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We propose a novel segmentation-based method for 
detecting target points in images. Utilizing fixed-shape 
circular labels, this method reduces annotation costs 
while simultaneously providing both the target point 
location and a confidence index within the image. 
When applied to identifying the position of a needle tip 
in focused ion beam scanning electron microscope 
(FIB-SEM) images, our method achieved a positional 
deviation of 2.16 pixels (σ=±1.24 pixels) compared 
with 3.12 pixels (σ=±1.49 pixels) for existing heatmap-
based object detection methods, demonstrating supe-
rior positional accuracy. When comparing the effec-
tiveness of confidence indexes for out-of-distribution 
(OOD) detection on heatmap based object detection 
methods, our method discriminated 89.5% of un-
learned images, demonstrating the highest separation 
ratio between learned and unlearned images. Addition-
ally, to evaluate data diversity, we assessed the effec-
tiveness and limitations of the proposed method on 
scanning electron microscope (SEM) images related to 
semiconductor manufacturing. 

Introduction 

Deep convolutional neural networks (CNNs) have achieved 

excellent results in tasks like object detection (Ren et al. 

2015) and segmentation (Long et al. 2014). However, ap-

plying these technologies to target point detection in images 

presents several challenges. In particular, alerting users is 

important when high positional accuracy cannot be guaran-

teed. This is because inaccurate positioning can significantly 

impact safety and work efficiency. Furthermore, in deep 

CNNs, confidence indexes are essential for inferring images 

containing out-of-distribution (OOD) features, as achieving 

high positional accuracy may not always be possible. 

 Previous studies have proposed methods using bounding 

boxes of objects with uncertainty or confidence indexes 

(Gasperini et al. 2021, Lee et al. 2022). However, common 

object detection models specialize in identifying the posi-

tion and outline of objects using rectangular bounding boxes 

are not aimed at detecting the coordinates of a specific point 

with high accuracy. 

 Another approach uses segmentation, identifying object 

shapes at the pixel level for precise object coordinate detec-

tion through post-processing techniques like calculating the 

center of gravity. However, general segmentation has high 

annotation costs as pixel labeling of the target object is re-

quired. 

 In this study, we propose a novel segmentation-based po-

sition detection method using fixed shapes as target labels. 

Our method reduces annotation costs by using fixed circular 

shapes as labels at the center coordinate of the detection tar-

get. We confirm the effectiveness of our method by compar-

ing its position detection performance and confidence score 

effectiveness against those of existing object detection mod-

els using images observed by a focused ion beam scanning 

electron microscope (FIB-SEM) system. Additionally, to 

evaluate data diversity, we assessed the effectiveness of the 

proposed method on scanning electron microscope (SEM) 

images related to semiconductor manufacturing.  

Related works 

Template Matching for Identifying Target Posi-

tion 

Template matching, widely used for identifying target posi-

tions on images, relies on finding the highest similarity be-

tween a template image and the input using such as normal-

ized correlation (Rosenfeld, 1969). This rule-based method, 

classified as a white-box due to its transparency, does not 

require large amounts of data compared with deep learning 

models. However, while template matching based on the 

normalized correlation is robust to uniform lightning illumi-

nation variations, it struggles with partial shadows, local il-

lumination variations, and diverse shapes of subjects. Ap-

proaches to improve robustness include using local textures 

for abstraction to compare features instead of pixels (Satoh 

et al. 2002) and matching based on the consistency of main 

gradient directions in region segmentation (Hinterstoisser et 

al. 2010). However, appropriate feature design and prepro-

cessing rules are required depending on the object or scene 



(measurement environment, lighting, temperature, etc.), and 

designing these features and preprocessing requires experi-

ence and knowledge. Since the mid 2010s, deep learning-

based methods (Ren et al. 2015, Liu et al. 2016, Redmon et 

al. 2016, He et al. 2017) have surpassed rule-based methods 

in image recognition. Although deep learning requires data 

collection and training, it can eliminate the need for prepro-

cessing and feature design that require certain knowledge 

and experience. In this paper, we focus on leveraging deep 

learning's benefits: robustness to diverse object shapes and 

the elimination of feature engineering. We aim to apply 

these strengths to achieve precise positioning tasks. 

Object Detection for Identifying Target Position 

Prominent object detection frameworks like Faster R-CNN 

(Ren et al. 2015), Cascade R-CNN (Cai and Vasconcelos 

2017), and Focal Loss (Lin et al. 2018), identify objects in 

images using rectangular bounding boxes and calculate de-

tection scores on the basis of classification precision. How-

ever, these scores do not reflect the uncertainty (confidence) 

of the object’s location. Recent research endeavors like 

UAD (Lee et al. 2022) and CertainNet (Gasperini et al. 

2021) aim to address this by incorporating measures of lo-

cation uncertainty for object detection. UAD, based on 

FCOS (Tian et al. 2019), provides confidence ratings for 

bounding box edges in all four directions (top, bottom, left, 

right), proving beneficial for detecting occlusions and blurs. 

CertainNet, based on CenterNet (Zhou, Wang, and Krähen-

bühl 2019), assesses uncertainty related to objectness, loca-

tion, and box dimensions. While these models contribute to 

detecting an object’s point within an image, they primarily 

focus on ascertaining object positions and sizes with rectan-

gular bounding boxes, rather than identifying the exact 

pixel-level location of an object. 

Proposed method 

This study proposes a novel segmentation-based position 

detection method using fixed shapes as target labels to re-

duce annotation costs. General segmentation models clas-

sify each pixel using information within its receptive field. 

From the results obtained through this segmentation, spe-

cific coordinates of objects can be detected through post-

processing. For example, we can obtain the specific coordi-

nate on the target object by calculating the centroid from the 

segmented target. However, general segmentation requires 

pixel labeling for creating ground truth (GT) images, result-

ing in high annotation costs. To address this issue, our pro-

posed method uses fixed shapes as target labels, thereby re-

ducing annotation costs. 

 Figure 1 shows an outline of the proposed method. This 

method uses U-Net (Ronneberger, Fischer, and Brox 2015) 

with a VGG16 base (Simonyan and Zisserman 2015) as the 

network structure for segmentation. The method is called 

CircleSeg-XAI as it provides position detection and a confi-

dence index from segmentation results using circular 

shapes. 

 

Fig. 1 Schematic diagram of the model training and infer-

ence. 

 

 During the learning phase, we use a ground truth (GT) 

image containing a circle annotated at the center of the target 

position that we aim to detect in advance. Unlike common 

segmentation methods, this method does not require pixel-

level labeling. A specific circle radius is set in advance in 

accordance with the size of the target object, enabling GT 

images to be created with only the input of target coordi-

nates within the object, reducing annotation costs. The 

model learns to generate circular outputs centered on the tar-

get coordinates for input images by comparing the output 

results with GT images. 

 

 During the inference phase, a circular shape centered on 

the target coordinates is expected to be output for the input 

image using the trained model. Each pixel determines 

whether it is within the range of the radius set by the GT for 

the features of the input image. By post-processing the shape 

of the obtained target label, the target coordinates are iden-

tified by calculating the center of gravity. In addition, this 

method uses the statistical values of the score values of each 

pixel obtained by segmentation as a confidence index. 

 

 Our confidence index calculation utilizes the probability 

data for each pixel in an image belonging to a specific class 

obtained by segmentation. The model evaluates the image’s 

spatial information to classify each pixel. By aggregating 

these classification scores, we gain insights into the spatial 

attributes of the object, distinguishing between learned and 

unlearned data. We formalize this process with the follow-

ing equation for the confidence index: ��  
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Here, N is the number of pixels extracted as targets, and �� 
is the score value of each pixel i. Averaging the scores from 

several pixels provides a more reliable confidence level. 

While the score attributed to a single pixel may be affected 

by local noise or misclassification, the process of averaging 

the scores across multiple pixels yields a more stable and 

reliable confidence index. 

 The confidence index is potentially useful for identifying 

OOD data. Low confidence values suggest that the features 

of the inference image are different from those of the train-

ing data, indicating potential OOD features. In addition, 

comparing high and low confidence regions can indicated 

how the model reacts to ID or OOD data and provide guid-

ance for improving performance. 

Experiment 

In this paper, to evaluate the effectiveness of position detec-

tion and confidence indexes using segmentation with fixed-

shape labels, we compared our proposed method with the 

CenterNet-based object detection method. While general 

object detection models identify object positions by analyz-

ing their outlines, CenterNet utilizes a framework that di-

rectly calculates the center coordinates of objects using a 

heatmap (Zhou, Wang, and Krähenbühl 2019). Therefore, 

we selected heatmap-based methods such as CenterNet and 

CertainNet as our benchmark due to their excellence in iden-

tifying specific object positions within an image. 

Dataset description 

We used images taken by a FIB-SEM system as an example 

application for position detection as shown in Table 1. These 

grayscale images have a resolution of 1000×1000 pixels, 

and unlike natural images, they contain random noise 

throughout. These images are used to accurately extract and 

process micro-scale semiconductor devices by identifying 

the needle's tip position at the pixel level. The entire process 

of extraction and processing is automatically carried out in-

side the microscope, so incorrect position detection can lead 

to extraction/processing failure. Therefore, it is important to 

display the likelihood of failure to the user through the con-

fidence index of the image, which includes features devia-

tion from the training data. Furthermore, in this application, 

the same probe is used repeatedly, and the needle tip's shape 

changes significantly as the extraction/processing process 

progresses. Therefore, detecting OOD images using the con-

fidence index is necessary to display potential failures for 

various shape deformations. 

 The images used in this experiment were divided into two 

groups as shown in Table 1. The first group comprises stand-

ard images, which show the needle tip in a sharp state, while 

the second group comprises deformed images, which feature 

needle tips with various forms, such as foreign objects at-

tached, bent, or otherwise altered, as illustrated in the lower 

section of Table 1. We trained the model using only the 

standard images, thereby designating them as the ID training 

set, with the deformed images as the OOD images in this 

experiment. A total of 267 standard images and 256 de-

formed images were used. 

 

Table 1 Example images with FIB-SEM 

Experimental condition 

In this evaluation, we compared the proposed segmentation-

based position detection method with two existing heatmap-

based object detection methods in terms of position detec-

tion performance and the effectiveness of the confidence in-

dex for OOD detection. We used CenterNet (Zhou, Wang, 

and Krähenbühl 2019) and CertainNet (Gasperini et al. 

2021) as the heatmap-based object detection methods. The 

CenterNet model was referenced from publically available 

code. CertainNet was constructed by modifying the Center-

Net model to apply a radial basis function (RBF) to the 

heatmap generation part as described in the authors' paper 

(Gasperini et al. 2021). ResNet-DCN18 was used as the 

backbone for both models. For the confidence index, the 

peak values of the objectness and location uncertainty in the 

heatmap, which are intermediate characteristics of the 

model, were used. In the CertainNet paper, location uncer-

tainty is defined as the uncertainty in the x direction 
� and 

the y direction 
�. In this experiment, we used the combined 

values of these uncertainties as the total location uncer-

tainty, calculated as 
 =  
�� +  
��. The hyperparameters 

of the experiment were as follows: batch size 16 (CenterNet) 

and 8 (CertainNet), learning rate 1.25e-4 (Adam), number 

of epochs 70 (CenterNet) and 80 (CertainNet), size regres-

sion loss weight: ����� = 0.01  (CenterNet) and 0.1  (Cer-

tainNet), hyperspace regularization loss weight: ���� =
0.01 (CertainNet). These parameters were set by parameter 

tuning in accordance with the references (Zhou, Wang, and 

Standard 

images (In 

Distribution )

Deformed 

images (Out of 

Distribution)



Krähenbühl 2019, Gasperini et al. 2021) and applying FIB-

SEM images. 

 The proposed method uses U-Net (Ronneberger, Fischer, 

and Brox 2015) based on VGG16 (Simonyan and Zisserman 

2015). The batch size was 4, the learning rate was 0.01 

(SSD), the number of epochs was 600, and the circle radius 

size was 110 pix. Since the proposed method is segmenta-

tion-based, MC-Dropout (Kendall and Gal 2017) was used 

to improve segmentation accuracy, which can be easily in-

tegrated into the method. These parameters were set by pa-

rameter tuning in accordance with the FIB-SEM images. We 

trained and evaluated our models using TensorFlow on a 

single NVIDIA Quadro RTX 4000 8GB GPU. The infer-

ence time per image was 809 ms with MC-Dropout (N=50), 

which was not a significant issue for our application. 

 To evaluate the position detection performance, standard 

images were used as training images, and 30 images with 

sharper needle tips were extracted from the deformed im-

ages and evaluated as the test data of the position detection 

performance. The deviation: � = (� − �′)� + (� − �′)� 

is measured as the Euclidean distance between the training 

coordinates (�, �)  and the inferred coordinates (�′, �′)  of 

the needle tip. 

 To evaluate the confidence index, that of the standard im-

age group was set as a threshold, and the ratio of the de-

formed image group to the threshold was calculated. We 

compared the proposed method with the existing method 

from the viewpoint of how well the proposed method can 

discriminate unlearned deformed images (OOD) from 

standard images (in distribution, ID) using the confidence 

index. 

 To evaluate effectiveness in terms of data diversity, the 

proposed method was applied to five different images from 

an SEM system related to semiconductor manufacturing. 

Experimental result 

(1) Evaluation of position detection performance 

Table 2 shows the statistical values of position deviation for 

the proposed method, CircleSeg-XAI, and the existing 

methods. In the standard images (ID), CircleSeg-XAI 

achieves an average positional deviation of 2.16 pixels, 

which is smaller than of CenterNet's 3.12 pixels and Cer-

tainNet's 3.85 pixels. In the deformed images (OOD), Cir-

cleSeg-XAI achieves an average positional deviation of 4.37 

pixels, which is smaller than CenterNet's 4.97 pixels and 

CertainNet's 7.75 pixels.  

 Figure 2 shows the box plot of the positional deviation for 

the proposed method and the existing methods. Fliers in the 

box plot represent individual points that fall beyond 1.5 

times the interquartile range above or below the first and 

third quartiles. The proposed method shows a smaller posi-

tional deviation for both ID and OOD images compared with 

the existing methods. Among the existing methods, Certain-

Net shows an increase in average positional deviation by 

0.73 (=3.85–3.12) pixels (ID) and 2.78 (=7.75–4.97) pixels 

(OOD) compared with CenterNet. Although the backbone 

of CenterNet and CertainNet is common, the main differ-

ence is the reflection of uncertainty in the heatmap genera-

tion. This difference is considered to be the factor for the 

lower position detection performance of CertainNet. 

 

Table 2 Positional deviation performance 

 

Fig. 2 Box plot of positional deviation  

 

 Figure 3 shows the top three images with the largest po-

sitional deviation for each method. While the deformed im-

ages group used in this evaluation extracted sharper probe 

tips compared with other images, they still showed defor-

mation compared with the probe tip's sharpness in the stand-

ard images group. Therefore, both the proposed and existing 

methods showed increased positional deviation for the de-

formed images group compared with the standard images 

group. In the proposed method, the difference between the 

features of the ID and OOD images causes a change in the 

identification of the circular region of the target in each pixel, 

increasing the positional deviation. However, compared 

with the other methods, the proposed method showed a 

smaller positional deviation for both ID and OOD images, 

confirming the proposed segmentation-based method's su-

periority in position detection performance for this data. 

In Distribution (ID) Out of Distribution (OOD)

Mean Std Mean Std

CircleSeg-XAI (Ours) 2.16 1.24 4.37 2.28

CenterNet 3.12 1.49 4.97 2.47

CertainNet 3.85 1.99 7.75 3.86



Fig. 3 Top3 images of position deviation for each method. 

Images cropped from the original images around the GT tar-

get positions. 

 

(2) Validity evaluation of confidence index 

Table 3 shows the results of the ratio of OOD images ex-

tracted for each model using the confidence index. The pro-

posed method’s confidence index, mean score �̅, had the 

highest discrimination rate of 89.5%, followed by Center-

Net’s location uncertainty u at 57.4%. 

 Figure 4 shows the histograms of ID and OOD images for 

each model, extracting the highest discrimination rates 

among the confidence scores listed in Table 3. These results 

indicate that establishing a minimum confidence index 

value for the ID images as the threshold (as shown by the 

blue dotted line in Fig. 4) identifies the ratio of OOD images 

below this threshold, as shown as a numerical value on the 

histogram. In the proposed method, the numerical value of 

the ID image is locally distributed to 0.97~0.98, while that 

of the OOD image is widely distributed below 0.97. Con-

versely, the distributions of 
 in CenterNet/CertainNet 

tended to overlap for both ID and OOD images. These re-

sults show that the proposed method’s confidence index is 

superior over existing methods in terms of discriminating 

OOD images. 

 

 

Table 3 Discrimination rate of OOD images for each model 

and confidence score 

 

Fig. 4 Comparison of confidence scores for each model 

 

  

Model Confidence score Extraction rate 

of OOD images[%]

CircleSeg-XAI (Ours) Mean Score 89.5

Circurarity 53.5

CenterNet Objectness 3.1

Location uncertainty u 34.0

CertainNet Objectness 5.1

Location uncertainty u 57.4

�̅



 Figure 5 shows the relationship between each image and 

the confidence index for each method. The proposed method 

demonstrates a strong correlation: the confidence index �̅ 

tends to be higher when the needle tip closely resembles the 

trained needle (ID), and tends to be lower as the needle tip 

deforms from the trained image (ID). Conversely, the results 

of the confidence index u for CenterNet and CertainNet 

show a weak correlation between needle tip shape and u. 

The middle row values are smaller compared with those in 

the top and bottom rows and the u values are almost the 

same in the top and bottom rows. In the images, although 

the top row does not show deformation of the needle tip and 

the bottom row does show deformation, the u values are sim-

ilar. These results show that the correlation between the 

shape and confidence index is higher in the proposed 

method, and the proposal is effective as an index showing 

the degree of deviation from the trained image (ID). 

 

Fig. 5 Correspondence between each image and the confi-

dence metrics for each method. 

 

 

 

(3) Evaluation of data diversity for SEM images 

Table 4 provides an overview condition of datasets observed 

using the FIB-SEM system for diverse datasets and use 

cases. The number of training data was set by randomly ex-

tracting from each dataset and determined it until there was 

enough data to detect the target. The original image sizes 

were resized to the model’s input size (256 pixels) for train-

ing and inference. The model’s output image is then resized 

back to match the original image size. GT radius is the cir-

cular radius of the target segmented image as ground truth. 

These radiuses were empirically determined based on the 

characteristic sizes around the target areas in the images.  

 Figure 6 shows representative images (left column) and 

inference results (middle and right columns) respectively. 

The proposed method demonstrates that the segmentation 

results are correctly performed at the same positions as spec-

ified by GT, including images of needle tips (A, B), corners 

(C, D), and holes (E). For example, even in images with 

shapes deviating from the training images, where the needle 

tips are more rounded (A2, B2), the targeted needle tip can 

be accurately detected. Additionally, in low contrast images 

(C2, D2), the target corner points are accurately detected. 

However, in D2, the target segmentation shows a distorted 

circle towards the adjacent corner. This suggests the model 

may al-so consider the adjacent corner as a potential target. 

This information indicates high uncertainty due to the devi-

ation from the perfect circle specified by GT. Although the 

dataset E consists of images with different sizes, proposed 

method accurately detects holes in both E1 (150x150 pixels) 

and E2 (300x300 pixels). Therefore, the proposed method 

has been validated on five types of images measured using 

FIB-SEM, confirming its ability to accurately identify spe-

cific locations within the images. 

 

 

Table 4 Overview conditions of the evaluated datasets ob-

served using the FIB-SEM system. 

 

 

 

 

 

 

 

 

 

 

Dataset N-Total N-Train Image size [pix] GT Radius[pix]

A 523 267 1000×1000 110

B 701 160 1000×1000 90

C 91 27 1000×1000 70

D 245 63 1000×1000 30

E 325 165 67×67 ～ 300×300 18



 

 

Fig. 6 Experimental results for datasets from five different 

scenes observed using the FIB-SEM system.  

 

(4) Ablation study 

As an ablation study of the proposed method, we examined 

the changes in performance of point detection with varying 

circle radius of the ground truth. We evaluated the position 

deviation d of the needle tip with changes in the circle radius 

for dataset A, keeping other hyperparameters fixed. The re-

sults, shown in Table 5, reveal a trend with a minimum value 

observed at 110 pixels. In this evaluation, we only con-

firmed on dataset A, the optimal circle radius may depend 

on each dataset. Optimizing the circle radius could be effec-

tive when applying the proposed method to applications re-

quiring high-precision position identification. 

 

 

 

Table 5 Results of position deviation d with varying radius. 

  

Conclusions 

In this paper, we proposed a novel segmentation-based tar-

get point detection method. By using fixed-shape circular 

labels, our method reduces annotation costs while providing 

object position and a confidence index on the image. When 

applied to the task of identifying needle tip positions in FIB-

SEM images, our method demonstrated superiority in terms 

of positional deviation, achieving 2.16 pixels (σ=±1.24 pix-

els) compared with the existing heatmap-based object detec-

tion method’s 3.12 pixels (σ=±1.49 pixels). When compar-

ing the effectiveness of the confidence index for OOD dis-

crimination, our method had the highest ratio of separating 

trained and untrained images, confirming that our method 

can discriminate 89.5% of untrained images using our con-

fidence index. Additionally, the evaluation of images from 

five different scenarios of semiconductor manufacturing 

measured using SEM, confirmed the effectiveness of our 

method. Future research will focus on a theoretical analysis 

of the proposed method to determine its effectiveness and 

limitations.  
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