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Abstract

Large language models record impressive performance on
many natural language processing tasks. However, their
knowledge capacity is limited to the pretraining corpus. Re-
trieval augmentation offers an effective solution by retrieving
context from external knowledge sources to complement the
language model. However, existing retrieval augmentation
techniques ignore the structural relationships between these
documents. Furthermore, retrieval models are not explored
much in scientific tasks, especially in regard to the faithful-
ness of retrieved documents. In this paper, we propose a novel
structure-aware retrieval augmented language model that ac-
commodates document structure during retrieval augmenta-
tion. We create a heterogeneous document graph capturing
multiple types of relationships (e.g., citation, co-authorship,
etc.) that connect documents from more than 15 scientific dis-
ciplines (e.g., Physics, Medicine, Chemistry, etc.). We train
a graph neural network on the curated document graph to
act as a structural encoder for the corresponding passages re-
trieved during the model pretraining. Particularly, along with
text embeddings of the retrieved passages, we obtain struc-
tural embeddings of the documents (passages) and fuse them
together before feeding them to the language model. We eval-
uate our model extensively on various scientific benchmarks
that include science question-answering and scientific doc-
ument classification tasks. Experimental results demonstrate
that structure-aware retrieval improves retrieving more coher-
ent, faithful and contextually relevant passages, while show-
ing a comparable performance in the overall accuracy.

1 Introduction
The continuous advancement in natural language process-
ing (NLP) has led to the development of various novel
model architectures that overcome existing limitations and
demonstrate state-of-the-art performances. The retrieval
augmented language models (RALM) primarily address the
grounding and scalability challenges in standard language
models (LM). RALM aims to address these limitations by
combining a LM with an external knowledge base. In this
framework, the LM generates text conditioned not only on
the input query but also on relevant knowledge retrieved
from the knowledge base. The retrieved knowledge is usu-
ally the text chunks or passages from documents that pro-
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vide factual grounding to contextualize the model’s pre-
dictions. In other words, this approach decentralizes model
knowledge into parameters and external knowledge sources,
thereby addressing the challenges of scalability and adapt-
ability.

Typically in RALM, text data from an external knowledge
base is segmented and encoded into vectors (also known
as vector databases). The retriever component of RALM
retrieves relevant documents based on the similarity be-
tween the query and vectors corresponding to documents
in the database. Many existing RALMs rely solely on se-
mantic/lexical information of the documents for retrieval.
However, in certain scenarios, the structural relationship be-
tween documents can further support the retriever in retriev-
ing contextually relevant documents. For instance, a sci-
entific paper in materials science might reference papers
that describe relevant advances in nuclear physics, and vice-
versa. Having such relational information explicitly present
in the scientific documents would allow the model to draw
on the interdisciplinary scientific knowledge in a similar way
to how scientists do. Thus, it would be beneficial to learn
about the relationships between documents (e.g., citations,
co-authorship, etc.) in a corpus of scientific publications and
connect different scientific concepts.

To address the challenges of adequate structural compo-
nent in RALM and retrieval faithfulness in science-focused
tasks, we propose a novel model architecture (ATLANTIC)
in this work that systematically incorporates structural
and textual information into the RALM. We develop AT-
LANTIC on top of the standard RALM, ATLAS (Izacard
et al. 2022) architecture. In comparison to ATLAS, we in-
troduce new structural encoder component that uses the cor-
responding structural embeddings along with the text em-
beddings of the retrieved passages, and then fuse both em-
beddings for each passage before feeding them to the other
language modeling components. The structural embeddings
are obtained by a pretrained graph neural network on the
document relationship graph. This mechanism explicitly in-
corporates the structural relationship of passages. We exten-
sively evaluated the ATLANTIC model on scientific tasks,
especially in regard to the faithfulness of the retrieved pas-
sages.

Contributions The specific contributions of this work are
as follows:



• Novel mechanism to combine structural and textual in-
formation of scientific documents in the retriever of the
RALM model.

• Structural encoder via a Heterogeneous Graph Trans-
former (HGT) model pretrained with document relation-
ships.

• Propose novel evaluation metrics to measure the quality
of retrieved documents on scientific tasks.

The rest of the paper is organized as follow. Section 2
provides a brief literature review and Section 3 describes the
proposed methodology in details. While Section 4 outlines
the experimental setup, Section 5 presents the performance
analysis and finally Section 6 concludes the paper.

2 Related work
RALM is an active area of research driven by the goal of
overcoming the limitations of language models’ limited con-
textual capacity and world knowledge (Li et al. 2022; Zhu
et al. 2023). RALM primarily consists of Retriever (text en-
coder) and Reader (language model). In the earlier RALM
works, retriever is kept frozen and only language model is
trained. REALM (Guu et al. 2020) and RAG (Lewis et al.
2020) are some of the initial works that focused on retriev-
ing relevant passages from large text corpora to provide ad-
ditional context to LM. REALM trains an encoder to retrieve
passages and pass them to the language model. RAG re-
trieves documents for Question answering using BM25 and
fine-tunes a T5 model along with retrieved passages. Sim-
ilarly, RETRO (Borgeaud et al. 2022) combines a frozen
Bert retriever, a differentiable encoder and a chunked cross-
attention mechanism to predict tokens based on an order of
magnitude more data than what is typically consumed dur-
ing training. REPLUG (Shi et al. 2023), PKG (Luo et al.
2023), and LLM-AMT (Wang, Ma, and Chen 2023) pro-
pose an alternate plug and play framework where a trainable
or even frozen retriever is fused with off-the-shelf frozen
language model. DSP (Khattab et al. 2022) provides an in-
context learning retrieval augmented framework where re-
trieved passages act as prompts to the frozen LM. HIND-
SIGHT (Paranjape et al. 2021) and ATLAS (Izacard et al.
2022) are among few works in the third category where both
the retriever and language model are trained in an end to end
manner (Hu et al. 2023; Munikoti et al. 2023; De Jong et al.
2023). ATLAS experiments with various designs (in terms
of loss functions, pretraining objectives) and training con-
figurations (e.g., query side finetuning vs. full index update)
for RALMs with a specific focus on the few-shot learning
ability. However, these works solely rely on semantic/lexi-
cal information for retrieval augmentation.

In parallel, there are some efforts that looked at incor-
porating structured knowledge in the form of knowledge
graphs. Graph-Retriever (Min et al. 2019) is one of the ini-
tial works that iteratively retrieves passages based on the
passage relationships, and uses a passage graph to improve
passage selection in an extractive reader. KAQA (Zhou
et al. 2020) emphasizes improving both document retrieval
and candidate answer reranking by considering the rela-
tionship between a question and the documents (termed as

a question-document graph), and the relationship between
candidate documents (termed as a document-document
graph). KG-FiD (Yu et al. 2021) applies KG to a more ad-
vanced Fusion in Decoder (FiD) architecture. It uses a graph
neural network (GNN) to re-rank the passages obtained from
the retriever and selectively pass a top few for further pro-
cessing into the LM. However, these graph-based RALMs
have major shortcomings in terms of (i) accommodating an
extra trainable GNN component thereby increasing the com-
putational complexity of the framework; (ii) ranking is not
an explicit way of incorporating structural relationships.

3 Methodology
Our approach is based on the ATLAS architecture (Izacard
et al. 2022), which is state-of-the-art RALM. ATLAS con-
sists of a BERT-based Retriever model that retrieves top-k
passages and feeds along with the input query to the Reader,
i.e., T5-based LM. The basic architecture of our ATLANTIC
model is kept the same as that of ATLAS, but we introduced
new components and modified the coupling between Re-
triever and Reader. In ATLANTIC, given the input query,
Retriever retrieves top-k passages from the input text cor-
pus based on semantic relationship. Unlike ATLAS, which
directly passes these top-k passages to the LM, we obtain
their structural encodings (embeddings) by leveraging their
structural relationships. The structural embeddings are then
appended with their semantic counterparts as obtained via
Retriever encoder, before feeding them to the LM. Figure 1
depicts the overview of ATLANTIC architecture with dif-
ferent components and their interactions. Structural encod-
ing provides extra context to the LM for generation, and it
also improves the Retriever model to retrieve better passages
whose semantic and structural identity better aligns with the
target generation. Different components of ATLANTIC ar-
chitecture are described in detail below.

3.1 Creating Heterogeneous Document Graph
Structural encodings for the passages are obtained by lever-
aging their structural relationships in the form of a Heteroge-
neous Document Graph (HDG). HDG offers plenty of new
information that is otherwise ignored in standard semantic-
only RALM. We first construct the document graph for the
text corpus using existing relational information. Documents
act as nodes, and the relationship between the documents
act as links. Since our focus is in the scientific domain,
we choose a text corpus of scientific articles (research pa-
pers), where four kinds of links exist. The link types are
co-citation, co-topic, co-venue, and co-institutions where the
co-citation links are the majority. If document A cites docu-
ment B, then they are connected via a co-citation link. Sim-
ilarly, if documents belong to the same topic, there is a co-
topic link connection. Co-venue and co-institute are appli-
cable when two documents belong to the same publication
venue and an institute, respectively. There is a one-to-one
mapping between the document and the node in the docu-
ment graph.

Following earlier works (Karpukhin et al. 2020; Yu et al.
2021), each document (article) in our text corpus is split into



Figure 1: Proposed ATLANTIC framework (docs referred to passages). Structural embeddings (Hk) quantify the cross-
document connections among the retrieved docs, which could be useful for multi-hop (multi document) reasoning. For il-
lustration, doc 1 and doc 3 are highlighted since their information could offer relatively more relevant context to fetch the
answer for the given query.

various disjoint text chunks of 100 words or 512 token. Each
chunk is called a passage, which are fundamental retrieval
units. The relationship among the passages is formed based
on document-level relations, i.e., if document A and docu-
ment B are connected via co-topic, then we assume all pas-
sages from document A are connected with that of document
B. This is achieved by associating all the passages of a docu-
ment with the same embedding, i.e., their document embed-
ding, so that passages from related documents share similar
representation.

3.2 Text and structure fused knowledge
augmentation

This section describes the proposed framework of fusing text
and structural information in the retriever which extracts
contextually relevant passages from the external document
corpus.

Text-based Retrieval Similar to ATLAS, the retriever in
ATLANTIC is based on the Contriever (Izacard et al. 2021),
which retrieve documents based on continuous dense em-
beddings. It uses dual encoder architecture so that query and
passages are embedded independently by a transformer en-
coder (Karpukhin et al. 2020). Suppose there are N passages
in the text corpus {p1, p2, ..., pN}, then their embeddings
can be represented as:

MiMiMi = Contriever(pi) ∀ i ∈ {1, 2, ..., N}, (1)

where Mi belongs to RD and D is the hidden dimension
of the embedding vector. For each input query, the retriever
conducts a dot product similarity search between the embed-
ding of the query (Q) and embedding of all passages (M ) as
obtained via Contriever, and returns Nk passages with the
highest similarity scores. Thus, passages are solely retrieved

based on their semantic equivalence with the query. Nk is
substantially smaller than N since we are only interested in
extracting a small set of the most relevant passages, typically
in the order of tens or hundreds, from the corpus containing
millions of passages.

Structural encoding We see in the previous subsection
that the retriever model retrieves top Nk passages indepen-
dently based on the semantic/lexical similarity between the
query and each passage, and then passes the text embed-
dings of these Nk passages to the LM without accounting
for inter-passage relationship. To address this shortcoming,
we propose to incorporate the structural relationships via ex-
tra embeddings, which we termed as structural embeddings
(or encodings). The structural embeddings are then concate-
nated with text embeddings and passed to the reader (i.e.,
LM). The structural embeddings are obtained via a structural
encoder, which is basically a frozen graph neural network
(GNN) model. Particularly, we leverage the heterogeneous
graph transformer (HGT) model (Hu et al. 2020) to fetch
the structural embeddings since they can explicitly account
for heterogeneous relationships (co-citations, co-topic, co-
venue, co-institute) in the document graph. We first train
HGT on the document graph using link prediction as the pre-
training objective (Hu et al. 2020). The trained HGT is used
as a frozen model to encode passages in the ATLANTIC
pipeline. The structural embedding of a particular passage
pi as obtained from HGT can be represented as:

HiHiHi = HGT (pi) ∀ i ∈ {1, 2, ..., Nk}. (2)

Hi is the output from the final encoding layer of the
HGT, which basically aggregates the essential informa-
tion from the neighbors of pthi passage in the retrieved
set {p1, p2, ..., pNk

}. This mechanism efficiently utilizes the



structural relationships from the document graph. All of the
passages belong to a document share the same embedding,
i.e., their document embedding as obtained by pretrained
HGT. It is worth noting that one can use any GNN model
to fetch structural embeddings, and the HGT used over here
is for illustration purpose.

Knowledge Fusion The semantic retriever and structural
encoder provide text embeddings (M ) and structural embed-
dings (H) of top-k retrieved passages, respectively. We con-
catenate text and structural embeddings for each passage to
generate new aggregate embedding Ei as shown below:

EiEiEi =MiMiMi ⊕HiHiHi ∀ i ∈ {1, 2, ..., Nk}, (3)

where ⊕ stands for concatenation operator. The aggregate
embedding EEE captures semantic as well as structural infor-
mation that enable models to retrieve knowledge from mul-
tiple interdisciplinary documents.E

′
E

′
E

′
is the final embedding,

which is an input for the reader model. It is obtained by con-
catenating query embedding QQQ with the aggregate embed-
ding of the passages EEE as shown below:

E
′

iE
′

iE
′

i =QQQ⊕EiEiEi. (4)

Since our framework leverages the frozen pretrained GNN
model, the novel structural encoder will not induce any com-
putational bottleneck, and its computational complexity is
equivalent to that of ATLAS architecture.

3.3 Pretraining objectives and loss function
The retriever and reader (LM) model in ATLANTIC are
trained end to end using Perplexity distillation as the loss
functions (Izacard and Grave 2020; Singh et al. 2021). The
retriever gets feedback from the output of the LM in terms
of perplexity score such that it should pick such passages
with respect to input query and their structural relationship,
which eventually improves the LM perplexity scores. In this
regard, KL-divergence between the passages distribution of
the retriever and the passages posterior distribution is mini-
mized. The loss function can be written as:

Li =
exp(log pLM (aaa|E′

iE
′

iE
′

i))∑k
i=1 exp(log pLM (aaa|E′

i))E
′

i))E
′

i))
, (5)

where aaa denotes the perplexity score of the LM and pLM is
the likelihood.

We employ masked language modeling (MLM) (Raffel
et al. 2020) as a pretraining objective. In the given chunk of
M tokens, we sample m spans of an average length of three
tokens, thereby leading to a mean masking ratio of 15%.
Then we replace the selected span of tokens with an individ-
ual sentinel token. During training, the input to the encoder
of the LM is the corrupted (masked) sequence, and the tar-
get is then the dropped-out tokens delimited by their sentinel
tokens (e.g., < extra id 0 >,< extra id 1 >, etc.). The
retriever in our ATLANTIC model retrieves passages using
the masked query, but replaces the special mask tokens with
a mask token supported by the retriever vocabulary (Izacard
et al. 2022).

4 Experimental Setup
In this section, we report the experimental setup used to eval-
uate the ATLANTIC model on science focused benchmarks.
We outline the datasets, baselines, benchmarks, and training
details.

4.1 Datasets
We focus on evaluating the ATLANTIC model on its abil-
ity to understand scientific language and retrieve contextu-
ally relevant passages from multiple scientific knowledge
sources. We leverage S2ORC (Lo et al. 2019), which is a
large corpus of curated 31.1M English-language scientific
papers. We preprocess the S2ORC (Lo et al. 2019) dataset
to create a collection of 354M text passages. Each pas-
sage has a maximum of 512 tokens, or 100 words, that are
concatenated with the corresponding title of the document
the passage belongs to. Our text corpus captures 19 differ-
ent scientific domains from the S2ORC collection, which
are as follows: Art, Philosophy, Political-Science, Sociol-
ogy, Psychology, Geography, History, Business, Economics,
Geology, Physics, Chemistry, Biology, Mathematics, Com-
puter Science, Engineering, Environmental science, Mate-
rial science, Medicine. In regard to structural data, we con-
struct a heterogeneous document graph as described in Sec-
tion 3.1. Table 4 (see Appendix) shows the statistics of the
S2ORC knowledge graphs which we used to extract the het-
erogeneous document graphs for each domain. We use these
graphs to train a structural encoder model for each domain.

4.2 Baseline Models
To demonstrate the advantages of RALMs on scientific
tasks, we choose T5-lm-adapt model (Raffel et al. 2020) as
a baseline model, which is a standard LM trained on C4 cor-
pus. We took the original ATLAS model as a baseline, which
is pretrained with common crawl (CC) and Wikipedia on top
of the T5 model. In addition to this pretrained ATLAS, we
also leverage ATLAS-Science model from scratch with the
S2ORC scientific text dataset. For a fair comparison with
ATLAS, we initialize the ATLAS-Science model with the
T5-lm-adapt model and trained jointly with retrieval model,
Contriever (Izacard et al. 2021). Table 1 summarizes the
baseline model variants with the details of pretraining data.

4.3 Benchmarks
We use two different kinds of scientific benchmarks for
training (and finetuning) and evaluating the models. The
first benchmark is the SciRepEval (Singh et al. 2022) which
provides 25 challenging tasks across four formats: classi-
fication, regression, ranking, and search. In this work, we
focus on the classification formatted tasks, Fields of study
(FoS) and MAG due to two main reasons. First, we need
benchmark tasks that test the ability of the models to under-
stand diverse scientific domains and disciplines. FoS tasks
include instructions from several disciplines involving exist-
ing S2ORC domains as well as new ones. For instance, FoS
task tests the ability of the model to recognize which domain
the given text passage belongs to. Second, we want to eval-
uate on specific instruction template to avoid any prompting
bias.



Table 1: Summary of different pretraining, instruction tuning and benchmark datasets used across baselines and ATLANTIC
models.

Model Modality Pretraining Instruction Tuning Evaluation
Retrieval corpus Data Retrieval corpus Data Retrieval corpus Data

T5 Text N/A C4 N/A FOS N/A
FOS
MAG

MMLU MMLU

ATLAS Text CC+Wiki Wiki S2ORC FOS S2ORC
FOS
MAG

MMLU MMLU

ATLAS-
Science Text S2ORC S2ORC S2ORC FOS S2ORC

FOS
MAG

MMLU MMLU

ATLANTIC
Text

+
Structure

S2ORC S2ORC S2ORC FOS S2ORC
FOS
MAG

MMLU MMLU

Our second evaluation benchmark is MMLU (Hendrycks
et al. 2020), which contains 57 multi-choice question an-
swering datasets (domains) obtained from real examina-
tions designed for humans. These datasets cover a wide
range of science topics, including high school science,
law, and medicine. They are broadly categorized into four
subsets: humanities, social sciences, STEM, and “other”.
We focus on few-shot learning, which leverages 5 train-
ing examples per domain. Along with the 5-shot examples,
we also leverage additional training examples from other
multiple-choice QA tasks provided by the MMLU authors,
namely MCTest (Richardson, Burges, and Renshaw 2013),
RACE (Lai et al. 2017), ARC (Clark et al. 2018) leading to
95k training and 14k testing examples.

4.4 Training details
For training, we create our text corpus and document graph
as described earlier. We provide the collection of 354M sci-
entific text passages as an external text retrieval corpus for
all our finetuning and evaluation tasks. In this regard, we
encode all the text passages with the Contriever model and
construct a document index in the FLAT (Izacard et al. 2022)
mode for faster retrieval. Retrieval requires frequent updates
to the embeddings correspond to the retrieved documents.
However, this update is costly given the size of the retrieval
corpus. To address these scalability issues, we opt for query
side finetuning approach, which was originally introduced
in the ATLAS model (Izacard et al. 2022). This approach
is very efficient for model training since it keeps the docu-
ment encoder frozen while only training the parameters of
the query encoder. For a fair comparison, all the models are
trained for the same number of tokens. All our experiments
are based on base 220M model architecture unless explicitly
mentioned.

For passage structural embedding, we first train the HGT
on the heterogeneous document graph. Thereafter, we obtain
the structural embedding of each passage by fetching their
respective document encoding via a trained HGT, and con-
sequently saved it in the corresponding index database along
with the passage text. Table 1 summarizes the pretraining,
instruction tuning, and evaluation data used for the baselines

and our ATLANTIC model. We pretrained the models for
20000 steps using AdamW as an optimizer with an effective
batch size of 32. We retrieve 20 passages per query during
training. All experiments are conducted on 16 A100 80 GB
GPUs in a Linux server.

We report the performance of the standalone LLM i) T5
(pretrained with C4), ii) ATLAS model (pretrained with
CC and Wikipedia), iii) ATLAS-Science model (pretrained
with S2ORC text) and (iv) ATLANTIC (pretrained with
S2ORC text and document structure) proposed structural-
aware RALM in Section 5.

4.5 Fine Tuning

Previous research (Izacard et al. 2022) has shown that AT-
LAS model is able to learn knowledge-intensive tasks with
very few training examples (i.e., few shot learning). To allow
the model to perform on the scientific downstream tasks, we
tune the model with scientific instructions. We adopt instruc-
tion finetuning for FoS and MAG tasks with a classification
style template1.

These templates help guide the model to generate the sci-
entific domain that each passage belongs to. We tune the
model with Fields of study (FoS) training data after convert-
ing them to instructions. This process resulted in 541, 218
training instructions that were used to perform instruction
tuning. For a fair comparison, we tune all baseline mod-
els (T5, ATLAS, ATLAS-Science) with these instructions.
There are 68, 147 and 3, 751 test instructions in the FoS and
MAG tasks, respectively. We use MAG instructions to test
the out-of-distribution task performance in a zero shot man-
ner. We followed the same configurations to finetune the
model with the MMLU training data as that of ATLAS (Izac-
ard et al. 2022).

1FoS/MAG Instruction Template: ### Below is an input con-
taining a title-abstract pair. Classify this input into one or more
possible Field of Study categories. ### Possible Categories: [...]
### Input: ## Title: [...] ## Response:



(a) FoS (b) MAG (c) MMLU

Figure 2: Faithfulness scores across FOS, MAG and MMLU benchmarks. Faithfulness score is the harmonic mean between the
accuracy and relevance of the retrieved passages, which gives a holistic view on the trustworthiness of the model.

4.6 Evaluation metrics
We use Exact Match (EM) and F1-Score to evaluate the ac-
curacy of generations from RALMs. EM metric evaluates
the exact token overlap between the ground truth and gen-
erated answers. Furthermore, in existing RALM works, the
retriever is mostly evaluated via the generation quality of the
language model. However, we want to independently evalu-
ate retriever. In this regard, we design two metrics to eval-
uate the relevance and diversity of the extracted evidences
from the retriever: the query relevance and diversity metrics.
The query relevance metric calculates the semantic similar-
ity of the extracted passages with the input query via their
embeddings. Similarity scores are obtained via the dot prod-
uct of the embeddings. The diversity metric calculates the
ratio of the unique evidences in comparison to the total ev-
idences. We also devise a new metric, faithfulness score,
which incorporates the individual performance of both re-
triever and language model to evaluate the aggregate perfor-
mance of RALM. Faithfulness score is a measure combining
generation accuracy and relevance score of the retrieved pas-
sages via their harmonic mean. It is inspired from F1-Score
so that it weights the two metrics (accuracy and relevance
score) in a balanced way, requiring both to have a higher
value for the faithfulness score value to be high.

5 Performance Analysis
In this section, we analyze the performance of ATLANTIC
and other baseline models to answer two research questions
(RQ 1) and (RQ 2). We evaluate the performance of models
in terms of generation accuracy and quality of the extracted
evidences.

(RQ 1) Does retrieving structural knowledge help to im-
prove the overall model performance?

(RQ 2) How useful are the evidences generated from
structure-aware RALMs to justify model predictions in
science tasks?

Retrieving structural knowledge helps RALMs to per-
form better than just retrieving textual knowledge To
address (RQ 1), we evaluate the model performance on
Fields of study (FoS)/MAG and MMLU benchmarks and
compare the performance across ATLANTIC and ATLAS
model variants (as shown in Table 1). For FOS and MAG

evaluation, we first finetune all models with only the
FoS training instructions (as described in Section 4.5) and
then evaluate on FoS (in-distribution) and MAG (out-of-
distribution) test splits. Figures 2a and 2b report the per-
formance of the model. We observe that ATLANTIC model
outperforms all other baselines in these benchmarks. This
indicates that the proposed model has better aggregate per-
formance in terms of retrieving relevant passages and gener-
ating correct answers in science tasks.

Table 2: Models’ ablation study to evaluate performance on
MMLU

Model Mean accuracy Evidence Relevance
T5 0.331 N/A

ATLAS 0.341 0.825
ATLAS-Science 0.332 0.928

ATLANTIC 0.334 1.135

To further analyze the specific performance of the re-
triever and reader components, we tabulate their individual
results in Table 3. First, we observe that the accuracy of all
RALMs i.e., ATLAS, ATLAS-Science and ATLANTIC are
better than that of T5 for both in-distribution FoS and out-
of-distribution MAG tasks, demonstrating the importance
of retrieval augmentation. Second, we observe that the AT-
LANTIC (85.0 %) is better than that of ATLAS (84.40 %)
and ATLAS-Science (84.70 %) by a small margin of accu-
racy. This demonstrates that retrieving structural knowledge
has low impact in the performance of the reader (language
model) for scientific tasks. Third, this performance differ-
ence is in line with the MMLU benchmark, which we use
to evaluate models in science question answering. To this
end, we train all baseline and ATLANTIC models on the
MMLU train split similar to the configurations provided in
ATLAS (Izacard et al. 2022). We observe a minor difference
in the performance of ATLAS and ATLANTIC as shown in
Figure 2c and Table 2.

Structure aware RALMs retrieve relevant passages to
justify model predictions better than text-only models
To address the (RQ 2), we measure the quality of the re-
trieved passages across ATLAS, ATLAS-Science and AT-
LANTIC models. Though all models perform comparably in



Table 3: Models’ performance on in-distribution (SciDocs-FoS) and out-of-distribution (SciDocs-MAG) benchmarks.

Model
In-distribution Performance Out-of-distribution Performance

Accuracy Evidence Generation Accuracy Evidence Generation
EM F1 Relevance Diversity EM F1 Relevance Diversity

T5 0.833 0.87 N/A N/A 0.579 0.72 N/A N/A
ATLAS 0.844 0.92 0.694 5E-5 0.591 0.75 0.69 60E-5

ATLAS-Science 0.847 0.92 0.564 8E-5 0.578 0.73 0.571 100E-5
ATLANTIC 0.850 0.89 1.159 10E-5 0.595 0.60 1.163 120E-5

the generated answers, they differ significantly in the qual-
ity of the passages that they retrieve to support the generated
answers. For example, both ATLAS and ATLAS-Science
models achieve low relevance scores in comparison to what
achieved by the ATLANTIC model (Table 3). This sug-
gests that the passages retrieved by ATLAS as evidences do
not align accurately with the query. On the other hand, AT-
LANTIC retrieves more contextually relevant evidences. For
example, ATLANTIC model retrieves passages from Chem-
istry and Biology domains as evidence while ATLAS model
retrieves passages from Geology, and Social Science to sup-
port a query in Chemistry (see Appendix, Figure 3).

We also analyze the retrieved passes to support MMLU
predictions. As reported in Table 2, ATLANTIC model
records 1.135 relevance score over 0.825 in ATLAS.
ATLANTIC retrieves passages from the query domains
or at least related domains (such as physics-geology or
humanities-social science) whereas ATLAS fails in retriev-
ing passages even from the related domains where the query
belongs to (see Appendix, Figure 4 and 5 for sample out-
puts). This suggests that having structured knowledge in the
retrieval would help the model to extract most relevant pas-
sages to justify model predictions better than the models re-
trieving only textual knowledge.

Discussions: With our experiments, we can conclude that
ATLANTIC offers better aggregate performance than base-
line especially with respect to retriever. One potential expla-
nation for observing minor gain in the language model accu-
racy despite improved retrieval in ATLANTIC could be that
many of the questions in scientific benchmarks (at least the
ones we used) are fact-based. For such factual queries, the
language model may be less sensitive to the context from
retrieved passages, and its more memorizable. The impact
of retrieval will be evident in those benchmarks (queries)
that are very context dependent. Therefore, even though our
model is doing better in terms of aggregate performance due
to better retrieval, its impact on the accuracy of the language
model is low. We also urge the scientific community to de-
velop benchmarks that test the ability of the models to per-
form on interdisciplinary science tasks.

We also noted that some design configurations may have
some negative impacts on the effectiveness of the model. For
example, the retrieval corpus was frozen during model train-
ing, but the query encoder was allowed to receive the gradi-
ent updates to address scalability issues (Izacard et al. 2022).
This configuration may lead to the model being less able to
generalize to scientific data than what was originally tested

for general web-quality data. It remains as a future work for
developing solutions to address this trade-off between scal-
ability and effectiveness of the RALMs.

6 Conclusion
In this paper, we present our model, ATLANTIC with a
novel framework to integrate document structural knowl-
edge into retrieval-augmented language models. To this end,
we use a heterogeneous document graph to represent differ-
ent types of relationships between scientific documents from
more than 15 different scientific domains and develop a fu-
sion strategy to combine the text and structure in the knowl-
edge retrieval. We evaluate our model in multiple scientific
benchmarks to test the quality of the retrieved scientific text
passages. Our experiments demonstrate that retrieving struc-
tural knowledge helps retrieval-augmented language models
to perform better overall than only retrieving textual knowl-
edge. Specifically, structural knowledge helps the models to
extract more faithful documents as evidence to support the
model predictions. In the future, we will test our model on
a wider range of scientific benchmarks and tasks (e.g., hy-
pothesis generation), including those that require knowledge
from multiple scientific disciplines.

Acknowledgements
This work was supported by the NNSA Office of Defense
Nuclear Nonproliferation Research and Development, U.S.
Department of Energy, and Pacific Northwest National Lab-
oratory, which is operated by Battelle Memorial Institute
for the U.S. Department of Energy under Contract DE-
AC05–76RLO1830. This article has been cleared by PNNL
for public release as PNNL-SA-191272.

References
Borgeaud, S.; Mensch, A.; Hoffmann, J.; Cai, T.; Ruther-
ford, E.; Millican, K.; Van Den Driessche, G. B.; Lespiau,
J.-B.; Damoc, B.; Clark, A.; et al. 2022. Improving language
models by retrieving from trillions of tokens. In Interna-
tional conference on machine learning, 2206–2240. PMLR.

Clark, P.; Cowhey, I.; Etzioni, O.; Khot, T.; Sabharwal, A.;
Schoenick, C.; and Tafjord, O. 2018. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457.

De Jong, M.; Zemlyanskiy, Y.; FitzGerald, N.; Ainslie, J.;
Sanghai, S.; Sha, F.; and Cohen, W. W. 2023. Pre-computed



memory or on-the-fly encoding? A hybrid approach to re-
trieval augmentation makes the most of your compute. In In-
ternational Conference on Machine Learning, 7329–7342.
PMLR.

Guu, K.; Lee, K.; Tung, Z.; Pasupat, P.; and Chang, M.-w.
2020. REALM: Retrieval-Augmented Language Model Pre.
Training.

Hendrycks, D.; Burns, C.; Basart, S.; Zou, A.; Mazeika,
M.; Song, D.; and Steinhardt, J. 2020. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300.

Hu, Z.; Dong, Y.; Wang, K.; and Sun, Y. 2020. Heteroge-
neous graph transformer. In Proceedings of the web confer-
ence 2020, 2704–2710.

Hu, Z.; Iscen, A.; Sun, C.; Wang, Z.; Chang, K.-W.; Sun,
Y.; Schmid, C.; Ross, D. A.; and Fathi, A. 2023. Re-
veal: Retrieval-augmented visual-language pre-training with
multi-source multimodal knowledge memory. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 23369–23379.

Izacard, G.; Caron, M.; Hosseini, L.; Riedel, S.; Bojanowski,
P.; Joulin, A.; and Grave, E. 2021. Unsupervised dense in-
formation retrieval with contrastive learning. arXiv preprint
arXiv:2112.09118.

Izacard, G.; and Grave, E. 2020. Distilling knowledge from
reader to retriever for question answering. arXiv preprint
arXiv:2012.04584.

Izacard, G.; Lewis, P.; Lomeli, M.; Hosseini, L.; Petroni, F.;
Schick, T.; Dwivedi-Yu, J.; Joulin, A.; Riedel, S.; and Grave,
E. 2022. Few-shot learning with retrieval augmented lan-
guage models. arXiv preprint arXiv:2208.03299.
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Heterogeneous Document Graph Statistics
The Table 4 reports the statistics of the document graph do-
main wise.

Table 4: S2ORC Knowledge Graph Statistics.

Scientific Domain #Nodes #Links
Papers Authors Venues Paper-writes-Author Paper-PublishedIn-Venue Paper-cites-Paper

Art 1911954 1084868 62244 2466562 293012 67566
Biology 7331543 6514119 53775 21362778 881701 10080386
Business 3105463 2392490 91310 5197775 536536 791937
Chemistry 9704121 7605776 59378 31548346 833327 2942550
Computer Science 10079285 6700984 263147 25190878 4852428 25890139
Economics 3259612 1856345 58804 5623986 291409 4926950
Engineering 8139131 6489295 100977 18123052 1399082 3215152
Environmental Science 1811696 2202507 44863 4553526 319323 136134
Geography 2978349 2693235 78629 5822277 394774 221624
Geology 2729089 2202712 30510 7637245 355179 4840140
History 2876722 1323615 86920 3548622 374663 142664
Materials Science 7147352 6258034 63829 22680518 1173532 2718010
Mathematics 4163967 2611249 136469 8186619 635732 6391187
Medicine 28504536 18078042 112321 98334667 17419463 67694337
Philosophy 1219530 606965 55551 1418267 204771 125500
Physics 6501506 3814657 420139 28145181 1211603 4771985
Political Science 3933917 2268650 126063 5495180 693493 489718
Psychology 5144736 3563474 104041 9731235 720134 3618670
Sociology 3993869 1982767 92229 5338489 347194 1475856

Benchmark Examples



Figure 3: Example generations from ATLAS and ATLANTIC models in SciRepEval-FoS (Singh et al. 2022) task. We color the
input query in gray, and the generated answer in red. We list three passages as retrieved by the model to support the answer. We
annotate each document by the corresponding scientific domain.



Figure 4: Example generations from ATLAS and ATLANTIC models in MMLU task. Accurate retrieval from ATLANTIC but
inaccurate retrieval from ATLAS. We color the input query in gray, and the generated answer in red. We list two passages as
retrieved by the model to support the answer. We annotate each document by the corresponding scientific domain.



Figure 5: Example generations from ATLAS and ATLANTIC models in MMLU benchmark with related inaccurate retrieval to
support accurate model predictions. We color the input query in gray, and the generated answer in red. We list two passages as
retrieved by the model to support the answer. We annotate each document by the corresponding scientific domain.


