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Abstract
Support vector machines (SVMs) are established as highly
successful classifiers in a broad range of applications, includ-
ing numerous medical ones. Nevertheless, their current em-
ployment is restricted by a limitation in the manner in which
they are trained, most often the training-validation-test or k-
fold cross-validation approaches, which are wasteful both in
terms of the use of the available data as well as computa-
tional resources. This is a particularly important considera-
tion in many medical problems, in which data availability is
low (be it because of the inherent difficulty in obtaining suf-
ficient data, or because of practical reasons, e.g. pertaining to
privacy and data sharing). In this paper we propose a novel
approach to training SVMs which does not suffer from the
aforementioned limitation, which is at the same time much
more rigorous in nature, being built upon solid information
theoretic grounds. Specifically, we show how the training pro-
cess, that is the process of hyperparameter inference, can be
formulated as a search for the optimal model under the min-
imum description length (MDL) criterion, allowing for the-
ory rather than empiricism driven selection and removing the
need for validation data. The effectiveness and superiority of
our approach are demonstrated on the Wisconsin Diagnostic
Breast Cancer Data Set.

Introduction
Support vector machines (SVMs) are supervised machine
learning models which have been used extensively in medi-
cal and biomedical applications (Yue, Dimitriou, and Arand-
jelovic 2019; Caie, Dimitriou, and Arandjelovic 2020;
Gavriel et al. 2021). This popularity of SVMs stems, first
and foremost, from their often highly competitive perfor-
mance, but also their mathematically well-understood be-
haviour and explainability, contrasting many types of neu-
ral networks. The major methodological limitation associ-
ated with SVMs concerns the setting of their hyperparame-
ters. All research to date employs one of the following ap-
proaches as regards the setting of the hyperparameter val-
ues: (i) they are set to default values which are sensible
in the absence of any domain specific knowledge, or (ii)
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they are adopted from previous successful work on similar
problems, or (iii) they are learnt using the standard training-
validation-test protocol (Dimitriou et al. 2018) so as to en-
sure model specificity while preventing overfitting (Dim-
itriou et al. 2018). All of these approaches are rather unsat-
isfactory. Specifically, the first two are failing to make any
use of training data and adapt to the particular problem at
hand. The last, most principled one, is unattractive in that it
is purely empirical (though this may seem to be practically
unavoidable in some instances, herein we show that it is not)
and wasteful both in terms of data, as a validation data set,
separate from the training and test data sets, has to be set
aside. This is particularly problematic in applications where
data is scarce, which is often the case in medical applica-
tions (Barracliffe, Arandjelovic, and Humphris 2017).

In this paper we propose a novel approach of training sup-
port vector machines and setting their hyperparameter val-
ues which avoids the aforementioned problems. In partic-
ular, our idea is to make use of the minimum description
length (MDL) principle which can be seen as a formaliza-
tion of Occam’s razor. MDL allows for the quality of fit to be
assessed and balanced against the complexity of a model (in
our case the number of support vectors of a trained model,
given the values of hyperparameters) on principled, theoret-
ical grounds, i.e. without the need for follow-up empirical
assessment. Thus, using a publicly available Breast Cancer
Wisconsin (Diagnostic) Data Set (Wolberg, Street, and Man-
gasarian 1992), we show how MDL can be employed in the
training of SVMs and demonstrate that the outcome is not
only more methodologically appealing and principled, but
due to its more efficient use of data that it also achieves su-
perior results when compared with the traditional training-
validation-test approach.

Existing SVMs model selection approaches
Selecting the appropriate model from a large pool of mod-
els trained with different hyperparameters values is a diffi-
cult task. Yet, it is important to get a sense of the model’s
reliability and generalization ability before it is applied in
practice. A naı̈ve selection approach can result in the adop-
tion of models which exhibit overfitting or indeed underfit-



ting (Shalev-Shwartz and Ben-David 2014). Unsurprisingly,
there has been plenty of previous work (Cawley and Talbot
2010; Heckerman and Meek 1997; Raschka 2018; Shalev-
Shwartz and Ben-David 2014) in this realm and the tech-
niques proposed vary somewhat based on the type of prob-
lem considered, that is on whether one is dealing with clas-
sification or regression.

In the context of regression, the Hold Out technique
(Blum, Kalai, and Langford 1999) estimates the empirical
error of a model using unseen data, and uses the estimate to
make the best model choice. In contrast, the Model Selec-
tion Curve (Murata, Yoshizawa, and Amari 1993) method
involves drawing predicted points of trained models on the
training and validation set, and the model which exhibits the
best consistency between the two sets is selected as the best
one.

In the context of classification, the training-validation-test
approach is probably the most widely used one (Galvao et al.
2005). The available data is split into three subsets – namely
training, validation, and test, with the size of the first of these
usually being much larger than that of the other two. Models
with different hyperparameter values (or indeed models us-
ing different learning algorithms altogether) are trained on
the training data set. The trained model is then queried to
predict the output of all data in the validation set. The best
model is selected based on the trained models’ performances
on the validation set, whereas the performance of the said
selected model is finally assessed on the test data set (thus
ensuring a lack of bias).

The k-fold validation approach can be seen as a modi-
fied version of training-validation-test. It involves firstly the
splitting of the available data into k subsets, referred to as
folds in this context (Kohavi et al. 1995). In each itera-
tion, one particular fold is selected and kept aside (withheld)
while the model is trained on the union of all others. The
performance of the trained model is assessed on the with-
held fold. The process is iterated with a different fold be-
ing withheld in each iteration. The final performance metric
is the average of the performance metrics obtained at each
fold. The process is applied to different hyperparameter val-
ues or learning algorithms. The model with the best mean
performance metric is selected as the best fit model. As be-
fore, the performance of the model is ultimately assessed on
the test data set.

Proposed method
As we briefly noted earlier, there are two major drawbacks
to the existing model selection methods. The first of these
lies in the inefficient use of data. In particular, since valida-
tion and test sets need to be entirely disjoint from the train-
ing data set (and of course with one another), less data is
available to actually train the model, and the lesser amount
of training data translates to less well trained models. This is
particularly important in many medical applications wherein
data scarcity poses a significant challenge. This scarcity may
be inherent, e.g. because a specific condition of interest is
rare, or it may be of a practical nature, e.g. because relevant
data cannot be easily accessed or shared due to privacy con-
cerns or regulations.

Our approach surmounts the drawbacks of these limita-
tions by preserving the validation/test sets and using them
for training. In particular, we are interested in the MDL
(Grünwald and Grunwald 2007) criterion, which can be
thought of as a formalization of Occam’s razor (Blumer et al.
1987), allowing one to make a principled compromise be-
tween the complexity of a model and the explanatory power
of the model in the context of training data. This means that
no validation data is needed, which can instead be used for
training, thus improving the model.

Description length and the MDL, and SVMs
In the context of the present work the description length is
the length in bits needed to encode the parameters of a model
and the data given the model. Formally:

DL(M,D) = L(M) + L(D|M) (1)

whereDL(M,D) is the description length corresponding to
the model M and data D. For a statistical model defined as
a parametrized family of probability distributions, as in the
case of SVMs, the description length can be further written
as:

DL(M,D) =
1

2
NM log2N −

N−1∑
i=0

log2 P (di) (2)

where di are individual data points from D, N their count,
and NM the number of free model parameters.

Support vector based learning Support vector machines
perform classification through linear separation in a high
(possibly infinitely) dimensional space into which the orig-
inal input data is mapped (Schölkopf, Smola, and Müller
1998). Importantly, the seemingly intractable task of map-
ping data into the high dimensional space is achieved ef-
ficiently by performing the aforesaid mapping implicitly
rather than explicitly. This is done by employing the so-
called ‘kernel trick’ which ensures that dot products in
the high dimensional space can be readily computed using
the variables in the original space. Given labelled training
data (input vectors and the associated labels) in the form
{(x1, y1), . . . , (xn, yn)}, a support vector machine aims to
find a mapping which minimizes the number of misclassi-
fied training instances, in a regularized fashion. The map-
ping x → Φ(x) is performed implicitly by employing a
Mercer-admissible kernel (Schölkopf, Smola, and Müller
1998) k(xi, xj) which allows for the dot products between
mapped data to be computed in the input space: Φ(xi) ·
Φ(xj) = k(xi, xj). The classification vector in the trans-
formed, high dimensional space of the form

w =

n∑
i=1

qiyiΦ(xi) (3)

is sought by minimizing
n∑

i=1

qi −
1

2

n∑
i=1

n∑
j=1

yiqik(xi, xj)yjqj (4)



subject to the constraints
∑n

i=1 qiyi = 0 and 0 ≤ qi ≤
1/(2nc), with the parameter c penalizing prediction errors.

The key insight we introduce lies in the modelling of the
distribution of data in the target high dimensional space of
a SVM. In particular, we assume that class data points are
normally distributed, which is an assumption consistent with
the linear separability goal of support vector based learning:

P (d̂i) =
1√

2πσ2
e

−(xi−µ)
2

2σ2 (5)

where µ and σ are respectively the mean and the standard
deviation of the normal distribution, and d̂i the data, all in
the target high dimensional space of the SVM. Then, the
data description length term in (2) becomes:
N−1∑
i=0

log2 P (d̂i) =

N−1∑
i=0

log2

[
1√

2πσ2
e

−(d̂i−µ)
2

2σ2

]
(6)

= log2

[(
1√

2πσ2

)N

e
∑N−1
i=0

−(d̂i−µ)
2

2σ2

]
(7)

= −N
2

log2(2πσ2)− 1

2σ2 ln 2

N−1∑
i=0

(xi − µ)2

(8)

and since
∑N−1

i=0 (d̂i − µ)2 = σ2N :
N−1∑
i=0

log2 P (d̂i) = −N
2

log2(2πσ2)− N

2 ln 2
(9)

= −N
2

(
log2 2πσ2 + log2 e

)
(10)

= −N
2

log2(2πeσ2) (11)

Thus in our case the description length in (2) becomes:

DL(M,D) =
1

2
NM log2N +

1

2
N log2(2πσ2e) (12)

where NM , the number of free model parameters, is equal
to the number of support vectors of the trained model.

Experimental analysis
Experimental data
We carried out our experiments on the Breast Cancer Wis-
consin (Diagnostic) Data Set (Wolberg, Street, and Man-
gasarian 1992) – a popular and publicly freely available cor-
pus. By way of summary, the data set comprises exemplars
(569 in total) of two classes corresponding to the two diag-
nostic decisions as regards cancer malignancy (malignant or
benign), characterized by 30 features extracted from images
of fine-needle aspirates of breast masses. These features de-
scribe the characteristics of the cell nuclei morphology (cap-
tured through the mean and extreme values, and standard
deviations of relevant characteristics across a slide) present
in the images and are obtained after performing cytological
analysis and simple image processing (curve-fitting for cell
delineation) (Bennett 1992; Bennett and Mangasarian 1992).

Table 1: Summary of experimental parameters.

Parameter Value

Number of features 30

Number of samples 569

Min & max values of c 1 & 1000

Min & max values of γ 0.001 & 1

Number of equidistant c samples 100

Number of equidistant γ samples 100

Methodology
The following summarizes the process used to apply the pro-
posed method and compute the corresponding performance
metrics:
1. The data was divided into two subsets, training and test,

with the split ratio (in terms of data sample counts) of
4:1.

2. Radial basis function (RBF) SVM models were trained
using 10,000 combinations of c and γ (100 c and 100
γ) as per Table 1, where γ is the reciprocal of the RBF
standard deviation.

3. Using the training set only, description lengths were
computed for models trained with different values of hy-
perparameters. The performance of the model selected
according to the MDL criterion was assessed on the test
data.

Comparison was made with the standard k-fold based ap-
proach:
1. The data was was divided into training, validation,

and test set with split ratio 3:1:1. Then, k-fold cross-
validation was applied with 4 folds on the union of train-
ing and validation sets. As before, the performance of the
final selected model was assessed on the test data.

Results and discussion
We start our discussion with the baseline approach first, that
is the k-fold cross-validation based model selection. The
plot in Figure 1 shows the dependency of the final, trained
classifier accuracy on the values of the parameters γ and c,
which is useful in demonstrating that the model actually se-
lected is indeed sound i.e. one which does not exhibit over-
or under-training. It is worth observing that expectedly the
accuracy is greatly affected by varying γ but not by the reg-
ularizing penalty parameter c. The latter suggests good sep-
arability of classes in the implicit high dimensional space of
the trained SVMs.

Turning our attention to the proposed method now, the
variation in the description length attained with the models
trained with different values of the hyperparameters γ and c
is shown in Figure 2. As anticipated based on the behaviour
observed using k-fold cross-validation training, here too we
observe that in this case the description length is highly af-
fected by γ but not by c. Importantly, it is also the case that
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Figure 1: Trained classifier accuracy as a function of the pa-
rameters γ & c, using k-fold cross-validation.
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Figure 2: Description length as a function of SVM parame-
ters γ & c.

a clear local minimum is present in the plot, corresponding
to the ultimately selected model i.e. the ‘best’ model under
the minimum description length criterion.

Having ensured that both approaches are making sensi-
ble decisions in the context of the given data, we proceeded
by evaluating the two selected models – one using k-fold
cross-validation and another with the proposed approach–
and comparing them with one another. A summary is shown
in Table 2, demonstrating that the proposed method achieves
superior results according to all metrics considered. This is
despite the absence of empirically, verification guided model
selection – or rather, precisely because of, as we have ar-
gued, with our approach being based on fundamental the-
oretical grounds which allows for a more efficient use of
available data.

For completeness, we also include the plot showing the
variation of classification accuracy of different trained mod-
els compared in terms of their description length in Figure 3,
which shows that the parameter combination selected by our

Table 2: Comparison of the models selected using traditional
k-fold cross-validation (xV) and the method proposed in the
present paper.

Method Accuracy Recall F1-Score Precision

k-fold xV 0.9649 0.9286 0.9512 0.9750

Proposed 0.9737 0.9524 0.9639 0.9756
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Figure 3: Accuracy as a function of γ for fixed values of the
penalty c, namely c = 1, 10, 100, 1000.

MDL guided selection process indeed does achieve best per-
formance too.

Summary and Future Work
In this paper we introduced a novel, theoretically rigorous
framework for SVM model selection which overcomes the
inefficiencies of the current, empirically driven approaches
used in practice. This contribution is especially important
in numerous medical applications, where the effect of the
aforementioned inefficiencies can be a limiting factors in ap-
plicability of machine learning (e.g. due to limited data). The
effectiveness of the proposed approach was demonstrated on
the Wisconsin Diagnostic Breast Cancer Data Set, on which
it is shown to outperform the existing alternatives.

References
Barracliffe, L.; Arandjelovic, O.; and Humphris, G. 2017. A
pilot study of breast cancer patients: Can machine learning
predict healthcare professionals’ responses to patient emo-
tions. In Proceedings of the International Conference on
Bioinformatics and Computational Biology, 20–22.

Bennett, K. 1992. Decision tree construction via linear pro-
gramming. Number 1067 in Computer Sciences Techni-
cal Report, University of Wisconsin-Madison. University of
Wisconsin-Madison, Computer Sciences Department.

Bennett, K. P.; and Mangasarian, O. L. 1992. Robust lin-
ear programming discrimination of two linearly inseparable
sets. Optimization Methods and Software, 1(1): 23–34.



Blum, A.; Kalai, A.; and Langford, J. 1999. Beating
the hold-out: bounds for k-fold and progressive cross-
validation. In Proceedings of the Conference on Compu-
tational Learning Theory, 203–208.
Blumer, A.; Ehrenfeucht, A.; Haussler, D.; and Warmuth,
M. K. 1987. Occam’s razor. Information Processing Letters,
24(6): 377–380.
Caie, P. D.; Dimitriou, N.; and Arandjelovic, O. 2020. Pre-
cision medicine in digital pathology via image analysis
and machine. Artificial Intelligence and Deep Learning in
Pathology, 149.
Cawley, G. C.; and Talbot, N. L. 2010. On over-fitting
in model selection and subsequent selection bias in perfor-
mance evaluation. The Journal of Machine Learning Re-
search, 11: 2079–2107.
Dimitriou, N.; Arandjelović, O.; Harrison, D. J.; and Caie,
P. D. 2018. A principled machine learning framework im-
proves accuracy of stage II colorectal cancer prognosis. NPJ
Digital Medicine, 1(1): 1–9.
Galvao, R. K. H.; Araujo, M. C. U.; José, G. E.; Pontes, M.
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