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Abstract

The symbolic discovery of Ordinary Differential Equations
(ODEs) from trajectory data plays a pivotal role in AI-driven
scientific discovery. Existing symbolic methods predomi-
nantly rely on fixed, pre-collected training datasets, which
often result in suboptimal performance, as demonstrated in
our case study in Figure 1. Drawing inspiration from ac-
tive learning, we investigate strategies to query informative
trajectory data that can enhance the evaluation of predicted
ODEs. However, the butterfly effect in dynamical systems re-
veals that small variations in initial conditions can lead to
drastically different trajectories, necessitating the storage of
vast quantities of trajectory data using conventional active
learning. To address this, we introduce Active Symbolic Dis-
covery of Ordinary Differential Equations via Phase Portrait
Sketching (APPS). Instead of directly selecting individual ini-
tial conditions, our APPS first identifies an informative region
within the phase space and then samples a batch of initial
conditions from this region. Compared to traditional active
learning methods, APPS mitigates the gap of maintaining a
large amount of data. Extensive experiments demonstrate that
APPS consistently discovers more accurate ODE expressions
than baseline methods using passively collected datasets.

Code — https://github.com/jiangnanhugo/APPS-ODE
Extended version — https://arxiv.org/abs/2409.01416

1 Introduction
Uncovering the governing principles of physical systems
from experimental data is a crucial task in AI-driven sci-
entific discovery (Schmidt and Lipson 2009; Zhang and Lin
2018; Wu and Tegmark 2019). Recent advancements have
introduced various methods for uncovering knowledge of
dynamical systems in symbolic Ordinary Differential Equa-
tion (ODE) form, leveraging techniques such as genetic
programming (He et al. 2022), sparse regression (Brunton,
Proctor, and Kutz 2016; Fasel et al. 2022), Monte Carlo
tree search (Sun et al. 2023), pretrained Transformers (Qian,
Kacprzyk, and van der Schaar 2022), and deep reinforce-
ment learning (Jiang, Nasim, and Xue 2024).

State-of-the-art approaches discover the symbolic ODEs
using a fixed, pre-collected training dataset. However, their
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performance is often heavily influenced by the quality of the
collected data. As illustrated in Figure 1, we find that the
best-discovered ODEs from the most recent baseline, that is
ODEFormer (d’Ascoli et al. 2024), may fit some test trajec-
tories well, but fit other test trajectories poorly. This observa-
tion highlights the need for new methods that actively query
informative trajectory data to improve ODE discovery.

Suppose trajectory data can be obtained from a data ora-
cle by specifying the initial conditions. To minimize exces-
sively querying the oracle, a key challenge emerges: given a
set of candidate ODEs predicted by a learning method, how
can initial conditions within the variable intervals be strate-
gically selected to obtain informative data?

Previous work in the active learning literature typically
maintains a large set of data, evaluates their informativeness,
and then queries the most informative data points (Golovin,
Krause, and Ray 2010; Medina and White 2023). How-
ever, the chaotic nature of dynamical systems complicates
the direct application of such methods. The Butterfly effect
states that small variations in initial conditions can lead to
vastly different outcomes. For instance, as illustrated in Fig-
ure 2(c), selecting initial conditions near (3, 0) for ϕ1 can
result in trajectories that diverge in opposite directions. Ef-
fectively addressing this variability requires densely sam-
pling initial conditions to thoroughly explore the space. Ex-
isting active learning-based approaches will be computation-
ally prohibitive and demand significant memory resources,
particularly in high-dimensional dynamical systems.

To address these challenges, we propose a novel approach
to data querying. We consider selecting a batch of close-
neighbor initial conditions instead of individual initial con-
ditions. This process begins by sketching the dynamics in
smaller regions, identifying an informative region in the
phase space, and then sampling a batch of initial conditions
from this region. Figure 2(c) illustrates this idea using phase
portraits for three candidate ODEs. Region u2 is chosen be-
cause the trajectories generated by the candidate ODEs ex-
hibit greater divergence in this region than region u1. Sec-
tion 3 provides detailed region selection criteria.

Thus, we introduce Active Symbolic Discovery of Or-
dinary Differential Equations via Phase Portrait Sketching
(APPS), which consists of two key components: (1) a deep
sequential decoder, which guides the search for candidate
ODEs by sampling from the defined grammar rules. (2) a
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Figure 1: The performance of predicted ODE from passively-learned baseline is heavily influenced by the collected training
data while our APPS method is not. The dots represent noisy ground-truth trajectory data, and the lines show predicted values of
state variables under identical initial conditions. (a, b) Our APPS and the baseline predict accurately for the trajectory starting
at x0 = (0, 1). (c, d) For the trajectory starting at x0 = (4,−1), the baseline performs poorly while APPS maintains accuracy.

data query and evaluation module that actively queries the
data using sketched phase portraits and evaluates the candi-
date ODE. In experiments, we evaluate APPS against sev-
eral popular baselines on two large-scale ODE datasets. 1)
APPS achieves the lowest median NMSE (in Table 1 and Ta-
ble 2) across multiple datasets under noiseless and noisy set-
tings. 2) Compared to other active learning strategies, APPS
is more time efficient in benchmark datasets (in Table 3).

2 Preliminaries
Ordinary Differential Equations (ODEs) describe the evo-
lution of dynamical systems in continuous time. Let vector
x(t) = (x1(t), . . . , xn(t)) ∈ Rn be the state variables of
the system of time t. The temporal evolution of the system
is governed by the time derivatives of the state variables, de-
noted as dxi

dt . The general form of the ODE is written as:

dxi

dt
= fi(x(t), c), for i = 1, . . . , n,

where fi can be a linear or nonlinear function of the state
variables x and coefficients c. The ODE is noted as a tu-
ple (f1, f2, . . . , fn) for simplicity in this paper. Function fi
is symbolically expressed using a subset of input variables
in x and coefficients in c, connected by mathematical oper-
ators such as addition and cosine functions. For example,
we use (10 sin(x2), 4 cos(x1 + 2)) to represent the ODE
dx1

dt = 10 sin(x2),
dx2

dt = 4 cos(x1 + 2).
Given an initial condition x0, the solution to the ODE is a

trajectory of state variables (x0,x(t1), . . . ,x(tk)) observed
at discrete time points (t1, . . . , tk), possibly with noise. The
trajectory is noted as τ for simplicity.
Phase Portrait is a qualitative analysis tool for studying the
behavior of dynamical systems (Strogatz 2018). Phase por-
traits are plotted using the state variables x and their time
derivatives (f1, . . . , fn). A curve in the phase portrait is a
short trajectory of the system over time from a given initial
condition. The arrow on the curve indicates the direction of
change. By examining these curves, we can infer key prop-
erties of the system, such as stability, equilibrium points,
and periodic behavior. Figure 2(c) shows phase portraits for

three different ODEs. These portraits are generated by sam-
pling random initial conditions within the variable intervals
and evolving the system for a short time.
Symbolic Discovery of Ordinary Differential Equations
seeks to uncover the symbolic form of an ODE that best fits
a dataset of observed trajectories. According to Gec et al.
(2022) and Sun et al. (2023), we are given a dataset of col-
lected trajectories D = {τ1, . . . , τN} and a set of mathemat-
ical operators {+,−,×,÷, sin . . .}. Denote ϕ(x(t), c) as a
candidate ODE, where c indicates the coefficients. The ob-
jective is to predict the symbolic form of the ODE that min-
imizes the distance between the predicted and observed tra-
jectories, which is formalized as an optimization problem:

argmin
ϕ∈Π

1

|D|
∑
τ∈D

k∑
i=1

ℓ(x(ti), x̂(ti)),

where x̂(ti) = x0 +

∫ ti

0

ϕ(x(t), c)dt.

(1)

Π is the set of all possible ODEs, trajectory τ := (x0,x(t1),
. . . ,x(tk)), x(t) is the ground-truth observations of the state
variable. Trajectory (x0, x̂(t1), . . . , x̂(tk)) is the predicted
state variables according to the candidate ODE ϕ. The pre-
dicted trajectory (x0, x̂(t1), . . . , x̂(tk)) is obtained by nu-
merically integrating the ODE from the given initial state x0

to the final time tk. The loss function ℓ computes the summa-
rized distance between the predicted and ground-truth tra-
jectories at each time step. A typical loss is the Normalized
Mean Squared Error (NMSE, defined in Appendix D). Ex-
cept for the above formulation, prior works in symbolic re-
gression use the approximated time derivative as the label
to discover each expression fi separately, which is known as
gradient matching. We leave the discussion to Related Work.

Recent research explored deep reinforcement learning to
discover the governing equations from data (Petersen et al.
2021; Abolafia, Norouzi, and Le 2018; Mundhenk et al.
2021). In these approaches, each expression is represented
as a binary tree, with interior nodes corresponding to math-
ematical operators and leaf nodes to variables or constants.
An ODE with n variables is represented by n trees. The key
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Figure 2: The pipeline of APPS for symbolic discovery of ODEs consists of 3 steps: (a) ODEs are sampled from the sequential
decoder by iteratively sampling grammar rules. The predicted rule at each step serves as input for the decoder in the subsequent
step. (b) The sampled sequence of grammar rules is converted into a valid ODE with n = 2 variables. Each rule expands
the first non-terminal symbol, with the expanded parts highlighted in blue colors for clarity. (c) The phase portrait for the
predicted ODEs (e.g., ϕ1, ϕ2, ϕ3) is sketched, and regions with high informativeness, such as u2, are identified to query the new
trajectory data. In region u2, ϕ1 exhibits a saddle point, ϕ2 moves downward, and ϕ3 moves upward. In contrast, in region u1,
all trajectories move from right to left. Differentiating the predicted expressions is easier in region u2 than in region u1.

idea is to frame the search for different ODEs as a sequen-
tial decision-making process based on the preorder traversal
sequence of expression trees. A high reward is assigned to
candidates which fit the data well. The search is guided by
a deep sequential decoder, often based on RNN, LSTM, or
decoder-only Transformer, that learns the optimal probabil-
ity distribution for selecting the next node in the expression
tree at each step. The parameters of the decoder are trained
with the policy gradient algorithm.

3 Methodology
Motivation
For the task of symbolic discovery of ODEs, we observe that
existing methods frequently overfit the training data. This
issue is illustrated in Figure 1 using ODEFormer (d’Ascoli
et al. 2024), a recent baseline designed to learn ODEs from
a fixed training dataset. In the example, the best-predicted
ODE is given by ϕ = (1.04x2,−0.02 − 0.77x1). We eval-
uate ϕ on noisy test trajectories (depicted as blue dots) with
two distinct initial conditions. While ϕ closely aligns with
the trajectory originating at x0 = (0, 1), as shown by the

green curve, it produces substantial errors for a trajectory
starting at x0 = (4,−1), where the predicted curve deviates
significantly from the ground truth.

This observation motivates us to actively identify infor-
mative trajectory data to better differentiate candidate ex-
pressions during the learning process. Each trajectory is gen-
erated by querying the data oracle with a specified initial
condition x0. An initial condition is deemed informative
if the resulting trajectory for different candidate ODEs di-
verges significantly. The key challenge lies in selecting such
informative initial conditions from the variable intervals for
a given set of candidate ODEs.

For addressing this issue, a common approach in active
learning (Golovin, Krause, and Ray 2010) is to maintain
a large set of potential initial conditions, evaluate their in-
formativeness, and query the most informative points. How-
ever, the butterfly effect in chaos theory (Lorenz 1963) sug-
gests existing works in active learning are not directly ap-
plicable. The chaotic behavior states small changes in initial
conditions can lead to drastically different outcomes in dy-
namical systems. For example, as shown in Figure 2(c), se-
lecting points near (3, 0) (inside the red region u2) for ϕ1 can



lead to trajectories diverging either towards the top right or
the bottom left. Such chaotic behavior necessitates the exist-
ing active learning methods to maintain a large set of initial
conditions to adequately cover the domain, which becomes
infeasible for high-dimensional dynamical systems.

To mitigate this issue, we consider selecting a beam of
near-neighbor points rather than individual points. We pro-
pose first to select a highly informative region and sample a
batch of initial conditions within that region. In this research,
the region is represented as an n-dimensional cube of fixed
width. A region is regarded as informative if the majority of
sampled initial conditions within it yield informative trajec-
tories for the given candidate ODEs.

Figure 2(c) illustrates our region-based approach using
the phase portraits of three candidate ODEs: ϕ1, ϕ2, and
ϕ3. Each curve in the phase portrait represents a short tra-
jectory, with its starting point and direction indicating the
initial conditions and the direction of evolution over time.
A closer look reveals significant differences in dynamics
within region u2 across the ODEs. While the curves in re-
gion u1 = [−2, 0]× [−2, 0] consistently move from the bot-
tom right to the top left in all phase portraits, the trajectories
in region u2 = [2, 4] × [−1, 1] exhibit drastically different
behaviors. This indicates that trajectories originating from
region u2 are more divergent and thus more informative.
Main Procedure. The proposed APPS, illustrated in Fig-
ure 2, comprises two key components: (1) Deep Sequential
Decoder. This module predicts candidate ODEs by sampling
sequences of grammar rules defined for symbolic ODE rep-
resentation. (2) Data Sampling Module. Using the proposed
phase portrait sketching, this module selects a batch of in-
formative ground-truth data points.

Throughout the training process, the reward for the pre-
dicted ODEs is computed using the queried data, and the
decoder parameters are updated via policy gradient estima-
tion. Among all sampled candidates, APPS selects the ODE
with the smallest loss value (as defined in Equation 1) as the
final prediction.
Connection to Existing Approaches. Like d’Ascoli et al.
(2024), APPS employs a Transformer-based decoder. How-
ever, unlike d’Ascoli et al. (2024), which learns from fixed
data, APPS actively queries new data. The learning objective
of APPS is inspired by Petersen et al. (2021), where both
approaches guide the search for the optimal equation as a
decision-making process over a sequence of tokens.

Existing active learning methods, particularly in symbolic
regression, have largely overlooked the chaotic behaviors in-
herent in dynamical systems. For instance, Jin et al. (2023)
proposed a separate generative model for sampling infor-
mative data, assuming that input data within a small region
should exhibit minimal output divergence. However, this as-
sumption fails to hold in the context of dynamical systems.
Additionally, Haut, Banzhaf, and Punch (2024) formulated
an optimization problem based on the Query-By-Committee
(QBC) method in active learning, to find those informative
initial conditions. But the optimization needs to maintain a
large set of data points, to account for the chaotic behaviors.
The rest of the discussion is provided in the Related Work.

The Learning Pipeline
Data Assumption. Our method relies on the assumption that
we can query a data oracle O by specifying the initial con-
ditions x0 and discrete times T = (t1, . . . , tk). The oracle
executes O(x0, T ) and returns a (noisy) observation of the
trajectory at the specified discrete times T . In science, this
data query process is achieved by conducting real-world ex-
periments with specified configurations. Recent work (Chen
and Xue 2022; Keren, Liberzon, and Lazebnik 2023; Haut,
Punch, and Banzhaf 2023) also highlight the importance of
having the oracle that can actively query data points, rather
than learning from a fixed dataset.
Expression Representation. To enable the sequential de-
coder to predict an ODE by generating a sequence step-by-
step, we extend the context-free grammar to represent an
ODE as a sequence of grammar rules (Todorovski and Dze-
roski 1997; Gec et al. 2022; Sun et al. 2023). The grammar
is defined by the tuple ⟨V,Σ, R, S⟩, where V is a set of non-
terminal symbols, Σ is a set of terminal symbols, R is a set
of production rules and S ∈ V is the start symbol.

More specifically, each component of the grammar is:
1) For the non-terminal symbols, we use A to repre-
sent a sub-expression for dx1

dt and B to represent a sub-
expression for dx2

/ dt. For dynamical systems with n vari-
ables, we use n distinct non-terminal symbols. 2) The ter-
minal symbols include the input variables and constants
{x1, . . . , xn, const}. 3) The production rules correspond to
mathematical operations. For example, the addition opera-
tion is represented as A→ (A+A), where the rule replaces
the left-hand symbol with the right-hand side. 4) The start
symbol is redefined as “ϕ→ A,B”, where the comma nota-
tion indicates that A and B represent two separate equations
in a two-variable dynamical system. Similarly, there will be
n non-terminal symbols connected by n − 1 comma for n-
dimensional dynamical system.

Starting from the start symbol, different symbolic ODEs
are constructed by applying the grammar rules in various se-
quences. An ODE is valid if it only consists of terminal sym-
bols; otherwise, it is invalid. Figure 2(b) provides an exam-
ple of constructing the ODE dx1

dt = x2, dx2

dt = −0.9 sin(x1)
from the start symbol ϕ → A,B using a sequence of gram-
mar rules. The replaced parts are color highlighted. Initially,
the multiplication rule B → B × B is applied, replac-
ing the symbol B in f2 = B with B × B, resulting in
ϕ → A,B × B. Next, the rule A → x2 is applied, yielding
ϕ → x2, B × B. Iteratively applying the rules, we even-
tually obtain ϕ → x2, c1 × sin(x1), which corresponds
to one candidate ODE ϕ = (x2, c1 sin(x1)). The coeffi-
cient c1 = −0.9 is obtained when fitting to the trajectory
data. The procedure of coefficient fitting is described in Ap-
pendix C “Implementation of APPS” section.
Sampling ODEs from Decoder. The proposed APPS is built
on top of a sequential decoder, which generates different
ODEs as a sequential decision-making process. The decoder
can be RNN, LSTM, or the decoder-only Transformer. The
input and output vocabulary is the set of allowed rules cov-
ering input variables, coefficients, and mathematical opera-
tors. Predicting ODEs involves using the decoder to sample



a sequence of grammar rules, where each sequence corre-
sponds to a candidate ODE using previously defined gram-
mar. The objective of APPS is to maximize the probabil-
ity of sampling those ODEs that fit the data well. This is
achieved through the REINFORCE objective, where the ob-
jective computes the expected reward of ODE to the data. In
our formulation, the reward is evaluated on selected data by
the phase portrait sketching module.

As shown in Figure 2(a), the decoder receives the start
symbol s0 = “ϕ→ A,B” and outputs a categorical distribu-
tion pθ(s1|s0) over rules in the output vocabulary. This dis-
tribution represents the probabilities of possible next rules
in the partially completed expression. One token is drawn
from this distribution, s1 ∼ p(s1|s0), which serves as the
prediction for the second rule and is used as the input for
the next step. At t-th step, the predicted output from the
previous step st is used as the input for the current step.
The decoder draws rule st+1 from the probability distribu-
tion st+1 ∼ pθ(st+1|s0, . . . , st). This process iterates until
maximum steps are reached, with a probability of pθ(s) =∏m−1

i=1 pθ(si|s1, . . . , si−1). The sampled sequence is con-
verted into an expression following the definition previously
described in “Expression Representation”.
Active Query Data with Phase Portrait Sketching. To
evaluate the goodness-of-fit of generated ODEs from the de-
coder and differentiate which one is better, we propose com-
paring the phase portrait of predicted ODEs. We sketch the
phase portrait using collections of short trajectories, all start-
ing from the same initial conditions and sharing the same
time sequence.

Following our discussion in the “Motivation” section, a
region is considered informative for distinguishing between
two candidate ODEs if their sketched phase portraits dif-
fer. To identify such regions, we randomly sample several
and sketch the phase portraits for all candidate ODEs within
each. The most informative region is then selected, and we
query the data oracle (noted as O) for the ground-truth tra-
jectory in that region.

Formally, assume we are given M ODEs, {ϕ1, . . . , ϕM},
and K randomly selected regions, {u1, . . . , uK}. Each re-
gion uk is a Cartesian product of n intervals, expressed as
uk = [a1, b1] × · · · × [an, bn]. To sketch the dynamics of
candidates in the region uk, we uniformly sample L points
in uk, x1, . . . ,xL, as initial conditions. For region uk, the
trajectory τm,k,l = (xl, x̂(t1), . . . , x̂(tk)) is generated by
the expression ϕm, starting from the l-th initial condition xl

and evolving over time according to the numerical integra-
tion x̂(ti) = xl +

∫ ti
0

ϕm(x(t), c) dt for ti ∈ {t1, . . . , tk}.
The resulting L short trajectories form a sketched phase por-
trait for ODE ϕm in the region uk.

Two expressions, ϕm and ϕm′ , have similar sketches in
region uk if their corresponding trajectories, starting from
the same initial condition, are close. Specifically, this occurs
when

∑L
l=1 ∥τm,k,l − τm′,k,l∥ ≈ 0. We define the pairwise

informative score between ϕm and ϕm′ in region uk as:

IF(ϕm, ϕm′ , uk) =
1

L

L∑
l=1

∥τm,k,l − τm′,k,l∥22 (2)

The total informative score for a region (denoted as IF(uk))
is the sum of the pairwise informative scores for every pair
of candidate ODEs. The informative score for region uk is:

IF(uk) =
1

M

M∑
m=1

M∑
m′=m+1

IF(ϕm, ϕm′ , uk) (3)

We select the region with the highest informative score, de-
noted u∗ ← argmaxKk=1 IF(uk). A batch of m initial con-
ditions, {x1, . . . ,xm}, is then sampled from region u∗, and
the data oracleO(xi, T ) is queried with the given initial con-
ditions. The obtained ground-truth trajectories are used to
compute the reward function for the objective, which in turn
updates the model’s parameters. In practice, the relative size
of the regions and the number of sampled regions are set as
hyper-parameters in the experiments.
Policy Gradient-based Training. The REINFORCE objec-
tive that maximizes the expected reward is

J(θ) := Es∼pθ(s)[reward(s)]

where pθ(s) is the probability of sampling sequence s and θ
represents the parameters of the decoder. Following the RE-
INFORCE policy gradient algorithm (Williams 1992), the
gradient w.r.t. the objective ∇θJ(θ) is estimated by the em-
pirical average over the samples from the probability dis-
tribution pθ(s). We first sample N sequences (s1, . . . , sN ),
and an unbiased estimation of the gradient of the objective
is computed as:

∇θJ(θ) ≈
1

N

N∑
i=1

reward(si)∇θ log pθ(s
i)

The parameters of the decoder are updated using the esti-
mated policy gradient value. This update process increases
the probability of generating high goodness-of-fit ODEs.
Detailed derivations are presented in Appendix C.

4 Related Work
AI-driven Scientific Discovery. Artificial intelligence has
increasingly been employed to accelerate discoveries in
learning ordinary and partial differential equations directly
from data (Brunton, Proctor, and Kutz 2016; Wu and
Tegmark 2019; Zhang and Lin 2018; Iten et al. 2020; Cran-
mer et al. 2020; Raissi, Yazdani, and Karniadakis 2020;
Raissi, Perdikaris, and Karniadakis 2019; Liu and Tegmark
2021; Xue et al. 2021; Chen et al. 2018).
Symbolic Regression for ODEs. Symbolic regression, tra-
ditionally used to identify algebraic equations between in-
put variables and output labels, has been extended to dis-
cover ODEs. A key ingredient is gradient matching, which
approximates labels for symbolic regression by using fi-
nite differences of consecutive states along a trajectory (Sun
et al. 2023; Brence, Todorovski, and Dzeroski 2021; Qian,
Kacprzyk, and van der Schaar 2022; Gec et al. 2022). Recent
methods, such as SINDy and its extensions (Brunton, Proc-
tor, and Kutz 2016; Egan, Li, and Carvalho 2024), leverage
sparse regression techniques to directly learn the structure of
ODEs and PDEs from data. They perform particularly well



Strogatz dataset (σ2 = 0, α = 0) ODEbase dataset (σ2 = 0, α = 0)
n = 1 n = 2 n = 3 n = 4 n = 2 n = 3 n = 4 n = 5

SPL 0.787 0.892 1.921 2.865 0.867 2.17 4.75 13.16
E2ETransformer 6.47E−4 1.620 T.O. T.O. 0.757 T.O. T.O. T.O.

ProGED 0.129 0.666 2.68 3.856 0.317 2.134 T.O. T.O.
SINDy 1.90E−4 0.217 1.539 4.810 0.521 2.112 8.334 52.12

ODEFormer 0.0303 0.9261 1.033 1.010 0.213 0.245 1.213 3.148
APPS (ours) 2.06E−6 0.2912 1.011 0.521 0.1318 0.1306 1.046 3.054

Table 1: On the noiseless datasets with regular time sequence (σ2 = 0, α = 0), Median NMSE is reported over the best-
predicted expression found by all the algorithms. Our APPS method can discover the governing expressions with smaller
NMSE values than baselines, under the noiseless setting. T.O. means termination with a 24-hour limit.

with trajectory data sampled at small, regular time intervals,
where the approximations closely align with true derivatives.
Neural Networks Learns Implicit ODEs. This research di-
rection involves learning ODE implicitly. Early work em-
ployed Gaussian Processes to model ODEs (Heinonen et al.
2018). Neural ODEs further advanced the field by pa-
rameterizing ODEs with neural networks, enabling train-
ing through backpropagation via ODE solvers (Chen et al.
2018). Physics-informed neural networks integrate physical
knowledge, such as conservation laws, into the modeling
process (Raissi, Perdikaris, and Karniadakis 2019). Mean-
while, Fourier neural operators use neural networks to learn
the functional representation (Li et al. 2021).
Active Learning aims to query informative unlabeled data
to accelerate convergence with fewer samples (Wagenmaker
and Jamieson 2020; Mania, Jordan, and Recht 2022; Sener
and Savarese 2018; Ash et al. 2020). In symbolic regression,
query-by-committee strategies have been explored to ac-
tively query data for discovering algebraic equations (Haut,
Banzhaf, and Punch 2022; Haut, Punch, and Banzhaf 2023).
For example, Jin et al. (2023) proposed a method that
learns uncertainty distributions using neural networks and
queries data with high uncertainty. However, all these meth-
ods largely overlooked the chaotic behaviors inherent in dy-
namical systems.

5 Experiments
This section shows our APPS can find ODEs with the
smallest errors (Normalized MSE) among all competing ap-
proaches, under noiseless, noisy, and irregular time settings
(see Table 1 and Table 2). Compared to the baselines, our
APPS data query strategy requires fewer data and attains a
better ranking of the TopK candidate ODEs (see Table 3).

Experimental Settings
Datasets. We consider 2 datasets of multivariate variables,
including (1) Strogatz dataset (d’Ascoli et al. 2024) of 80
instances, collected from the Strogatz textbook (Strogatz
2018). It is formalized as a benchmark dataset by (d’Ascoli
et al. 2024). (2) ODEBase dataset (Lüders, Sturm, and Rad-
ulescu 2022) of 114 instances, containing equations from
chemistry and biology. Each dataset is further partitioned by
the number of variables contained in the ODE.

We consider 3 different conditions: (1) regular time noise-
less condition, (2) regular time noisy condition, and (3) ir-

regular time condition. In the noiseless setting, the obtained
data is exactly the evaluation of the ground-truth expression.
In the noisy setting, the obtained data is further perturbed
by Gaussian noise. We add multiplicative noise by replac-
ing each x(ti) with (1 + ε)x(ti), and ε is sampled from a
zero mean multivariate Gaussian distribution with diagonal
variances diag(σ2, . . . , σ2). The noise rate is determined by
σ2. For both noiseless and noisy settings, the data points are
sampled at regular time intervals. In the irregular time set-
ting, we first generate the regular time sequence and drop a
fraction with probability α. The rate of time irregularity is
determined by α.
Baselines. We consider a line of recent works for symbolic
equation discovery as our baselines. The methods using pas-
sive data query strategy are as follows: (1) SINDy (Brun-
ton, Proctor, and Kutz 2016), (2) ODEFormer (d’Ascoli
et al. 2024), (3) Symbolic Physics Learner (SPL) (Sun et al.
2023), (4) Probabilistic grammar for equation discovery
(ProGED) (Gec et al. 2022), (5) end-to-end Transformer
(E2ETransformer) (Kamienny et al. 2022).
Evaluation. For evaluating all the methods, we considered 3
different metrics: (1) goodness-of-fit using NMSE, (2) em-
pirical running time of data querying step, and (3) ranking-
based distance. The goodness-of-fit using the NMSE indi-
cates how well the learning algorithms perform in discover-
ing symbolic expressions. Given the best-predicted expres-
sion by each algorithm, we evaluate the goodness-of-fit on
a larger testing set with longer time steps and a larger batch
size of data. The median (50%) of the NMSE is reported in
the benchmark table. The full quantiles (25%, 50%, 75%) of
the NMSE are further provided. The remaining details of the
experiment settings are in Appendix D.

Experimental Analysis
Goodness-of-fit Benchmark. We summarize our APPS on
several challenging multivariate datasets with noiseless data
in Table 1. It shows our APPS attains the smallest median
NMSE values on all datasets, against a line of current popu-
lar baselines. The performance of SPL and E2Etransformer
drops greatly on irregular time sequences because the ap-
proximated time derivative becomes inaccurate when miss-
ing the intermediate sequence. Our APPS does not suffer
from that because it outputs the predicted trajectory and does
not need to approximate the time derivative. Another reason
is the decoder with massive parameters can better adapt to



Noisy Strogatz datasets (σ2 = 0.01, α = 0) Irregular Strogatz dataset (σ2 = 0, α = 0.1)
n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4

SPL 0.938 1.019 2.915 3.068 0.127 0.526 3.196 4.193
SINDy 6.4E−3 4.152 2.498 5.21 6.66E−4 0.472 0.827 4.163

ProGED 0.121 0.658 3.673 3.856 0.134 0.769 2.766 4.181
ODEFormer 0.139 0.621 2.392 0.812 0.031 1.036 1.51 1.011
APPS (ours) 7.75E-4 0.369 1.381 0.657 1.06E-6 0.215 1.012 0.947

Table 2: On the Strogatz dataset, the Median NMSE is reported over the best-predicted expression found by all the algorithms
under noisy or irregular time sequence settings.
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Figure 3: On the selected data (Strogatz dataset with n = 1),
quartiles of NMSE and R2 scores of the learning algorithms.

actively collected datasets.
Noisy and Irregular Time Settings. We examine the per-
formance of predicting trajectories in the presence of noise
and irregular time sequences in Table 2. The ground-truth
trajectory is subject to Gaussian noise with zero mean and
σ2 = 0.05, and an irregularly sampled sequence where 50%
of evenly spaced points are uniformly dropped. The pre-
dicted trajectory by each algorithm is compared against the
ground truth, utilizing identical initial conditions. Our APPS
still attains a relatively smaller NMSE against baselines un-
der the two settings.
Quantiles of Evaluation Metrics. We further report the
quantiles of the NMSE metric in Figure 3 to assist the re-
sult in Table 1(a). Note that we cut off the negative values
as zero when demonstrating R2 score. The two box plots in
Figure 3 show the proposed APPS is consistently better than
the baselines in terms of the full quantiles (25%, 50%, 75%)
of the NMSE metric.
Benchmark with other Active Strategies. Two baseline
methods using active learning strategy are: (1) query-by-
committee (QbC) proposed in (Haut, Banzhaf, and Punch
2022; Haut, Punch, and Banzhaf 2023). (2) Core-Set (Sener
and Savarese 2018) proposes to sample diverse data. These
methods were originally proposed with different neural net-
works, thus we evaluate these different active learning meth-
ods using the same decoder in our APPS. Current active
learning methods are not directly available for evaluation
in our problem setting (in Equation 1), so we re-implement
these query strategies with the new problem setting.

The running time of the data querying step measures the
efficiency of every active learning algorithm for this task.
The ranking-based distance indicates if the ranking of many
candidate expressions is exactly the same as evaluated on

Ranking-based Running Peak
distance (↓) Time (↓) Memory (↓)

APPS (ours) 0.08 5.2 sec 3.76 MB
QbC 0.13 13.4 sec 51 MB

CoreSet 0.22 4.3 sec 2.74 GB

Table 3: Ranking comparison with different active learn-
ing strategies. APPS shows a smaller ranking-based distance
than other strategies, which is better for ranking those best-
predicted expressions. Also APPS takes less memory con-
sumption and less computational time because the sketching
step itself is lightweight.

full data. If the predicted ODEs are ranked in the same order
as the full data, then the ranking-based distance (Kendall tau
score) will be close to zero.

In Table 3, given a set of 20 predicted ODEs, we compare
the TopK ranking (i.e., top 3) of predicted ODEs by each ac-
tive learning strategy is the same as using full data. We find
both our phase portrait and QbC rank those predicted ODEs
in proper ranking order. Our APPS takes the least memory to
locate the most informative region and is also time efficient
because we only pick one region among all the available re-
gions. The QbC takes much more time because it finds every
initial condition as an optimization problem over the input
variables, which is solved by a separate gradient-based op-
timizer. CoreSet first runs a clustering algorithm over the
ground-truth data and then samples a diverse set of initial
conditions from each cluster. So the memory usage of Core-
set is mainly determined by the first clustering step.

6 Conclusion

In this paper, we introduced APPS, a novel approach for dis-
covering ODEs from trajectory data. By actively reasoning
about the most informative regions within the phase portrait
of candidate ODEs, APPS overcomes the limitations of pas-
sively learned methods that rely on pre-collected datasets.
Our approach also reduces the need for extensive data col-
lection while still yielding highly accurate and generalizable
ODE models. The experimental results demonstrate that
APPS consistently outperforms baseline methods, achieving
the lowest median NMSE across various datasets under both
noiseless and noisy conditions.
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