practical example is explained through Figure
5.

Figure 5: For symbol Y with d(Y) = {0.80, 0.95, 1.25} so
MY = 1, the consistency rule holds for the green dotted
boundaries defined by δ = 0.30, but not for δ = 0.15. If the
consistently rule holds, the quantity is defined to be invariant
- here in the case of δ = 0.30, Y would be defined as invariant
with value of MY .

Linear proportionality check
X and Y are compared via the correlation coefficient3. If
|r| ∼ 1 then X and Y are linearly proportional. r > 0
demonstrates that the sets increase or decrease together
and they should be divided, r < 0 displays one increases
whilst the other decreases and their product should be taken.
Graphically this is shown by Figure 6.

Figure 6: A demonstration of the different values of r for
ordered datasets X = {x1, x2, x3} and Y = {y1, y2, y3}.
The pink dotted line is the line of best fit through the points.
If |r| ∼ 1, then X and Y are linearly proportional. A positive
r implies they increase together, a negative r shows that one
increases whilst the other decreases.

A linear relation is deduced if 1 − |r| < ϵ. Increas-
ing ϵ increases the frequency linear relationships are ascer-
tained. If a linear relationship is determined, a check is made
that the y-intercept is non-zero. This is as X + mY = 0
is equivalent to X

Y = −m. The former means variables
X + mY , and m have to be stored by the system whilst
the latter only requires X

Y meaning its quicker and simpler
to be handled. The threshold is determined by variable cvar.
For approximated linear relationship d(Y) = md(X) + c,
if | c

mean(d(Y)) | < cvar then the y-intercept is classified as
zero.

Novel relation
The iteration process discovers new forms. To make sure
it doesn’t recover an already found symbol, the output of
the product/division step must be checked. For example, if
the heuristic-layer was passed symbols X and XY by the
managing-layer, and XY does not pass the consistency or
linear proportionality check but has r > 0. The new sym-
bol would be XY

X = Y . As Y has already been seen this is
classified as an invalid symbol, and the heuristic-layer would
return state null.

Managing-layer
A visualisation of the managing-layer and its interaction
with the heuristic-layer is in Figure 7. The goal is to uncover
the most accurate relation between X and Y , whilst running
the heuristic-layer the minimal amount of times. There are
two key variables throughout. j is the iteration counter. It

3For ordered datasets d(X) = {xi : i ∈ 1, ..., n} and d(Y) =
{yi : i ∈ 1, } with respective means MX and MY , the correlation
coefficient r is defined by:

r =

∑n

i=1
(xi −MX) (yi −MY)√∑n

i=1
(xi −MX)2

√∑n

i=1
(yi −MY)2

(6)

.

Figure 7: Flowchart describing the managing-layer of the
BACON.1 algorithm. The heuristic layer is run whenever
HL is called. It implicitly inputs the δ, ϵ and cval hyper-
parameters as well as the datasets of the symbols being in-
putted.

controls the complexity of the allowed equations. Variables
sϵ and sδ are the scale factor ϵ and δ are multiplied by, if no
equation has been found once the iteration counter maxes
out or no relationship is found between X and Y .

Order of events
It runs a sequential search where the new relationship - Z
in Figure 7 - is compared first to variable X then to Y -
even if X finds a relation. This is done to allow X and Y to
be tested as a linear relationship with each found variable,
whilst not searching exhaustively, in the aim of running the
heuristic-layer as little as possible. My method works under
an assumption described through the following example. If
the true relation to find is X3

Y , and the heuristic-layer run of
X and X2

Y has outputted this symbol. By the order above, the
heuristic-layer between X2

Y and Y now runs. My assump-
tion is that the relationship found is a product, which is in-
valid as X2 is an invalid constant as it would have already be
found by X being constant. This allows the next run of the
heuristic-layer to occur between X3

Y and X confirming X3

Y
as the invariant. We ar yet to find a counter-example here.

Iteration Counter
j increments every-time the heuristic-layer returns a value.
This adds a complexity cap to the relationships found. This
is demonstrated in Figure 8. Every new symbol is of the form
XnY m for |n|+ |m| ≤ j + 1 and n,m ∈ Z. Each of these
symbols can be in a linear relationship with X and Y .

Scale Factors
The scale factors cause auto-increasing ϵ and δ if the
managing-layer concludes without finding an invariant. In
noisy environments the hyperparameters for error tolerance
needed vary between layers in the tree. Allowing the system
to auto-update itself means a relationship will inevitably be
found for every set. These are governed by sϵ and sδ . The
updated ϵ and δ get multiplied by this scale factor if the
managing-layer is rerun. Tests were done with incremental
rather than multiplicative scale factors. On noisy datasets,
the ϵ and δ needed at the final layer of the tree, when
only 2 variables remain, are experimentally orders of magni-
tude larger than earlier layers. The multiplicative factor gets
to these magnitudes quicker than an incremental approach.

Figure 8: All 10 possible relations for a BACON.1 run
capped at j = 4. Note this is the minimum required to find
Kepler’s Law.

Larger sδ will increase the programs tendency to find pro-
duct/division relations, likewise for sϵ and linear relations.

Strengths of BACON.1
BACON.1 is fast. Consisting of only simple checks between
two sets of 3 datapoints allows a run of the managing-layer
BACON.1 to take ∼ 0.03 seconds. On noisier datasets, re-
runs of the managing-layer are more likely. Due to the speed
of BACON.1 multiple reruns can occur without a large time
deficit. Moreover, reducing this speed was the reasoning be-
hind certain design decisions such as the complexity counter
and the order of events in the managing-layer.

The alternative BACON.6, discussed in section , is the
other method Langley devised of a similar task and it sac-
rifices speed for accuracy. BACON.1 is about 4× faster for
a single run whilst not requiring prior knowledge of the re-
lationship between the symbols which BACON.6 does. It
allows BACON.1 to work in more general spaces.

This combination makes BACON.1 versatile and adapt-
able to different datasets no matter the noise. It thrives under
modern computing which runs its algorithms quickly.

Weaknesses of BACON.1
BACON.1 needs at least 3 datapoints to infer any relation-
ship. With only two datapoints, multiple relationships can
be formed that fit the data equally well. For example if
X = {2, 3} and Y = {4, 9}, relationships Y = X2

and Y = 5X − 6 are both valid, though a third data-
point would distinguish between these - or give another re-
lation. This tautological nature is an essential limitation of
BACON with no fix apart from gathering more data. Fur-
thermore, this reasoning is why BACON can’t deal with rela-
tions that are sums of three terms ie. f(X,Y)+ag(X,Y)+
bh(X,Y) = constant, for functions f, g, h. A quadratic
function is uniquely determined by 3 points (Conroy 2012),
however terms of higher powers may hold the same relation.
For example, points X = {1, 2, 3}, Y = {1, 8, 27} satisfy
both Y = X3 and Y = 6X2 − 11X + 6. To distinguish, an
additional datapoint is needed.

The managing-layer only compares each term found in
Figure 8 with X and Y to save time. This limits the relation-

ships found. For instance, it couldn’t find the linear relation-
ship X2Y 3 − aXY . This is changeable for a computational
complexity and time trade-off. For the datasets used in this
project it is not a necessary change.

Relation to Langley’s BACON.1
Heuristic-layer
The heuristic-layer is almost identical to Langley’s. Both
the consistency and linear proportionality tests are in Lang-
ley’s BACON.1. However, we add the hyperparameter cval.
This was done experimentally when we were testing on nois-
ier data, and we discovered linear relationships were being
found spuriously. Consider Ohm’s Law (details in subsec-
tion), the first layer requires the relationship IL − aI to be
found. Instead, I − aL appeared consistently in noisy data
with few instances of IL − aI . Reducing ϵ stopped the few
instances IL − aI appearing which instead formed relation
IL. However, increasing cval to 3, stopped I−aL appearing
at all whilst not affecting IL− aI .

Managing-layer
Langley doesn’t explicitly describe his managing-layer, but
must have one in order for his heuristic-layer to function. He
also makes no mention to an iteration counter or the scale
increases for δ and ϵ. His program only terminated with an
explicit stop command, or when a relationship was found.
When he dealt with noiseless data this wasn’t an issue as a
relationship is almost always found. Our method means we
can successfully deal with noisy data, which needs different
hyperparameters at different layers in the tree. This was the
most crucial upgrade to BACON.1 to allow it to perform
well on noisy data.

BACON.6
BACON.6 was the last iteration in the BACON family. It
was described by Langley as a “hill-climbing method for
dealing with noise” (Langley, Simon, and Bradshaw 1987).
BACON.6 was implemented due to Langley’s belief in its
noise-handling. In addition, it is the only understandable
classical algorithm we’ve found that is adaptable to find in-
variants that contain functions that are trigonometric or ex-
ponential.

The difference with BACON.1 is that BACON.6 requires
prior knowledge about the type of relationship the two sym-
bols share. The algorithm is smaller than BACON.1 due to
this prior knowledge.

Method
Given symbols X and Y with datasets d(X) and d(Y) and
a basic understanding of their relationship, for example4,
Y = αX2 + βX + γ. BACON.6 iterates through a set of
possible values for α and β (γ – as a constant – is ignored
at this stage as it is combined with another constant after the
algorithm is done), saving those with the greatest correla-
tion coefficient. The hyperparameters are an initial N which
can be any positive number, an nthreshold which is set to 2,

4The RHS of the example can contain any type of function such
as trigonometric or exponential or even those that contain Y . It is
set as a polynomial here for simplicity.

and a p which determines how many iterations the process
performs. It is as follows:
1. Initialise 9 instances of αX2 + βX with α and β taking

values of all 9 possible pairs ∈ {−N, 0, N}. These are
(−NX2 −NX), (−NX2), (−NX2 +NX), ...

2. Calculate the correlation coefficient of d(Y) and all 9
combinations above with αd(X)2+βd(X). Retain the α
and β corresponding to the greatest nthreshold of them.
This measures which combinations fits the data best.

3. Initialise 9 instances of αX2 + βX with α and β tak-
ing values of all 9 possible pairs ∈ {−N

2 , 0,
N
2 }. Add

the retained α and β to each pair, creating 18 combina-
tions each an addition of a retained expression and a new
combination.

4. Calculate the correlation coefficient of d(Y) and all
of these 18 combinations as before. Retain the best
nthreshold of them.

5. Step (3) and (4) are repeated, each time halving the N
that the new combinations instantiate from. The program
terminates when N < 1

2p . The output is the α and β
which gives the greatest correlation coefficient.

We now have a linear relation between Y and αX2+βX .
polyfit from NumPy is used to perform linear regression
which gives the optimal gradient m and y-intercept c to fi-
nalise the exact relationship. Including additional variable γ
from earlier, would increase the algorithm time unnecessar-
ily as it still would have combined with c at this stage.

Langley never incorporated BACON.6 in the wider
BACON search tree with BACON.3 or BACON.5. He only
detailed a small number of instances of BACON.6 solving
examples like this. His main example was the less convo-
luted Y = 3X2 + 2X + 1. Hence, the fact our build of
BACON.6 can solve the comparatively complicated birth-
day problem5 displays a faithful reconstruction of Langley’s
work. Moreover, we have implemented BACON.6 into the
search tree via using a general form for BACON.6 to solve
on - something Langley never did. For coefficients α, β, γ
and symbols X , Y the form is:

Y = αX +
β

γ +X
(7)

However, it ultimately wasn’t efficient for reasons detailed
in subsection .

Weaknesses of BACON.6
Adding more variables, and increasing the generality of the
form comes at an expensive time and computational com-
plexity trade-off. Recall in the method 9 combinations of
α and β are generated each step. This extrapolates to 3n

combinations being formed for n the number of variables.
Completing the correlation calculations then takes exponen-
tially longer with each additional variable, as there is O(3n)
computational complexity. 3 variables was found to be the

5We did confirm this reconstruction could solve Y = 3X2 +
2X+1. However, as this is also solved by PySR it doesn’t demon-
strate Classical AI outperforming a DNN like the birthday problem
does.

maximum for BACON.6 to solve in good-time. Even then it
took 4× longer than BACON.1. This makes BACON too re-
strictive in what it can solve. For example, it couldn’t solve
Ohm’s Law as it involves a squared term for D which corre-
sponds to a square for Y in equation 7.

The reason for having to use a generalised form is symp-
tomatic of the true issue. Having to input a predicted form
of the equation goes against the premise of BACON infer-
ring everything from the data. The user often will have no
knowledge of the data they’re using rather just a dataset.

Another issue is that Langley’s claim that BACON.6 is
especially adept at handling noise doesn’t seem true. For ex-
ample, even at 0.5% relative noise, the found equation from
the birthday problem distorts to:

QBACON.6 = 0.968
√
n+ 1.307− 2.904√

n
+

1.732

n
(8)

A form dissimilar to equation 3, with an MSE of 0.002 to the
noiseless Q - 7 orders of magnitude worse. Results shown in
subsection tended to only get a single order of magnitude
worse with every 0.5% noise added to the dataset. This is
then anomalous in how poor the performance is. We sus-
pect this is so because BACON.6 overfits to the noisy data
through the use of α and β coefficients being too precise.

In all, BACON.6 is slower and limited in the forms it can
find compared to BACON.1. It has strengths in noiseless en-
vironments but can’t adapt to noise well enough to be used
in our main model BACON.7 (in subsection). Langley’s
other methods didn’t handle noise well, so with perspective
to those - and the fact a results is always given (via the coeffi-
cients), this may have given him cause to praise BACON.6’s
error tolerance.

Relation to Langley’s BACON.6
The program was implemented exactly as described in (Lan-
gley, Simon, and Bradshaw 1987) with the addition of the
parameter p. Langley used a fixed threshold to stop the iter-
ations.

The Space of Data
Langley designed both BACON.3 and BACON.5 as ways
to traverse a multivariable dataset. Both were flawed
when dealing with noisy datasets. As such, we’ve de-
signed our own novel methodology to explore the space.
It uses BACON.3’s idea of traversing layer-by-layer, and
BACON.5’s idea of symmetry.

This section will describe how we have approached this
problem, our solution and comparisons with Langley’s ver-
sions as well as why they are flawed. It also discusses why
BACON.5 may be the best method on large datasets.

Method
At each layer in the tree, a 3-step process is followed:

1. Check if the layer is sufficiently constant. If it is, termi-
nate the tree with the symbol representing the layer. At
the last layer, this check is not run.

2. If it is not sufficiently constant, calculate the expres-
sion for each set in the layer by inputting the set into
BACON.1 or BACON.6. Use a layer-method to deter-
mine which expressions is chosen.

3. Average the layer to form a new layer. This is crucial in
BACON’s ability to determine the true equation in noisy
environments as displayed in subsection .

Sufficiently constant
Similar to δ earlier, parameter ∆ is introduced to prune a
tree if the bottom layer is sufficiently constant. If the bot-
tom layer has symbol Y and datapoints d(Y). For MY =
mean(d(Y)), if (1 − ∆) proportion of the values6 in d (Y)
satisfy

MY (1−∆) < value < MY (1 + ∆) (9)

then the invariant is determined as Y = MY . The compar-
ison between Y and other variables is skipped. Through-
out the remainder of the project ∆ = 0.01 but is user-
configurable. It saves time. For example, in Ohm’s Law, the
invariant IL− aI is discovered in the first layer. A new tree
with a uses this test to determine a = 3 without comparing
to other variables T and D.

Layer-methods
We have devised various methods to pick an expression from
the list of possible expressions. It was one of the main novel
contributions to improve BACON. They are listed in Table 2
with their name, an explanation and the time taken to operate
on the first layer of Black’s Law with 0.5% noise. This ex-
ample has 81 datapoints and 27 sets leading to 2 expressions
which have to be ranked.

6Eg. if ∆ = 0.02, then 98% of the values in d (Y) must sat-
isfy the ∆ relationship above. This allows it to deal with extremely
noisy points due to variance in sampling noise from a Gaussian dis-
tribution. Without this, the test rarely passes due to these outliers.

Method Time Description
bacon.3 3e− 6s Requires the sets to all find

the same expression. If this
does not happen the program
terminates.

popular 7e− 6s Selects the expression which
appears most frequently -
if there is a tie, defer to
min mse.

min mse 0.37s Apply an expression to a
set to gain 3 datapoints.
Normalise the datapoints.
Take the mean squared er-
ror (MSE) between the nor-
malised datapoints and their
meanFor found variable X
with dataset {xi : i ∈
1, ..., n} and mean MX , the
MSE is defined as:

MSE =
1

n

n∑
i=1

(xi −MX)
2

(10)
. Sum over each set in the
layer to get a total MSE for
the expression. Do this for
all expressions, the expres-
sion with the lowest total
MSE fits the dataset best and
is selected.

gp ranking 0.85s Apply an expression to
all the sets. Gaussian Pro-
cess (GP) Regression is
performed on this new
dataset to find the optimal
GP that fits the data. The
GP is sampled, and the
signal-noise-ratio of the
sample calculated. This
done for each expression.
The highest score implies
the least noise, and best fit
of the expression to the data.
This expression is selected.

user input N/A The user selects the expres-
sion they’d like to use from
those found by the sets.
Used for debugging.

Table 2: A table displaying the custom layer-methods we
devised as well as and explanation of how they select an
expression. The time they each take to rank a layer with 81
datapoints and 2 found expressions is also given.

bacon.3 and popular are fastest as a dataset doesn’t
have to be reconstructed with the found expression applied
to the last layer. This has to happen for min mse and
gp ranking. min mse takes less than half the time as

gp ranking due to the complexity in performing GP
regression. They also gave near identical results in choosing
the correct expression. It displays that black-box techniques
aren’t necessarily better than Classical techniques espe-
cially on simple tasks like calculating MSEs. popular and
min mse were used throughout the results in subsection .

Averaging
From Figure 3 we see the tree gets smaller at each iteration
of the tree. Once an expression has been determined via the
layer-method it is applied to each set. Then in the set, there
are 3 datapoints from the expression which are averaged.
This becomes a new datapoint, reducing the overall number
of datapoints by 3. For example, the first set in the first
layer in Figure 3, has T = 10, M = 1 and are the 3 points
defined by (P = 1000, V = 0.28), (P = 2000, V = 0.14)
and (P = 3000, V = 0.09). PV is determined and the
datapoints found are PV = 280, 280, 2707, this would be
averaged to PV = 277. Then the new tree which has PV
at the bottom layer would have PV = 277 for the datapoint
with T = 10,M = 1. We hypothesise, that this averaging
places a crucial role in BACON stripping away noise. This is
elaborated on in subsection .

Why are multiple methods needed?
Consider the Ideal Gas Law at 3% relative noise with
the hyperparameters found in args/ideal/ideal30.json. A run
through the tree with the popular layer selected looks like:
1. In the first layer the sufficiently constant check is not

passed by V . Instead expressions are found, and the 9
sets determine: PV invariant 7 times and PV 2−aV and
V − aP are both found once. PV is carried forwards by
popular layer and applied universally to the dataframe.
The sets are averaged reducing the dataframe size.

2. The sufficiently constant check is not passed by PV .
Then, between PV and T , the 3 sets find the relation
PV , PV − aT and T

PV − aT . As these all appear once,
we defer to the MSE calculations. These are respectively
0.0043, 0.0027, 0.0032 causing PV − aT to be used.
Thus this alternative MSE mechanism is needed to de-
cide. The sets then average once again.

3. As the tree is on the final layer, the sufficiently con-
stant test is not run. Between PV − aT and M the sin-
gle relationship found is M

PV−aT = 0.0036. Between
a and M the relation is M

a = 1.04, altogether yielding
V = M(0.96T+273.57)

P which best fits this noisy data.
In general min mse works best with little amounts of noise
and as a tiebreaker for popular. Once the data gets noisier
min mse ends up getting tricked. In the example above at
the first layer, the MSE for PV is 0.006, PV 2−aV is 0.004
and V − aP is 0.036. PV 2 − aV would have got picked,
which would stop the true equation being formed. This hap-
pens as PV 2−aV = constPV = a+ const

V . For V signifi-
cantly larger than const, the RHS is approximately constant.

7In Figure 3 the dataset noiseless, and so with the full decimal
expansion of V , PV would be 283. However, this is a demonstra-
tion of what happens when there’s noise.

This is another demonstration of the need for cval from sub-
section . Increasing it to 0.1 from 0.02 stops PV 2 − aV
becoming a valid invariant and thus retains the ability to use
the min mse method.

Weaknesses of layer-methods
Both popular and min mse have their flaws. Experimen-
tally, it is easy (on multiple repeats) to find a set of hy-
perparameters where the real equation can be determined
if the correct invariants are chosen at each stage (done by
user input). However, once the data becomes noisier, it
is often the case it is neither the most popular equation, nor
satisfying min mse. In addition, with this noise, different
layers are solvable by different layer-method which so far
has been too difficult to implement in a generalised manner.

The other issue is that the order of the layers matter. Con-
sider Black’s law again:

Tf =
M1T1

M1 +M2
+

M2T2

M1 +M2
(11)

Initially between Tf and T2 there is invariant Tf − aT2. If
instead the first layer was between Tf and M1 the equation
rearranges to TfM1 + TfM2 −M1T1 = M2T2, leading to
invariant TfM1−aM1−bTf which isn’t solvable for reasons
explained in subsection . However, a brute-force approach
could be generated to keep varying the input order until a
form that is solvable is entered. This is a potential extension
to BACON, and similar to what Fahrenheit – mentioned
later in subsection – performed.

Relation to Langley’s BACON.3 and BACON.5
Langley’s BACON.3 required ubiquity along the expres-
sions found by the sets. One of our layer-methods works
along this premise, named bacon.3. With noise, the sets
don’t always agree, and with more noise it becomes more
likely they don’t agree. This limits its use.
BACON.5 introduced symmetry. At each level only a sin-

gle set is needed to form an expression which can then be
applied to the sets in the layer by symmetry as they all share
the same relation. This directly inspired me to gain all the
expressions, with the best (determined by the layer-method)
applied to the rest of the sets in the layer.

Langley’s method required picking the datapoints that are
used to produce the sets before any calculations were made.
There are many ways to do this. For example, Figure 9
demonstrates possible choices for a dataset with 3 variables
and 9 datapoints assuming that the set is the first 3 datapoints
from the bottom left. There are 3 possible configurations for
this initial set, giving a total of 27 possible index choices.

Extrapolating for an n + 1 variable system, there are
3n(n−2) ways to do this8. This is an exponentially increas-

8Extrapolating for an n+1 variable system, with n independent
variables, 1 dependent variable, and calling the total choices c(n).
From the first independent variable down, there are 3 possible val-
ues of this variable that the initial set can take. In the branches of
this variable coinciding with the 2 values not chosen there is 3n−2

possible options as any index can be picked. The equation then be-
comes c(n) = 3× 3n−2 × 3n−2 × c(n− 1). Noting c(2) = 1 and
iterating this process, c(n) = 3n−2+2(n−2+...+1) = 3n(n−2).

Figure 9: Possible ways to pick datapoints in BACON.5
when the set needed is in the bottom left. The chosen dat-
apoints are in black. As the initial set could also be from the
centre or right branch, there’s a total of 27 possible ways to
choose.

ing choice. If made correctly, it improves the likelihood of
BACON.5 leading to the correct expressions. This method
also reduces the datapoints needed. Now the program only
needs to consider 3 + 2(n − 2) = 2n − 1 datapoints.
This is significant in very large datasets as it requires small
amounts of perfect data. BACON also performs better in
smaller datasets and being able to create this environment
is desired. If an optimal method could be discovered for
picking branches, BACON.5 would be effective on large
datasets.

We could not find a method for this that works quickly
and efficiently. Langley made this in his noiseless environ-
ment where datapoint-picking was arbitrary. With noise this
is not the case. Multiple datapoints are significantly worse
due to random Gaussian noise that picking them at any stage
is tantamount to failure.

We used a Gaussian Process (GP). We rank each datapoint
by fitting a GP to the dataset with that datapoint removed,
then calculating the signal-noise-ratio of a sample from that
GP. The datapoints corresponding to the GPs with the largest
signal-to-noise ratio are noisiest, and should not be picked.
Doing this for all 3n datapoints is time-consuming, com-
putationally complex and goes against the purely heuristic-
principles of BACON. However, this does show a situation
where Classical AI and modern black-box techniques can
be combined.

BACON.7
Overview
BACON.7 is the name we have given for our version of
BACON. It uses our layer-method design as described in sec-
tion . It uses BACON.1 as the Space of Laws.

At the Space of Laws level, BACON.6 with a gen-
eral equation form and an implementation of PySR were
tested. The latter struggled consistently as 3 datapoints is not
enough for it to function efficiently - a feature seen repeat-
ably through the results in subsection . BACON.6 tends to
overfit on noise, as well as taking too long when used with a
general form, both discussed in subsection . However, there
is a question: if BACON.1 can generate a relationship, can
BACON.6 improve the found constants in said relationship?
This is tested in subsection .

The project was coded with an eye on understandability
and clarity. The system had to be straightforward and repro-
ducible. Details on how this was done are given in Section
.

Combining BACON.1 and BACON.6
This is tested on the Ideal Gas Law. On the conclusion of the
tree-search, and as elaborated on in subsection , the equa-
tions found are:

M

a
= 1,

M

PV − aT
=

1

273
(12)

Reworking the RHS constants as variables α and β respec-
tively, the following is gained:

V =
M

P

(
T

α
+

1

β

)
(13)

This is the ideal form to input into BACON.6. Evaluating on
the Ideal Gas Law with 3% noise without BACON.6 war-
rants the form

VBACON.7 =
M

P
(0.96T + 273.57) (14)

with MSE of 1.6e− 4 to V + n (the noisy data, detailed in
section). Comparatively, BACON.6 integration gives form

VBACON.7 =
M

P
(1.02T + 280.18) (15)

with MSE of 1.4e− 4 to V + n. When comparing in-
stead with noiseless V , the MSE difference now becomes
3.4e-7 using BACON.1 but 1.2e-4 with BACON.6. Hence,
BACON.1 is four orders of magnitude more accurate with-
out BACON.6. As this is a measure against the objective
true function, BACON.1 is unequivocally better at stripping
noise from the equation, whereas BACON.6 overfits on the
noisy data. This is a trend similarly seen with PySR in the
results, subsection .

Weaknesses of BACON.7
BACON.7 is unable to work at variables that scale orders of
magnitude apart. For example, the SIR model with variables
that vary at scales of 10−8, 1 and 106 could not be used in
BACON. This is because it causes the hyperparameters in-
putted into BACON.1 to vary between layers preventing the
correct expressions to be found. For instance, the first layer
may need cval = 1, but the next needs cval = 1e− 6. A fu-
ture improvement to BACON involves devising a mechanism
to vary hyperparameters between layers smartly.

Implementation
Making the program run on a system had to be straightfor-
ward and reproducible, whilst an option for a verbose mode
had to be consistently available. The former was accom-
plished via the ability to write argument files dealing with
all variables. An example file, looks like figure 10:

The command to run on a dataset - such as the Ideal Gas
Law - with 3% noise is:

python3 main.py --dataset ideal --noise 0.03 --args args/ideal/ideal30.json

The output of the above - our recommendations for the
minimalist approach to understand the order of BACON’s im-
plementation - can be seen in Figure 11.

Comparatively, the output to a run of PySR - for the same
dataset and noise - is shown in Figure 12. It demonstrates a

1 // args/ideal/ideal30.json
2
3 {
4 "layer_method": "min_mse",
5 "layer_args": {"verbose": true},
6
7 "laws_method": "bacon.1",
8 "laws_args": {"epsilon": 0.025,
9 "delta": 0.04,

10 "c_val": 0.5,
11 "epsilon_scale": 1.05,
12 "delta_scale": 1.2,
13 "verbose": false},
14
15 "data_space_args": {"Delta": 0.01,
16 "verbose": false

}
17 }

Figure 10: Typical argument file for this project. This can
be found in the codebase at args/ideal/ideal30.json, as it was
used for the Ideal Gas Law with 3% noise. The simplistic na-
ture of this implementation is key for understandibility and
reproducability.

1 Ranking layer: Expressions found with
associated popularity are:

2 {P*V: 9}
3 Ranking layer: Proceeding with P*V
4 Ranking layer: Expressions found with

associated popularity are:
5 {P*V: 2, P*V - T*a: 1}
6 Ranking layer: Iteratively ranking the

found expressions:
7 P*V has average mse

0.004335870878343652
8 P*V - T*a has average mse

0.002732361384888301
9 Ranking layer: Proceeding with P*V - T*a

10 ˜˜˜
11 The constant equations found are:
12 1.03911145217940 = M/a
13 0.00365531074561991 = M/(P*V - T*a)
14 ˜˜˜
15 Final form is V = 273.574552094724*M

*(0.00351772732169719*T + 1.0)/P
16 with loss 0.00015958807925621198.
17 ˜˜˜
18 Program took 1.65s!

Figure 11: A potential output when running an instance of
our BACON. This gives the best trade-off of demonstrating
the process of BACON whilst remaining succinct. More de-
tails can be outputted (via changing the args file) to detail
the logic behind each instance of the Space of Laws, and the
overall Space of Data - rather than just each layer.

list of possible equations PySR builds on to present its final
output. There’s no explanation of how it accomplishes this.
In addition, the outputs are not repeatable further reducing
understandability.

1 Hall of Fame:
2 --

3 Complexity Loss Score Equation
4 1 5.064e-01 1.594e+01 y =

-0.31842
5 3 2.523e-02 1.500e+00 y =

581.48/P
6 5 2.145e-04 2.384e+00 y = M

*(290.29/P)
7 7 4.902e-05 7.381e-01 y =

((270.29 + T)/P)*M
8 9 4.702e-05 2.087e-02 y =

((307.99 - (289.71/T))/P)*M
9 11 4.645e-05 6.064e-03 y =

((270.29 + ((T/0.88717) - M))/P)*M
10 13 4.600e-05 4.866e-03 y =

(((269 + T) + ((T*0.18127)/M))/P)*M
11 15 4.530e-05 7.727e-03 y = M

(((272.25 - ((M(3.569/T))*3.5295)) +
T)/P)

12 --

Figure 12: The output of PySR. It lists the newly found
equation at each level of complexity and its associated score
and loss with no justification.

Datasets and Results
The datasets used for this evaluation are synthetically gen-
erated from three well-known equations described below. In
each equation set, the values for the independent variables
were based on the values Langley displayed in his book
(Langley et al. 1987).

The Ideal Gas Law
The Ideal Gas Law is:

V =
M(T + 273)

P
(16)

V is volume, P is pressure, M is moles and T is temper-
ature (in this basis the gas content R is 1). M is {1, 2, 3},
T is {10, 20, 30} and P is {1000, 2000, 3000}. This causes
V to vary between 0.09 and 0.91. The ideal gas law has a
linear relationship in the numerator alongside a couple of
instances of product/division meaning its a useful baseline
test. When approached via consecutively introducing vari-
ables V → P → T → M (forming the tree in Figure 3)
noiselessly, two equations come out of the system:

M

a
= 1,

M

PV − aT
=

1

273
(17)

These are combined via dummy variable a to form the Ideal
Gas Law.

Ohm’s Law
Ohm’s law is typically seen as I = V

R , for V voltage, I cur-
rent and R internal resistance. An expanded form when con-
sidering the law applied to a bar of temperature T , diameter

D and length L is:

I =
TD2

2(L+ 3)
(18)

T is {100, 120, 140}, D is {0.01, 0.02, 0.03}, L is
{0.5, 1, 1.5} whilst 2 and 3 represent the fixed voltage and
resistance in the wire respectively. I varies between 0.001
and 0.018. The law contain linear relation in the denomina-
tor as well as a square through D. It thus tests many facets
of the BACON.1 equation finding system. The system is ap-
proached via I → V → D → T yielding equations in a
noiseless environment of

a = −3,
TD2

I(L− a)
= 2 (19)

combining along a.

Black’s Law
Black’s law as seen is:

Tf =
M1T1

M1 +M2
+

M2T2

M1 +M2
(20)

T1 and T2 are temperatures both taking values {50, 60, 70}
whilst M1 and M2 are masses taking values {1, 2, 3}. Tf is
also a temperature varying between 50 and 70. This is the
most involved system solvable by Langley’s BACON with
3 linear relationships inside it when approached via Tf →
T2 → T1 → M2 → M1. The equations found in a noiseless
setup are:

b = 1,
M1

M2

a − bM2

= 1, cM1 = 1, −cM2−
T1

Tf − aT2
= 1

(21)
which are combined along variables a, b, c.

Noise
The experiments were run with 0.5% increments in the noise
on the dependent variable until 4%. This means for depen-
dent variable D with values {d1, d2, ..., dn}, the Gaussian
noise added to the scalar di is ϵi ∼ N

(
0, (0.04 |di|)2

)
. This

new noisy variable is denoted D + n.
For reproducibility, the noise added to the dataset is using

a NumPy random seed. For repeatability all the argument
files used are saved, with the location prescribed to the name
of the law. Eg. the Ideal Gas Law run under 0.5% noise has
its argument file stored in args/ideal/ideal05json.

BACON.7 tests
Langley’s approach to testing prescribes that BACON can
find an invariant if one combination of the hyperparameters
inputted into the system allows the detection of the invari-
ant. We use this approach throughout this section. A similar
metric is used for determining if PySR can find the equation
- the correct form has to appear in its list of found equations.
For reference, the correct form follows the correct place-
ments of the variables whilst the constants and coefficients
may vary. Hence for α, β, γ constants the acceptable forms
of the previous laws formed by BACON are:

BACON(V) = M(αT+β)
P ,

BACON(I) = αTD2

(L+β) , BACON (Tf) =
αM1T1+βM2T2

γM1+M2

Likewise for the functions formed by PySR. If noisy
data for the dependent variable is used to form the predic-
tions, it is defined as BACON(V) for the Ideal Gas Law
and similarly for the other two. When calculating the MSE
from the predictions of BACON and PySR with the real
data, the following notation is used for the Ideal Gas Law:
MSE(BACON(V), V). This displays the MSE between the
predicted values of V from noisy data inputted to BACON -
effectively how well the model fits the training data. Corre-
spondingly, MSE(BACON(V), V) is the difference between
the predicted form from BACON fed the noisy data and the
actual noiseless V - a measure of how close BACON gets at
stripping the noise away and determining the real equation.
The same notation is used for PySR.

Setup Each approach uses BACON.7 discussed in sec-
tion . The space of data was chosen between which ap-
proach worked best out of popular and min mse. As
min mse and gp ranking showed similar results previ-
ously, the latter was disregarded. The majority of approaches
had popular as the MSE tests often fails in very noisy
(≥ 3%) environment. popular also benefits from no cal-
culations done on the data itself saving time.

The experiments were run with 0.5% increments in the
noise on the dependent variable until 4% or the true relation-
ship could not be found. For repeatability all the argument
files used are saved, with the location prescribed to the name
of the law. For instance the Ideal Gas Law run under 0.5%
noise has its argument file stored in args/ideal/ideal05json.

Additional Results
Black’s Law
Black’s law varies on a non-log scale. There is exponential-
like growth in the MSEs in Figure 13 indicating it is grow-
ing at a similar pace to before. No results could be found
to make BACON.7 work at 2% noise or above. Compara-
tively, PySR finds the exact form of the equation at every
noise increment. This seems to be the optimal environment
for PySR; the form of the equation does help its cause. Each
coefficient being 1 aligns with the simplistic aims of its final
results as discussed in section .

Discussion
On the Ideal Gas Law
Analysing the equations returned allows a better of under-
standing of how BACON.7 outperforms PySR. For instance,
at 2.5% noise, the form of BACON.7 comes from the two
relations in subsection , the first discovers M

a = 1.024 and
M

PV−aT = 0.00366. The constants come from averaging the
values found in each step as discussed in subsection . This
averaging eliminates much of the noise. Overall displaying
final form V = M(0.976T+273.488)

P . Comparatively PySR

only finds V = M(T+270.74)
P . This is because its simplis-

tic aims force the T coefficient 1 - though this is a benefit
in experiments on Black’s Law. It is not clear why the other
coefficient is 270.74. The model gives no explanation.

Figure 13: The MSE differences when the above tests are run
on Black’s Law. PySR outperforms BACON.7. In each case
it infers the exact form of Black’s Law using its simplistic
biases as described in subsection . Additional testing shows
it finding this up to 4% relative noise. This demonstrates
the superiority of neural network models, here PySR, when
fed enough data. BACON.7 can’t solve greater than 1.5%
due to increased noise in the dataset. With 81 values having
noise applied, there’s a higher likelihood of excessive noise
(by random Gaussian sampling) in the datapoints. Even with
averaging the noise appears in the last layer, where no com-
bination of the hyperparameters can attain the correct rela-
tionship without contradicting previously found expressions
in earlier layers.

On Ohm’s Law
We do not know why PySR cannot find the correct
form. For reference at 2.5% noise it finds IPySR =

D2
(
−L+ 0.127T + 0.905

L

)
. As the correct form is not

found for any of the noise percentages, it indicates a system-
atic problem rather than a fluke. Instead of reducing noise,
it stays in the model and this is only known as we know the
true form of I . This demonstrates the problem with picking
the wrong equation in CSD. Also, the lack of explainability
for PySR means we do not know what settings to tweak to
fix this issue.

This environment demonstrates that BACON.7 has util-
ity when compared to PySR at this scale. This and the Ideal
Gas Law, are on smaller datasets. These are optimum condi-
tions for BACON.7, whilst not giving enough datapoints for
PySR to perform effectively. At this scale BACON.7 both
strips away noise, and infers the true equation form better
than PySR.

On Black’s Law
BACON fails as there’s a conflict in the hyperparameters to
get the correct equations at the final layer in the tree. At 2%
the final layer of one of the trees finds 1.74 = 0.296M1 −
cM2 − T1

Tf−aT2
instead of 1 = −cM2 − T1

Tf−aT2
. To punish

this excess linear relationship, ϵ needs to be reduced. How-
ever, all attempts there cause the linear relationship for c at
the layer above not to form. This contradiction means there’s
no way of pulling the correct form out of BACON.7.

A reason for this is at previous steps you can choose be-
tween multiple expressions as there are multiple sets. As
there is only one at the final layer the ability is lost and takes
the only expression displayed. A potential improvement of
BACON involves more variability at the final step. This is

something that we input into MCTS in section .
Comparison to Langley’s BACON

Langley’s BACON – which uses bacon.39 as a layer-
method as well as BACON.1 – could not solve any noise on
any dataset, bar 0.5% on the Ideal Gas Law10. As Langley’s
BACON worked on 0% noise it demonstrated that they had
been reconstructed correctly. Thus, our BACON.7 has been
successful in becoming more noise-resilient than Langley’s
BACON.

Concluding Comments
For real-life applications the true equation of a dataset will
not be known. It is then imperative to be able to trust the
equation generated by the model. For smaller datasets, these
results have conclusively shown BACON.7 is more trustwor-
thy than PySR as it is more accurate due to its superior
ability to strip away noise. PySR is best on larger, noisier
datasets. In these environments, it outperforms BACON.7.

A situation has been found where classical methods out-
perform modern techniques. It amplifies the need to repro-
duce, study and understand these seemingly anachronistic
mechanisms and see what lessons can be learnt. Also of
note, PySR is a complete package, built in collaboration
with many engineers over multiple years with well-written
documentation and open-source support. BACON.7 was in-
dividually built in 7 months with only a 1980s’ textbook to
guide. With further development, it is possible more use-
cases will be found where BACON.7 is able to compete
against the state-of-the-art.

An additional note on explainability. we only managed to
find the hyperparameters to run the tests up to 4% noise after
much trial and error. We could read the output to BACON.7,
understand at what stage problems occurred (such as making
a linear relationship when it should have been a product)
then fix the appropriate hyperparameters. This demonstrates
how explainable models help aid in development.

Monte Carlo Tree Search
Multiple layer-methods were created as no method consis-
tently chooses the correct expression when data is noisy.
When using the user input method, it seemed each ex-
pression did exist, at least until the final layer. Here, we saw
from Black’s Law in subsection that the ϵ and δ needed var-
ied from earlier layers. This section uses MCTS to optimise
the search through the possible expressions and solve both
these issues.

Method
To use MCTS we need the concept of a node. In chess, this is
represented as the position of the pieces on a board at a given
go. For BACON we represent it by the expressions found at a
given layer. To move to the next node, the legal actions must

9Whilst it was possible to test against BACON.5, Langley’s
never specified a mechanism for picking initial datapoints. My re-
construction does this randomly and is not reproducible. Thus it
was not chosen as the baseline for Langley’s BACON.

10Saved under args/ideal/idealbacon.json. Likewise the best at-
tempts for Ohm’s and Black’s law are saved in their respective fold-
ers. These only succeed on 0% noise.

be determined. In chess, these are the set of legal moves. In
BACON these are the set of expressions to choose from, apart
from at the final layer where it is a selection of hyperparam-
eters to use in BACON.1. MCTS terminates when the game
is over. In chess that would be at checkmate or stalemate,
for BACON that would be when each layer of the tree has
been searched. Lastly, scoring. In chess, it is +1 for a win,
0 for a draw or -1 for a loss. For BACON it is a function of
MSE(VBACON, V + n) (referred to as the reward function).

The MCTS algorithm works through 4 steps after being
initialised at a given node called a parent node:

1. SELECTION: A child node is selected to travel from
those available to the parent node (through performing
a legal action) based on the score of the child node. The
score is weighted by a parameter C. If C is small, the
parent node prefers exploitation and picks a child node
based on what has returned high scores in the past. If C
is larger, the parent prefers exploration and picks a child
node which has not been selected much.

2. EXPANSION: After the parent chooses a child, this child
becomes the parent node. The legal actions are run to
determine the new selection of children nodes.

3. SIMULATION: This process is repeated until a full game
has been simulated. The result of the game is given a
score by the reward function.

4. BACKPROPAGATION: This score is backpropagated
through all the nodes selected to the initial parent node,
altering their Si value.

The purpose of the MCTS is to find the node with the best
score after running this process multiple times. It implies
this node is the correct one to move to, to maximise win-
ning. In BACON this translates to picking the best expression
in a layer that maximises the score. Under an assumption
that the best expression in earlier layers will always min-
imise the MSE (and maximise the score), MCTS is a logical
continuation that can search the possible expressions gen-
erated by the sets and correctly pick the best expression at
each layer. A visualisation of this on the Ideal Gas Law is in
Figure 14.

My reward function takes in multiple factors, such as how
many variables make up the expression, how quick it took
BACON to output the expression as well as the MSE. It is
not a continuous function and had to be hardcoded for each
equation that the MCTS was implemented on. It’s hard to
determine a general function due to MSE differences vary-
ing on different scales between equations.
BACON.M is used to refer to the model that comes from

this conjunction with MCTS. It uses BACON.1 at the Space
of Laws level, and MCTS to repeatedly traverse the Space
of Data.

Application
Due to time constraints, the system was only adapted for two
equations: the Ideal Gas Law and Black’s Law. It is simple
to adapt for Ohm’s Law, however from the previous section
it seems likely to perform as the Ideal Gas Law does.

Figure 14: The graphical representation of the MCTS on
the low C for the Ideal Gas Law in an environment
with 5% noise. The scores at each stage are demonstrated
with Si, with the child node selected in green. Note the
green node’s Si increases through the layers as MCTS
prunes the worst nodes. For the first two layers the ac-
tion is picking an equation from those discovered by the
sets at that layer. The bottom layer is determined by ap-
plying a combination of the following hyperparameters
ϵ, δ ∈ {(0.01, 0.1), (0.05, 0.5), (0.01, 0), (0, 0.1)} and gain-
ing their respective equations.

The Ideal Gas Law The Ideal Gas Law could handle up
to 4% noise. MCTS is done on 5% noise at a low C - priori-
tising exploitation. MCTS outputs BACON.M expression:

VBACON.M =
M(0.502MT + 273.885)

P
(22)

This occurs from the final layer deducing M2

a as a constant
rather than M

a . The MSE to V + n is 2.9e− 4 and to V
is 2.0e− 4. Recalling the graph from Figure 1, this is in-
line with the predictions for extrapolating to 5% noise in
the correct form. It displays that, at this noise level, this
form and the correct form share the same MSE to V . Hence,
when there is this much noise, it is not possible to distin-
guish between the true expression and BACON.M’s wrong
prediction by comparing to noiseless V . If this did happen in
the real-world, dimensional analysis could be used to show
BACON.M’s prediction is not valid.

Also, the expression found in MCTS with M
a was

VBACON.M =
M(0.870T + 549.756)

P
(23)

with MSE of 0.026 to V +n and 0.159 to V . The 273 factor
is lost - presenting this level of noise defeats BACON.M. The
coefficients are not related to MCTS, suggesting the process
isn’t the problem and rather BACON just can’t correctly as-
certain the best coefficients in 5% noise. This is an upper-
bound on what BACON’s simplistic mechanisms can handle
based on noise not averaging out. PySR on 5% noise finds

VPySR =
M(T + 269.11)

P
(24)

with 1.4e− 4 MSE to V + n and 3.2e− 5 to V . PySR
does not have the drop in performance BACON.M does when
noise increases.

Black’s Law The Ideal Gas Law failed at 5% noise, how-
ever the technique may still be valid at less. Reducing the

noise for Black’s Law to 2% which failed in subsection , the
initial node of Tf −aT2 is selected correctly, but the expres-
sion quickly derails into:

TfBACON.M =
(28.544M2M1 + 0.940M2)

(
M1

M3
2
+ M1M2

M4
2

) 1
3 − 0.258M1 − 0.242M2 + 0.001T1T2

M1 + 0.940M2
(25)

The MSE loss is 7.704 to Tf +n but 1366 to Tf . The best
attempts using BACON.7 is11

TfBACON.7 =
0.623(0.171M2

1M2T2 − 0.603M2
1T1 − 0.553M1M2T1 −M1M2T2 − 0.615M2

2T2)

0.111M3
1 + 0.102M2

1M2 − 0.653M2
1 −M1M2 − 0.368M2

2
(26)

with MSE loss of 13.3 to Tf + n and 12.3 to Tf . This dis-
plays that MCTS overfits on the noisy data. If instead it was
just being defeated by noise we’d expect equation 26 to have
higher MSE to Tf than 12.3 which is inline with the expo-
nential increase from Figure 13.

The reason is likely the reward function. Scoring smaller
MSEs too high rewards fitting the equation to Tf +n - over-
fitting. From equation 26, which is the best function we’ve
found for fitting Tf , it has an MSE twice equation 25 to
Tf + n. This is large enough to make me think that other
equations can be found that have the same MSE to Tf + n
but higher to Tf . The reward function then wouldn’t be able
to differentiate based on MSE score, leading to a question
of what factors it should consider. Dimensional analysis is
a possible direction, but in general this suggests that MCTS
is not the correct adaptation for BACON as the right reward
function is very hard to find, if it does exist at all.

Discussion
As noise increases, the uncertainty in the true form of the
equation becomes a factor. The equations best formed by
BACON.M can cut out significant noise, and resemble the
true form, whilst having extra factors. This is seen in equa-
tion 22. This displays a limitation in the noise BACON can
handle. PySR’s attempts at the same problem show that find-
ing the correct form is possible but BACON.M is not power-
ful enough to get there. Exterior mechanisms to BACON.M
would have to be developed such as in a preprocessing stage
to remove excess noise.

Whilst the actual implementation between MCTS and
BACON was successful, MCTS – and likely any game tree
search – is not the solution to improving BACON’s power.
It effectively becomes a PySR-like attempt at overfitting on
the data, but without the accuracy due to the difficulties in
finding a reward function. It is a complex task as what is
needed varies between noise and dataset size (seen by differ-
ent reward functions between the Ideal Gas Law and Black’s
Law).

Lastly, MCTS approaches lacks speed. Whilst the Ideal
Gas Law took ∼ 13 seconds, comparable with PySR,
Black’s Law took 700 seconds due to the additional layer
and the branching factor associated with the possible equa-
tions in a noisy environment. It will not scale well to larger

11Found under args/black/black20.json

datasets. PySR took ∼ 12 seconds to exactly find Black’s
Law.

Related work
BACON inspired heuristic based search

BACON kick-started a wave of Classical AI in the 1980s
exploring CSD. There were multiple projects inspired by
Langley using similar heuristic based designs. Two of the
most popular were Fahrenheit (Koehn and Zytkow
1986) and Abacus (Falkenhainer and Michalski 1986).
Fahrenheit makes minor improvements to BACON such
as being able to handle irrelevant variables and re-ordering
the search algorithm to deal with more terms (covered in
limitations in subsection).
Abacus is a more interesting project, outlining similar

concerns to mine about BACON. These include dealing with
noise, and specifically the problem of approaches such as
BACON.6 which require information about the search space
(seen in section). Their solution is threefold. They introduce
a more general approach to the search space, such as allow-
ing variables X and Y to have invariant Y = X2 for X < 3,
but Y = 12−X for X ≥ 3. This lets multiple invariants be
found within a dataset - something BACON cannot do. They
also develop the concept of a proportionality graph search.
This uses ideas from graph theory to cycle through the pos-
sible variable relationships in multivariable systems. Lastly,
they reduce the search space for the invariants by ignoring
relationships which can’t occur through dimensional analy-
sis.
Fahrenheit’s re-ordering of the search algorithm, and

Abacus’s use of dimensional analysis give fascinating con-
cepts that may be applied to later versions of BACON.7.
However, neither deal with noise. One of Fahrenheit’s
main contributions to deal with irrelevant variables is solved
by BACON.7, whilst Abacus yields an approach irrecon-
cilable with BACON. It is also not able to solve a more ver-
satile set of equations than BACON. Hence there is no justi-
fication to using either of these projects rather than BACON
in attempting to make a noise-resilient Classical AI system.
Lastly, no open-source implementations of either means it is
hard to meticulously examine for strengths and weaknesses.
It is also too time-consuming to make a coded implementa-
tion.

The era of Classical AI ends with SDS(Washio and Mo-
toda 1997). It is a mathematically rigorous approach to the
same problem, stemming from two postulates by physi-
cist Edgar Buckingham in 1914 that govern the relation-
ship between complete equations and their associated vari-
ables scale-type. In other words, given a set of variables and
knowledge about how they scale relative to other variables
available, a set of possible equations can be formed. This set
can be pruned based on the data (using bivariate statistical
tests) until only certain equations are possible. The entire
algorithm both reduces the complexity found in Langley’s
BACON, whilst increasing the depth of equations possible.
Under the same initial assumptions as BACON, for depen-
dent variable X from a 17 variable circuit meter, the follow-

ing equations is discoverable:(
R3hfe2

R3hfe2 + hie2

R2hfe1

R2hfe1 + hie1

rL2

rL2 +R1

)
V−Q

C
−Khie3X

Bhfe3

= 0

(27)
Whilst this isn’t possible in BACON, it displays an increase
in flexibility rather than an explicit ability to deal with more
noise. On the latter, their best contribution is a 4% relative
standard deviation of the dependent variable they claim is
solvable through their method - though not backed up in
the paper. This becomes the baseline we would like to get
BACON to solve. SDS is limited by both the structure the al-
gorithm has to follow and the understandability it lacks - one
of the key aspects of using BACON and why it was chosen as
the Classical AI approach. Likewise to Fahrenheit and
Abacus, there is no open-source project to gain accurate
comparisons to our BACON.

None of the Classical AI competitors to BACON share
its level of understandability whilst also being more noise-
resilient. BACON is the most straightforward algorithm to
adapt based on the detail from Langley’s textbook.

Modern neural network approaches
Modern approaches are based around using neural networks.
ConservNet proposed by (Ha and Jeong 2021) trains a
deep feed-forward neural network using their novel noise-
variance loss function:

L =
∑
i

V ar (Fθ (xij)) + |Q− V ar (Fθ (xij + ϵij)) |.

(28)
Fθ represents the conserved function, the left term in the
sum represents reducing the intra-group variance of all data
that maps to the same value via the function. The right term
is the allowed perturbations of the invariant when noise is
added to the system - represented by Gaussian noise ϵij .
Combined it leads to a powerful dynamic where Fθ can’t
converge trivially, forcing invariants to be found in systems
with well-defined Hamiltonians (a measure of total energy in
the system). Q controls the scale of the variation. The pro-
gram is more powerful than BACON. This can be seen in their
ability to find the conserved quantity C in environments as
varied as real, noisy double pendulum data: C = L2

1(m1 +
m2)ω

2 +m2L
2
2w

2 + 2m1m2L1L2ω1ω2 cos (θ1 − θ2)
−2gL1(m1+m2) cos (θ1)−2gm2L2 cos (θ2) BACON can-
not do this.

Similar to SDS, ConservNet exploits a more
mathematical approach to improve results. Moreover,
ConservNet proves how its neural model converges to
appropriate answers and demonstrates substantial experi-
ments dealing with greater noise than any effort we produce
with BACON.7. It can also deal with multiple dependent
variables which BACON cannot.

Its downsides lie in complexity and explainability. The
loss function is novel, but when overlayed on a black-box
neural network the meaning is reduced - further shown by
the multiple settings needed for them to test to find the op-
timal hyperparameters for their best model. Additionally,
with training times up to several hours, it goes against the
principles of the Classical AI programs we are enacting in

this project. An interesting implementation would have been
putting the trained black-box model at the Space of Laws
level; however, due to time constraints this was not possible
- though it was done with PySR.
PySR (Cranmer 2023) uses symbolic regression to find

invariants. Symbolic regression works by imagining the
search space as possible mathematical expressions. The ex-
pressions are narrowed down to the most accurate and often
have a bound on complexity and simplicity in the final re-
sult. The latter often manifests itself by reducing constants
from floats to their nearest integers. A hypothetical example
is when considering Black’s law:

Tf =
M1T1

M1 +M2
+

M2T2

M1 +M2
(29)

With noisy data for independent variables M1,M2, T1 and
T2, dependent Tf , BACON may find

TfBACON = 1.002
M1T1

M1 +M2
+ 0.844

M2T2

M1 +M2
(30)

whilst PySR finds the exact form – equation 29 – as it as-
sumes the coefficients are 1. PySR is also a much more ver-
satile and powerful program with customisability and the
ability to run in large and complex search spaces where the
only bound is the computational power. As such, it can han-
dle invariants such as in differential equations and discontin-
uous environments. BACON cannot compete.

However there are downsides. As it is trained on a deep
neural network (Cranmer et al. 2020) there is no interface or
explainability giving a reason for its outputs. This reduces
the trustworthiness of the model.
PySR is used in this project as the main DNN comparison.

The reasons why can be seen through two key components
in a standard PySR implementation in Figure 15.

1 # ml_methods/symbolic_regression.py
2
3 model = PySRRegressor(
4 niterations=15,
5 maxsize=30,
6 binary_operators=["+", "*", "/", "-"],
7 extra_sympy_mappings={"inv": lambda x:

1 / x},
8 loss="loss(prediction, target) = (

prediction - target)ˆ2",
9 model_selection="accuracy"

10)
11

Figure 15: The setup for the PySR implementation used
throughout this project. Note binary operators restricting
what type of equations can be found, and niterations deter-
mining how long PySR searches for.

The niterations purposes matches that of the complexity
counter j in BACON.1 (detailed in subsection). Experimen-
tally, j = 4 and niterations = 15 made the complexity of
the forms outputted by each program similar. Also, the bi-
nary operators is set at [” + ”, ” ∗ ”, ”/”, ”− ”]. This coin-
cides with the operations that BACON.1 can output. In all,

it makes the final equations yielded from our BACON.7 and
PySR (in subsection) comparable allowing a balanced dis-
cussion on their strengths and weaknesses.
ConservNet’s interface didn’t trivially allow this level

of control. ConservNet also does not have substantial
documentation which PySR does, making the PySR imple-
mentation straightforward.

