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Abstract
Pre-trained Language Models have emerged as promising
tools for predicting molecular properties, yet their develop-
ment is in its early stages, necessitating further research to
enhance their efficacy and address challenges such as gen-
eralization and sample efficiency. In this paper, we present
a Multi-View approach that combines latent spaces derived
from state-of-the-art chemical models. Our approach relies
on two pivotal elements: the embeddings derived from MHG-
GNN, which represent molecular structures as graphs, and
MoLFormer embeddings rooted in chemical language. The
attention mechanism of MoLFormer is able to identify re-
lations between two atoms even when their distance is far
apart, while the GNN of MHG-GNN can more precisely cap-
ture relations among multiple atoms closely located. In this
work, we demonstrate the superior performance of our pro-
posed Multi-view approach compared to existing state-of-the-
art methods, including MoLFormer-XL, which was trained
on 1.1 billion molecules, particularly in intricate tasks such
as predicting the quantum mechanical properties of small
molecules. We assessed our approach using 11 benchmark
datasets from MoleculeNet, where it outperformed competi-
tors in 8 of them. We also provide a deep analysis of the
results obtained with the QM9 dataset, where our proposed
approach surpass its state-of-the-art competitors in 9 out of
the 12 tasks presented in this dataset. Our study highlights
the potential of latent space fusion and feature integration for
advancing molecular property prediction. In this work, we
use small versions of MHG-GNN and MoLFormer, which
opens up an opportunity for further improvement when our
approach uses a larger-scale dataset.

Introduction
Chemical-based machine learning has gained widespread
adoption as an efficient and accurate approach for predict-
ing molecular properties, owing to its capacity to effectively
represent crucial structural aspects of molecules (Fang et al.
2022; Wieder et al. 2020; Shen and Nicolaou 2019). Recent
advancements in foundational models have shown promis-
ing results by leveraging chemical language representations
through a two-step process of pre-training on extensive unla-
beled corpora and subsequent fine-tuning on specific down-
stream tasks of interest (Takeda et al. 2023; Soares et al.
2023a; Horawalavithana et al. 2022).
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Despite the emergence of pre-trained Language Models
as viable options for molecular property prediction (White
2023; Pan 2023; White et al. 2022; Janakarajan et al. 2023),
they are still in their nascent stages of development. There is
a pressing need for further research to enhance their perfor-
mance and generate better embedding space representations
(Frey et al. 2023).

Furthermore, recent discussions have emphasized the piv-
otal role of enhancing embedding representations through
the addition of features from different natures/views to im-
prove the overall quality of generated models (Li et al. 2023;
Soares et al. 2023b). The incorporation of high-quality data
and/or representations has the potential to advance the state-
of-the-art (SOTA) (Liu, Ren, and Ren 2023). This strategic
approach not only broadens the scope of information consid-
ered but also enriches the contextual understanding within
models (Desikan and Evans 2022). By incorporating fea-
tures from different natures and viewpoints, the aim is to
create a more comprehensive and nuanced representation of
the underlying data.

In this study, we introduce a Multi-view approach that
leverages on the fusion of latent spaces from different na-
tures generated by two state-of-the-art chemical-based mod-
els, namely MoLFormer-base (Ross et al. 2022) which
is based on Transformers, and MHG-GNN a graph-based
approach. Our approach is geared towards enhancing the
prediction of molecular properties. Our findings demon-
strate that our proposed method surpasses existing state-of-
the-art algorithms, including the chemical language-based
MoLFormer-XL, when it comes to tackling intricate tasks
like predicting quantum mechanical calculations of small
molecules. These challenging tasks are part of the Molecu-
leNet benchmark dataset (Wu et al. 2018). Furthermore,
our approach exhibits superior performance in 8 out of 11
datasets studied during our experiments for both classifica-
tion and regression tasks, including the QM9 dataset which
is related to the quantum properties of the molecules. For
this particular dataset we provide a deeper investigation over
the 12 properties which are related to it. In this case, the best
version of our proposed Multi-view approach was able to
perform better in 9 out of the 12 properties within the QM9
dataset when compared with other recent state-of-the-art ap-
proaches.

It is also important to highlight that the proposed approach



Figure 1: General architecture of the proposed Multi-view approach.

refers to a fusion of latent spaces of models smaller models,
and consistently performed better than other SOTA larger
models, as the MoLFormer-XL which was trained on 1.1 bil-
lion molecules. By leveraging the fusion of latent spaces and
feature sets, we have demonstrated a significant enhance-
ment in performance that holds potential for advancing the
field, it also opens up an opportunity for further improve-
ment when our approach uses a larger-scale dataset.

Methodology

In this section, we explain the methodological framework
delineated within this study. As depicted in Figure 1, we
present an intricately devised schema for latent space fusion.
Our approach relies on two pivotal elements: the embed-
dings derived from MHG-GNN, which represent molecu-
lar structures as graphs, and MoLFormer embeddings rooted
in chemical language. This fusion of latent spaces is used
for downstream tasks aiming at the prediction of molecular
properties.

Our approach combines two orthogonal embeddings. A
GNN architecture of MHG-GNN can more accurately cap-
ture molecular substructures than MoLFormer. On the other
hand, a self-attention mechanism of MoLFormer has advan-
tage of accounting for a relation between one atom to the
other atoms even if their distances are larger than the radius
of GNN.

We extract the embeddings for each SMILES contained
in the dataset that we are exploring based on the pre-trained
networks. For the MHG-GNN the embeddings space has the
size of 1024, for MoLFormer-base the embeddings size is
768. Then, the resulting fused latent space has the size of
1792. Details of the employed models are described in the
next subsections. XGBoost (Chen et al. 2015) with optuna
(Akiba et al. 2019) optimizer was employed as predictor.

MHG-GNN

MHG-GNN (Kishimoto et al. 2023) is an autoencoder
that combines GNN with Molecular Hypergraph Grammar
(MHG) introduced for MHG-VAE (Kajino 2019). Unlike
existing autoencoders that receive their input and output in
the same format, MHG-GNN receives them in a different
format. MHG-GNN receives a molecular structure repre-
sented as a graph. The encoder constructed as Graph Iso-
morphism Network (GIN) (Xu et al. 2019) that additionally
considers edges encodes that graph to its corresponding la-
tent vector (Hu et al. 2020).

In the MHG-GNN framework, individual atoms forming
a molecule are encoded using specific chemical character-
istics, including attributes such as atomic number, formal
charge, and aromaticity. Consequently, each atom feature is
transformed into a vector of equal dimensions, aligning with
the corresponding node in the GIN (Graph Isomorphism
Network). The collective embedded representations of the
atom features are then aggregated to create an initial vector,
denoted as h0

i , corresponding to the GIN node i. Similarly,
the edges within the molecular structure, such as bond types,
are also transformed into embedding vectors, designated as
e0i,j , associated with the undirected edge in the GIN linking
nodes j and i. Throughout the k-th iteration, the encoder ex-
ecutes what is termed as “message passing” for each node i,
a process that can be defined as follows:

hk+1
i = MLP

(1 + ϵ)hk
i +

∑
j∈N(i)

ReLU(hk
j + ej,i)


(1)

where N(i) is a set of direct neighbors of i, and ϵ is a train-
able parameter, MLP is a neural network module, and ReLU
is a Rectified Linear Unit. The entire representation hG of
graph G is defined by Eq. 2:



hG = CONCAT

({∑
i∈VG

hk
i

∣∣∣∣∣ k = 0, 1, . . . , r

})
(2)

CONCAT is used to concatenate vectors, VG is a set of
nodes in G, and r is the maximum iteration size. The entire
representation hG can be used as a latent vector for different
downstream tasks.

The decoder is constructed as GRU and with several neu-
ral network models decodes that latent vector to the original
molecular structure represented as a sequence of production
rules on molecular hypergraphs. The production rules are
generated from the dataset for pre-training.

MHG-GNN can inherit advantage of MHG-VAE that can
always generate structurally valid molecular structures when
decoding latent vectors. Additionally, MHG-GNN can al-
ways embed graph structures to their latent vectors, whereas
the encoder of MHG-VAE cannot always; it cannot accept a
molecule that cannot be represented by a set of production
rules generated from the dataset for pre-training. Finally,
thanks to GNN, MHG-GNN has more direct understand-
ing to the structural information than language-based mod-
els, which may capture different characteristics than MoL-
Former.

We used the model trained in the same steps described
in (Kishimoto et al. 2023) and with a radius, r, of 3
(i.e., the iteration size for message passing step in GNN).
With these configurations, MHG-GNN generates 1024 di-
mensional embeddings. MHG-GNN was pre-trained on
1,381,747 molecules extracted from the PubChem database
in its training part. This process generates 16,362 production
rules that represent these molecules.

MoLFormer
MoLFormer (Ross et al. 2022), is a large-scale masked
chemical language model that processes inputs through a
series of blocks that alternate between self-attention and
feed-forward connections. MoLFormer was trained in a self-
supervision manner with 1.1 billion molecules from Pub-
Chem and ZINC datasets and uses tokenization process, as
detailed in (Schwaller et al. 2019). The MoLFormer vocab-
ulary includes 2362 unique chemical tokens. These tokens
are used to fine-tune or retrain the MolFormer model. To re-
duce computation time, the sequence length has been limited
to a range of 202 tokens as 99.4% percent of all 1.1 billion
molecules contain less than 202 tokens.

MoLFormer is equipped with a self-attention mechanism
that allows the network to construct complex representa-
tions that incorporate context from across the sequence
of SMILES. By transforming the sequence features into
queries (q), keys (k), and value (v) representations, atten-
tion mechanisms can weigh the importance of different el-
ements within the sequence. MoLFormer optimizes relative
encoding by using a modified version of the RoFormer (Su
et al. 2021) attention mechanism. This involves position-
dependent rotations (Rm) of the query and keys at position
m. These rotations can be efficiently implemented as point-
wise multiplications, ensuring that the computational com-
plexity remains manageable (as shown in Eq (3)).

Attentionm(Q,K, V ) =

∑N
n=1 ⟨φ(Rmqm), φ(Rnkn)⟩ vn∑N
n=1 ⟨φ(Rmqm), φ(Rnkn)⟩

(3)
In Eq (3), Attentionm(Q,K, V ) denotes the attention op-

eration with queries (Q), keys (K), and values (V ) at posi-
tion m. The operation computes weighted sums of the value
representations (vn) based on the similarity of the trans-
formed query (φ(Rmqm)) and key (φ(Rnkn)) representa-
tions. The relative position embeddings introduced through
the rotations (Rm) allow the model to effectively capture
positional information, leading to improved performance in
molecular property predictions.

By leveraging the capabilities of MoLFormer and enhanc-
ing it with relative position embeddings, our approach offers
an advanced and efficient solution for predicting complex
molecular properties, providing valuable insights for vari-
ous chemical applications. This enables the model to learn
highly informative representations of the input data, making
it a powerful tool for predicting molecular properties.

In this work, we used the base version of the MoL-
Former that was trained on a small portion of molecules
compared to the MoLFormer-XL version. The MoLFormer-
base version it is publicly available at https://github.com/
IBM/molformer.

It is important to highlight that for regression tasks, we
also used a fine-tuned version of MoLFormer specialized
for each of the tasks. Fine-tuning MoLFormer for each of
the tasks has proved to improve the performance of the pro-
posed Multi-view approach. Table 2 elucidates the hyper-
parameters used to generate the specialized models for each
regression task.

Table 2: MoLFormer Hyper-parameters for fine-tuning

Hyper-parameter Values
Batch size 128

Learning Rate 3e− 5
Number of embeddings 768

Dropout 0.1
Number of layers 12
Number of heads 12

Number of epochs (max) 500

Fusion Layer
The fusion layer plays a pivotal role in amalgamating the
embeddings obtained from both MHG-GNN, which adeptly
represents molecular structures as graphs, and MoLFormer
embeddings grounded in chemical language. Leveraging the
unique strengths of each component, the attention mecha-
nism of MoLFormer excels in discerning relationships be-
tween atoms, even when they are distantly positioned, while
the GNN of MHG-GNN specializes in capturing intricate re-
lations among closely situated multiple atoms. Specifically,
the embeddings space within MHG-GNN boasts a size of
1024, whereas that of MoLFormer-base stands at 768. Con-
sequently, the resultant fused latent space culminates in a



Table 1: MoleculeNet Benchmark datasets for classification task

Dataset Description # compounds # tasks Metric Type
BBBP Blood brain barrier penetration dataset 2039 1 ROC-AUC Classification
Tox21 Toxicity measurements on 12 different targets 7831 12 ROC-AUC Classification
Clintox Clinical trial toxicity of drugs 1478 2 ROC-AUC Classification

HIV Ability of small molecules to inhibit HIV replication 41127 1 ROC-AUC Classification
BACE Binding results for a set of inhibitors for β – secretase 1 1513 1 ROC-AUC Classification
SIDER Drug side effect on different organ classes 1427 27 ROC-AUC Classification
QM9 12 quantum mechanical calculations 133885 12 Average MAE Regression
QM8 12 excited state properties of small molecules 21786 12 Average MAE Regression
ESOL Water solubility dataset 1128 1 RMSE Regression

FreeSolv Hydration free energy of small molecules in water 642 1 RMSE Regression
Lipophilicity Octanol/water distribution coefficient of molecules 4200 1 RMSE Regression

size of 1792, synthesizing the nuanced insights derived from
the complementary features of both models.

Downstream Tasks Datasets
To evaluate the effectiveness of our proposed methodology,
we conducted experiments using a comprehensive set of 11
distinct benchmark datasets sourced from MoleculeNet (Wu
et al. 2018), as illustrated in Table 1. Specifically, we curated
6 datasets for the classification task and 5 datasets for regres-
sion tasks, encompassing a diverse array of objectives, rang-
ing from the prediction of physical and biophysical prop-
erties to the characterization of physiological attributes of
small-molecule chemicals. To ensure a robust and unbiased
assessment, we maintained consistency with the Molecu-
leNet benchmark by adopting identical train/validation/test
splits for all tasks (Wu et al. 2018). This approach ensures
the integrity of our evaluations and also enables a compre-
hensive and equitable comparison with existing methodolo-
gies.

Classification Tasks
For the classification task, we selected six distinctive clas-
sification tasks sourced from the MoleculeNet benchmark
dataset. These specific tasks, namely BBBP, ClinTox, HIV,
BACE, SIDER, and Tox21, were selected to represent a di-
verse array of chemical properties and biological activities,
with their key characteristics thoughtfully summarized in
Table 1. To ensure a consistent assessment, we employed the
AUC-ROC metric to evaluate the performance of our mod-
els. Additionally, we leveraged scaffold splits as a reliable
and established technique for the systematic evaluation of
model performance.

Regression Tasks
For the regression task we choose five different regres-
sion tasks from the MoleculeNet. Specifically, the QM9 and
QM8 subsets entail the prediction of various quantum chem-
ical metrics, a challenging feat in the absence of exclusive
3D geometric information. Further details on the character-
istics of these regression datasets can be found in Table 1. To
evaluate the QM9 and QM8 datasets we report the average
MAE, while RSME is reported for the remaining tasks.

Results
In this section, we present the analysis of the results obtained
for the classification and regression tasks considered in this
study, shedding light on the nuanced intricacies and out-
comes derived from the experimentation process. Through
this evaluation, we aim to provide a deeper understand-
ing of the impact and potential of our proposed Multi-view
methodology.

Ablation Studies
In this section, we compare our proposed methodology
against the single models, MoLFormer and MHG-GNN, that
we use to compose our proposed Multi-view approach.

Table 3 elucidates the consistent superiority of our fusion-
based approach over the MHG-GNN and MoLFormer-Base
methods in all conducted experiments. When compared with
the MoLFomer-XL, our proposed multi-view approach ob-
tained better results in 5 out of the 6 benchmark datasets
tested. This pattern of across multiple datasets strongly sug-
gests that the fusion of embeddings from different natures
plays a pivotal role in enhancing the algorithm’s perfor-
mance.

Furthermore, it is worth emphasizing that the Multi-view
approach is built upon the foundation of MoLFomer-Base.
While MoLFomer-Base initially achieved the worst results
for the Tox21 dataset, the integration of multiple features
views through our Multi-view approach led to a significant
performance boost, elevating the model’s performance from
43.2 to 80.5. Fig. 2 illustrates the ROC-AUC curve for the
HIV, BACE, and BBBP datasets which are single-task. On
these 3 tasks the Multi-view approach has demonstrated su-
perior performance than the single model approaches.

Benchmark Tests with SOTA Methods
Results for classification tasks Table 4 offers a compre-
hensive overview of the comparative performance between
our proposed Multi-view approach and state-of-the-art algo-
rithms on various benchmark datasets for the classification
task. A keen analysis of the table reveals that the Multi-view
approach, which leverages the fusion of embeddings, outper-
forms its counterparts in 5 out of 6 datasets, underscoring its
potential to excel in diverse domains.



Table 3: Comparison between the multi-view approach and single models.

Method Dataset
BBBP ClinTox HIV BACE SIDER Tox21

MoLFormer-XL(Ross et al. 2022) 93.7 94.8 82.2 88.21 69.0 84.7
MoLFormer-Base(Ross et al. 2022) 90.9 77.7 82.8 64.8 61.3 43.2
MHG-GNN 93.5 90.0 83.4 87.3 67.6 77.5
Multi-view approach 94.2 98.8 86.1 90.4 69.9 80.5

Figure 2: ROC-AUC curve for the single tasks HIV, BACE, and BBBP datasets.

An important aspect to note is the complex nature of the
classification tasks, as they encompass multi-task datasets
such as Tox21, which comprises 12 tasks, Clintox with 2
tasks, and SIDER with a comprehensive 27-task dataset.
This intricate and diverse task composition underscores the
challenge posed by these classification tasks, making the
consistent performance of our proposed approach across
these datasets a testament to its reliability and robustness in
handling complex and varied data.

Our proposed fusion-based approach harnesses the power
of 768 embeddings from transformers-based MoLFormer-
Base and 1024 embeddings from graph-based MHG-GNN,
capitalizing on their complementary strengths to excel in a
variety of challenging tasks. Results demonstrates that our
proposed approach performs better than SOTA approaches
as ChemBerta, Chemberta2, Galatica 30 and 120B, in all the
experiments conducted. GraphMVP, presents the best result
for the Tox21 tasks. However, our proposed methodology
consistently presented better results in 5 out of the 6 bench-
mark datasets tested.

It is important to highlight that we use the fusion of latent
spaces of two smaller models when compared to the state-of-
the-art, MoLFormer-base and MHG-GNN was pre-trained
in a small portion of selected molecules from PubChem. The
fusion of these smalls performed better than MoLFormer-
XL which was trained in 1.1 billion molecules in 5 out of 6
benchmarks datasets. This not only highlights our method’s
effectiveness but also paves the way for additional enhance-
ments when our approach leverages a larger-scale dataset.

Results for regression tasks Next, we applied the pro-
posed Multi-view approach to the prediction of chemical
properties, tackling more intricate regression tasks sourced
from the MoleculeNet database. The performance results

across five challenging regression benchmarks, namely
QM9, QM8, ESOL, FreeSolv, and Lipophilicity, are sum-
marized in Table 5.

The regression tasks presented in the MoleculeNet bench-
mark datasets, especially the challenging QM9 and QM8
sets, pose a significant test for predictive models due to
the intricate nature of quantum chemical measures. Table
5 elucidates the importance of fine-tuning MoLFormer for
these challenging tasks. With the fine-tunned MoLFormer,
our Multi-view approach has not only surpassed the previous
state-of-the-art performance achieved by MoLFormer-XL in
both tasks (QM8 and QM9) but has also demonstrated relia-
bility in handling the complexities embedded in these intri-
cate quantum chemical datasets.

By harnessing the combined strengths of graph represen-
tations and the powerful linguistic insights embedded within
a tailored language model for chemistry, our Multi-view ap-
proach with fine-tuned MoLFormer has showcased signif-
icant advancements in performance, particularly in the de-
manding QM9 dataset. This amalgamation of diverse data
modalities has enabled our model to unravel the intricate
relationships between molecular structures and the corre-
sponding quantum chemical properties with greater preci-
sion and depth.

To fine-tune the MoLFormer approach was crucial for
the improved performance of our Multi-view approach. The
best version of Multiview approach has demonstrated bet-
ter performance than state-of-the-art models as Uni-Mol,
ChemRL-GEM, SPMM, and larger models as ChemBERTa-
2 and GROV ERLarge.

Furthermore, the Multi-view approach (fine-tuned MoL-
Former) has displayed a clear competitive edge in predicting
Lipophilicity when compared to other established methods,



Table 4: Methods and Performance for the classification tasks of MoleculeNet benchmark datasets

Method Dataset
BBBP ClinTox HIV BACE SIDER Tox21

RF(Ross et al. 2022) 71.4 71.3 78.1 86.7 68.4 76.9
SVM(Ross et al. 2022) 72.9 66.9 79.2 86.2 68.2 81.8
MGCN(Lu et al. 2019) 85.0 63.4 73.8 73.4 55.2 70.7
D-MPNN(Yang et al. 2019) 71.2 90.5 75.0 85.3 63.2 68.9
DimeNet(Gasteiger, Groß, and Günnemann 2020) - 76.0 - - 61.5 78.0
Hu, et al.(Hu et al. 2019) 70.8 78.9 80.2 85.9 65.2 78.7
N-Gram(Liu, Demirel, and Liang 2019) 91.2 85.5 83.0 87.6 63.2 76.9
MolCLR(Wang et al. 2022) 73.6 93.2 80.6 89.0 68.0 79.8
GraphMVP(Liu et al. 2021) 72.4 77.5 77.0 81.2 63.9 74.4
GeomGCL(Liu et al. 2021) - 91.9 - - 64.8 85.0
GEM(Fang et al. 2022) 72.4 90.1 80.6 85.6 67.2 78.1
ChemBerta(Chithrananda, Grand, and Ramsundar 2020) 64.3 90.6 62.2 - - -
ChemBerta2(Ahmad et al. 2022) 71.94 90.7 - 85.1 - -
Galatica 30B(Taylor et al. 2022) 59.6 82.2 75.9 72.7 61.3 68.5
Galatica 120B(Taylor et al. 2022) 66.1 82.6 74.5 61.7 63.2 68.9
Uni-Mol(Zhou et al. 2023) 72.9 91.9 80.8 85.7 65.9 79.6
MoLFormer-XL(Ross et al. 2022) 93.7 94.8 82.2 88.2 69.0 84.7
Multi-view approach 94.2 98.8 86.1 90.4 69.9 80.5

Table 5: Methods and Performance for the classification tasks of MoleculeNet benchmark datasets

Method Dataset
QM9 QM8 ESOL FreeSolv Lipophilicity

GC(Altae-Tran et al. 2017) 4.35 0.0148 0.97 1.40 0.65
A-FP(Xiong et al. 2019) 2.63 0.0282 0.50 0.74 0.58
GROV ERLarge(Rong et al. 2020) - - 0.89 2.27 0.82
Padel-DNN(Zhang and Zhang 2022) - - 0.62 0.91 -
ChemRL-GEM(Fang et al. 2022) - - 0.80 1.88 0.66
ChemBERTa-2(Ahmad et al. 2022) - - 0.89 - 0.80
SPMM(Chang and Ye 2023) - - 0.82 1.90 0.69
Uni-Mol(Zhou et al. 2023) - 0.0156 0.79 1.48 0.60
MPNN(Gilmer et al. 2017) 3.18 0.0143 0.58 1.15 0.72
MoLFormer-XL(Ross et al. 2022) 1.59 0.0102 0.28 0.23 0.53
Multi-view approach - (Frozen Weights) 4.48 0.0128 0.69 1.47 0.61
Multi-view approach - (Fine-tuned MoLFormer) 1.45 0.00961 0.60 1.43 0.51

thereby highlighting its robustness and adaptability across
diverse chemical property prediction tasks. While the per-
formance on the ESOL and FreeSolv datasets aligns closely
with that of the baseline approaches, the consistent and
promising results obtained by our Multi-view strategy across
various regression tasks underline its potential in the domain
of chemical property prediction.

A deeper analysis over the QM9 benchmark In this sub-
section, we delve further into the exploration of results for
individual tasks within the QM9 benchmark dataset, aiming
to uncover nuanced insights and patterns inherent to each
specific measure property. The twelve distinct properties of
QM9, each accompanied by their respective units, are de-
tailed in Table 7.

Within this study, we compare the best version and stan-
dard version of our Multi-view approach against a selec-
tion of previously discussed baseline models, as well as

four additional baselines. Our comparative analysis extends
to benchmarking the Multi-view approach against state-of-
the-art models derived from three distinct categories: (i)
Graph-based, (ii) Geometry-based, and (iii) SMILES-based
methodologies for prediction of molecular properties. The
included baselines models are: 123-gnn (Morris et al. 2019),
a multitask neural net encoding the Coulomb Matrix (CM)
(Rupp et al. 2012), and its GNN variant as in the deep ten-
sor neural net (DTNN) (Schütt et al. 2017), we also consid-
ered the ChemBERTa (Chithrananda, Grand, and Ramsun-
dar 2020) approach in this study.

Table 6 presents a comprehensive comparison of the per-
formance of various state-of-the-art models on the QM9
dataset, highlighting the effectiveness of different modeling
strategies. Our proposed Multi-view approach outperforms
the current models in 9 out of the 12 properties in tis best ver-
sion. Notably, it also achieves the second-best performance
in two properties, specifically Cv and ZPVE.



Table 6: Comparing state-of-the-art models performance on QM9 test set. Blue and Orange indicates best and second-best
performing model, respectively.

Graph-based Geometry-based SMILES-based Multi-view based
Measure A-FP 123-gnn GC CM DTNN MPNN MoLFormer-XL ChemBERTa (Frozen Weights) (Fine-tuned)
α 0.49 0.27 1.37 0.85 0.95 0.89 0.33 0.85 0.96 0.26
Cv 0.25 0.09 0.65 0.39 0.27 0.42 0.14 0.42 0.44 0.11
G 0.89 0.05 3.41 2.27 2.43 2.02 0.34 4.13 2.63 0.03
gap 0.0052 0.0048 0.01126 0.0086 0.0112 0.0066 0.0038 0.0052 0.0061 0.0036
H 0.89 0.04 3.41 2.27 2.43 2.02 0.25 4.08 2.68 0.02
ϵhomo 0.0036 0.0034 0.0072 0.0051 0.0038 0.0054 0.0029 0.0044 0.0045 0.0028
ϵlumo 0.0041 0.0035 0.0092 0.0064 0.0051 0.0062 0.0027 0.0041 0.0046 0.0026
µ 0.451 0.476 0.583 0.519 0.244 0.358 0.3616 0.4659 0.518 0.369
⟨R2⟩ 26.84 22.90 35.97 46.00 17.00 28.5 17.06 86.15 41.21 16.52
U0 0.898 0.0427 3.41 2.27 2.43 2.05 0.3211 3.9811 2.6389 0.0192
U 0.89 0.111 3.41 2.27 2.43 2.00 0.25 4.38 2.69 0.031
ZPVE 0.00207 0.00019 0.00299 0.00207 0.0017 0.00216 0.0003 0.0023 0.00112 0.0002
Avg MAE 2.6355 1.9995 4.3536 4.7384 2.3504 3.1898 1.5894 8.7067 4.4837 1.4485

Table 7: Data description

Measure Unit
α Bohr3

Cv cal/(mol ∗K)
G Hartree
gap Hartree
H Hartree

ϵhomo Hartree
ϵlumo Hartree
µ Debye

⟨R2⟩ Bohr2

U0 Hartree
U Hartree

ZPVE Hartree

The performance variation across different properties sug-
gests that a one-size-fits-all approach might not be the
most effective solution, as seen in the case of the prop-
erty µ, where geometry-based models outperformed graph
and SMILES-based approaches. This underscores the im-
portance of choosing the appropriate methodology based on
the specific property under consideration.

Our proposed Multi-view approach, which combines
graph and transformer-based features, consistently demon-
strates superior performance compared to other methods.
This highlights the potential benefits of leveraging a diverse
set of features for accurate prediction of molecular proper-
ties. Furthermore, a notable observation from the results is
that the 123-gnn model outperforms the MoLFormer-XL in
a greater number of properties, but this difference has had a
detrimental impact on the average mean absolute error (Avg
MAE). Conversely, the fusion of Multi-view embeddings
has exhibited robust and consistent performance across all
tested properties, as evidenced by the superior average per-
formance metric.

This comprehensive evaluation not only emphasizes the
effectiveness of the Multi-view approach in capturing the
diverse aspects of molecular properties but also underscores

the importance of choosing a modeling strategy tailored to
the specific property under consideration.

In summary, the results presented for both classification
and regression tasks underscore the exceptional capabilities
of our proposed Multi-view approach, emphasizing its ca-
pacity to leverage diverse features for enhanced performance
across a spectrum of complex tasks. Future research endeav-
ors will be directed towards exploring various fusion strate-
gies and integrating higher-quality features and embeddings,
aiming to further refine and optimize our approach, thereby
advancing the boundaries of predictive modeling in the field
of chemical research.

Conclusion
This paper introduces a novel Multi-view approach that
leverages the complementary latent spaces of two state-of-
the-art algorithms, MoLFormer-base and MHG-GNN, for
predicting molecular properties. Through extensive evalua-
tions on the MoleculeNet dataset, our proposed method has
demonstrated superior performance across various classifi-
cation and regression tasks, outperforming the state-of-the-
art competitors on 8 out of 11 benchmark datasets. This re-
markable consistency highlights the robustness and versatil-
ity of our proposed approach.

It is also important to highlight that for the improved
performance for the regression tasks we need to fine-tune
the MoLFormer model for each of the tasks. With the fine-
tuning our proposed Multi-view approach has demonstrated
better results in 3 out 5 these challenging tasks when com-
pared to recent state-of-the-art approaches, including very
large models.

For the challenging QM9 benchmark dataset, which en-
compasses intricate quantum properties of molecules, the
best version of our Multi-view approach excels, surpassing
the current state-of-the-art models in 9 out of the 12 proper-
ties. Notably, it achieves the second-best performance in two
properties, namely Cv and ZPVE. The performance of our
Multi-view approach underscores the importance of com-
bining features from different sources to achieve enhanced
molecular properties prediction.



By integrating graph-based embeddings and language
model representations, our model effectively captures nu-
anced structural features and intricate molecular interac-
tions, leading to superior predictive performance. Future re-
search directions will focus on exploring diverse fusion tech-
niques and incorporating high-quality features and embed-
dings to further refine our approach. These findings pave the
way for promising advancements in the accuracy and effi-
cacy of molecular properties prediction based on in silico
modelling.
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