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Abstract
Muscular-invasive bladder cancer (MIBC) is a common form
of cancer which can necessitate complex treatment decisions.
Different methods involving machine learning have been de-
veloped with the goal of improving and making MIBC diag-
nosis more specific, and thus limiting the amount of invasive
testing needed for MIBC patients. A particularly fruitful di-
rection of research involves the use of tissue images and the
application of deep learning. In order to deal with extremely
large whole slide images (WSIs), the state of the art methods
approach the problem by using a patch-based convolutional
neural network which takes small patches (often 256 × 256
pixels) of WSIs as input and provides a classification of can-
cerous or not-cancerous as output. Patch-to-slide classifica-
tion is then often achieved by classifying a WSI as cancerous
if and only if the majority of its patches are classified as can-
cerous. In this work we compare different approaches to the
integration of local, patch based decisions, as a means of ar-
riving at a robust global, WSI based classification. Our results
suggest that an absolute, positive patch count based decision-
making, with an appropriately learnt threshold, achieves the
best results.

Introduction
Bladder cancer is a common form of cancer, with about
10,000 diagnoses each year in the UK alone. The surviv-
ability of a bladder cancer diagnosis dramatically decreases
if the cancer has grown into the muscle of the bladder
wall (Kennelly et al. 2017). Though it is very common, es-
pecially with people who have a strong history of smoking,
the prognosis of outcomes of muscular invasive bladder can-
cer has not improved in many years. Patient survival and
treatment could stand to benefit significantly by the use of
novel technologies which facilitate better prognosis of blad-
der cancer in muscle tissue as well as reduce the associated
financial costs and time required for human conducted anal-
ysis.

One of the most promising fields of technology that can be
utilized to improve bladder cancer diagnoses is deep learn-
ing. Deep learning is a subdomain of the artificial intelli-
gence field of machine learning (Goodfellow, Bengio, and
Courville 2016). Machine learning is a form of data anal-
ysis by which predictive mathematical models are trained

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with large amounts of data in order to learn, by identifying
patterns within the data, to make predictions about novel in-
stances of the same type of data. Deep learning, which has
proven extremely effective in a wide range of medical (Dim-
itriou, Arandjelović, and Caie 2019) and non-medical appli-
cations (Cooper and Arandjelović 2020), refers to a subset
of machine learning models in the form of artificial neural
networks with many layers.

In the context of bladder cancer, deep learning has been
employed on a variety of data types, such as summary statis-
tics of cell morphology in a sample (Tun, Arandjelovic,
and Caie 2018), patient meta-data, images themselves (Dim-
itriou, Arandjelović, and Caie 2019), and others, in order to
improve diagnosis. In this work our focus is on what is both
the most promising and the most challenging data modality,
in terms of data volume and its complexity – images of blad-
der muscle tissue. In particular, since whole-slide images of
bladder tissue are far too large to be used as direct input to
deep learning models, we compare different ways of inte-
grating local deep learning based decisions to make the best
whole slide level decision.

Previous Work
Bladder Cancer
Bladder cancer can be divided into two types of cases: non-
muscle invasive (NIBC) and muscle invasive (MIBC). NIBC
is cancer found in the inner tissue of the bladder which has
not penetrated to the bladder muscle. In this form the cancer
does not spread outside the bladder. Once cancer has pene-
trated the bladder muscle it is known as muscular invasive.
MIBC has a far greater chance of leading to a fatal out-
come. Once cancer has spread to muscle tissue it can spread
to nearby lymph nodes and other nearby structures (Ken-
nelly et al. 2017). In traditional staging, MIBC would cor-
respond to tumour stages T2 – T4. In stage T2, the tumour
have grown into the muscle layer of the bladder. In stage T3,
the tumour has surpassed the muscle layer and entered tis-
sues around the bladder. T4 describes a stage wherein the
tumour has grown to nearby lymph nodes and other organs.

MIBC is ultimately diagnosed through imaging which can
take on the form of computed tomography (CT), magnetic
resonance imaging (MRI), and ultrasound (US) (Kirkali
et al. 2005). Currently, imaging for MIBC is considered the



best way to determine prognosis and most appropriate treat-
ment for patients (Witjes et al. 2014). Different staged tu-
mours within MIBC have not improved much in terms of
conveying prognosis for years (Kirkali et al. 2005). As such,
multiple invasive tests must be conducted on patients to de-
termine the best path for treatment. Comorbidity factors are
also taken into account as part of this process; yet, the use
of this information, such as chronological age, has produced
little evidence of improved prognosis.

The separation of MIBC and NIBC bladder cancers as
well as low-grade and high-grade tumours is of extreme
importance for cancer diagnosis methods. Because of the
effects on prognosis these aspects have, a combination of
the following diagnostic techniques are now being recom-
mended to provide a full prognosis of a patient’s condition:

• Pathological evaluation: Morphological assessment of
primary tumours and adjacent structures.

• Urinary cytology: A test for abnormal cells in urine.

• Imaging studies: Primarily MRI (magnetic resonance
imaging) and CT (computed tomography) images of
muscle slides.

The variability of staging accuracy is one of the most im-
portant issues with imaging studies. Currently, accuracy of
image based staging ranges from 40% to 98%, and when
imaging occurs after an operation on the bladder, staging
accuracy decreases to approximately 32% to 55% because
of the post-operation inflammation which presents in a man-
ner similar to tumour. Therefore there is a practical need for
more accurate staging based on imaging.

Machine Learning for Bladder Cancer Diagnosis
One of the most influential machine learning methods for
early and late bladder cancer diagnosis was developed at
the University of California, San Diego (Kouznetsova et al.
2019). The proposed model was able to classify metabo-
lites at 82.54% accuracy, performing better on early stage
metabolites rather than late stage ones (Kouznetsova et al.
2019). At the nexus of the model is a Multilayer Percep-
tron, which is trained with Stochastic Gradient Descent and
a logistic regression loss function (Kouznetsova et al. 2019).
This approach has been reported to produce promising re-
sults for identifying important biomarkers from urine sam-
ples, thus facilitating the development of non-invasive meth-
ods for cancer staging.

Wu et al. (Wu et al. 2019) also adopt a deep learning
approach, in this case for classifying bladder cancer. Their
convolutional neural network (CNN), trained on CT scans
of over 100 patients, predicts whether a cancer case will be
responsive to chemotherapy or not (Wu et al. 2019). In ex-
periments, the area under the receiver operating characteris-
tic curve (AUROC) achieved by the model was 0.73, which
suggests comparable performance to that of human radiolo-
gists, whose AUROC score was found to be approximately
0.76. Interestingly, Wu et al. also reported that a pre-trained
CNN performed better than one trained from scratch (Wu
et al. 2019).

The emerging methods which extract large numbers of
features from medical images, combining imaging biomark-
ers and quantitative features, are referred to as radiomics (Ge
et al. 2019). The combination of both image and quantitative
data could provide a powerful basis for machine learning al-
gorithms for diagnosis of bladder cancer (Ge et al. 2019).
Features extracted post-modelling have also been shown to
contribute to better understanding of bladder cancer progno-
sis (Ge et al. 2019). For example, Garapati et al. (Garapati
et al. 2017) found that morphological and textural features
were particularly helpful to stage bladder cancer slides.

Deep Learning & Whole Slide Images
Whole Slide Images (WSI) analysis presents several major
challenges to deep learning based methods. Many of these
stem from the fact that WSIs are often extremely large (bil-
lions of pixels is common) (Dimitriou, Arandjelović, and
Caie 2019; Dimitriou and Arandjelovic 2021). This means
that they cannot be presented in their whole at once to deep
networks. Rather, most methods in the literature, and in-
deed the state of the art, approach the problem bottom–up,
by breaking up WSIs into image patches, analysing these
patches using manageable deep networks, and finally using
patch based decisions to conduct inference at the slide level.
This process, and in particular its last step, is made even
more challenging by the coarseness of annotation available.
In particular, labelling WSIs requires expertize and is a labo-
rious process, which is why in most cases only a slide level
label is available, but more nuanced annotation is lacking.

Pathology slide corpora available to machine learning re-
searchers are typically annotated in one of three ways. The
first of these, patch level labelling, is the most fine grained
and indeed the most useful one, but it also requires the
greatest amount of human labour. With annotations at the
patch level, strong supervision is possible, which generally
improves performance (Dimitriou, Arandjelović, and Caie
2019). Considering the high labelling burden of patch level
annotation, it is unsurprising that slide level annotation is
far more frequently used. Most deep learning based research
in the published literature relies on slide level annotations,
with promising results reported by numerous authors (Yue,
Dimitriou, and Arandjelovic 2019). Lastly, patient level an-
notation is sometimes used as well, again for time and cost
saving reasons. In this case, multiple WSIs come from the
same patient and are all labelled using the same label (Dim-
itriou, Arandjelović, and Caie 2019). This annotation proto-
col is relatively uncommon.

Technical Approach
In this section we describe each of the steps in the data pro-
cessing pipeline in detail, starting from the design of the neu-
ral network used to label patches, to the different methods
which are examined in their ability to integrate patch level
predictions and arrive at a slide level prediction.

Patch Classifier
We used Keras and Tensorflow, and adopted the VGG16
model owing to its favourable performance reports in



the published literature (Yue, Dimitriou, and Arandjelovic
2019). Recall that the VGG16 is a very deep convolutional
network with small sized kernels, which comprises 16 layers
with, in our implementation, 135 million parameters. It was
implemented as a Keras Sequential model.

As suggested earlier, the network was trained on patch
level with the target prediction being the label of the corre-
sponding WSI. On average approximately 250 patches were
extracted from each slide. Observe the consequence of this
approach: the correct network output for some patches was
the cancerous label even if the patch itself contained no ac-
tual tumour. The model should thus be seen not as clas-
sifying the patch as cancerous or not, but rather as pre-
dicting whether the patch comes from a cancerous slide.
Class imbalance, resulting from there being many more non-
cancerous patches than cancerous ones, was taken into ac-
count during training. Instead of random sampling, the rel-
ative sampling rates for the two classes were adjusted to as
to result in a balanced cancerous and non-cancerous sam-
ple sets. Class weights were also used to mitigate the unbal-
anced classes.

From Patch Level to Slide Level Predictions
Recall that the due to the large size of whole slide images,
direct deep learning decision-making is done on the patch
level – in order words, locally in the context of the image.
Hence, what needs to be done next is the integration of these
local decisions into a single, holistic decision pertaining to
the slide as a whole. The current standard, in that most work
adopts it, employs a majority vote based consensus, that is,
if most patch predictions are that of a cancerous slide, the
slide is deemed cancerous, and if most are non-cancerous,
the slide is deemed non-cancerous as well.

Here, we sought to investigate two alternatives to this pro-
cess. The first of these is based on the thresholding of the
absolute vote count. It is motivated by the simple obser-
vation that adding further health patch samples to a set of
patches extracted from a slide does not change the nature
(cancerous or not) of the original set; more negative votes
should not affect the prediction in the way that they do in
the majority vote approach. The second alternative is that of
thresholding not the absolute but the relative number of can-
cerous votes. In other words, a slide is deemed cancerous if
and only if the proportion of cancerous patches exceeds a
certain value. The different patch-to-slide methods are sum-
marized for the reader’s convenience in Table 1. Note that
majority vote is a special case of the proportion threshold-
ing approach (Prop<N> in the table), with the proportion
threshold equal to 0.50.

Combining Local and Global Information
As we explained in the previous sections, one of the major
challenges (though by no means the only one) in the anal-
ysis of WSIs stems from their large size. It is for this rea-
son that the state of the art methods in the literature apply
deep learning not on WSIs themselves, but on their patches
(sub-images), and then integrate these local decisions to ar-
rive at a whole slide one. It is clear that valuable informa-
tion is lost in this process. In particular, any geometric rela-

Method Description

MajorityVote Classifies the WSI as cancerous iff most of
its patches (i.e. > 50%) are deemed can-
cerous.

Thresh<N> Classifies the WSI as cancerous iff at least
N of its patches are deemed cancerous.

Prop<P> Classifies the WSI as cancerous iff the
number of cancerous patches is at least P
times the number of non-cancerous ones.

Table 1: Summary of the three different approaches for patch
label to WSI label inference compared.

tionship between different localities, i.e. patches, is lost as
is therefore the holistic view of the original slide. Hence,
herein we also explore the possibility of combining bottom–
up patch based reasoning which focuses on fine, local detail,
and global reasoning which focuses on slide level features.
Considering the inherent challenge noted earlier, for the lat-
ter stage, rather than attempting to feed the entire original
slide into a network, and bearing in mind that the comple-
mentary part of the method (patch based) deals with detail,
we use severely down-sampled WSI instead to capture slide
level appearance and (implicitly) patch relationships. As this
has not been attempted before, we adopt a simple decision
level fusion whereby a WSI is deemed cancerous if either
the aggregated patch prediction or the down-sampled slide
prediction are positive.

Experimental Analysis
Prior to any actual experimental analysis, we tuned and
trained the adopted VGG16 network, using the standard
training–validation paradigm. The final model achieved
patch level precision of 0.48 and recall of 0.80.

Patch to Slide Decisions
We started the main part of our analysis by comparing dif-
ferent approaches at integrating patch level decisions into
a unified whole slide level decision. Recall that two of the
approaches we described, namely the absolute and relative
thresholding based ones, have a free parameter – the respec-
tive threshold. The determination of these thresholds was
also done prior to any comparison across methods, and again
using the standard training–validation paradigm. In sum-
mary, we found the optimal absolute threshold in our case
to be N = 110, and the relative one P = 2.

The results of our comparison are summarized by the
plots in Figure 1. Firstly, note that the precision values ob-
tained with the three methods are rather similar, with the
proportion based thresholding approach being somewhat su-
perior to the other two. Differences in recall are more stark,
though, with the absolute thresholding method being signif-
icantly better both than the standard MajorityVote approach
and the proportion based thresholding one. The most impor-
tant conclusions that can be drawn from our results is that the
absolute thresholding approach is best, and certainly much



better than the MajorityVote used in the literature. Consid-
ering the theoretical arguments put forward in the previous
section for it, this is not surprising. Moreover, MajorityVote
can also not be said to be absolutely preferable to the propor-
tional thresholding method either, but rather that the prefer-
ence for one or the other depends on the clinical decision
regarding the trade-off between false positives (and thus the
unnecessary upset and inconvenience caused to some pa-
tients) and false negatives (and thus the increased rate of
mortality and additional complications).

Figure 1: Comparison of precision and recall for different
approaches.

Combining Local and Global Information
Lastly, we turned our attention proposed in the previous sec-
tion and which attempts to ameliorate the loss of information
effected by breaking up a WSI into patches, by combining
aggregated patch based learning and learning done on the
level of the whole slide, down-sampled for computational
reasons. Considering the findings we already discussed and
the superiority of the absolute thresholding method for the
aggregation of patch level predictions, this approach was
adopted for the patch based learning part of the method (with
the previously determined optimum free parameter value,
that is the threshold, of N = 110). Promisingly, the perfor-
mance was indeed far superior to what was achieved using
patches only. In particular, while the precision remained un-

changed, the recall was improved dramatically; quite in fact,
recall was found to be perfect, i.e. equal to 1.0.

Summary and conclusions
In digital pathology, the state of the art methods for whole
slide image analysis approach the problem by breaking up a
slide into a large number of constituent sub-images, patches,
performing deep learning on the said patches, and then inte-
grating patch level predictions into a slide level one. Hence,
the first goal of this paper was to examine whether the com-
monly used approach for patch level to slide level inference,
that is majority vote, can be improved upon. In particular,
we proposed two alternatives in the form of absolute and
relative thresholding of patch level decisions and on a real-
world corpus of bladder whole slide images demonstrated
that a tuned absolute thresholding approach indeed achieves
superior results. All three methods, the original majority
vote based one and the two newly proposed herein, attained
similar precision scores, but significant differences were ob-
served in recall, with absolute thresholding outperforming
others by a significant margin.

Furthermore, motivated by the most significant limitation
of the aforementioned patch to slide level analysis, namely
the loss of geometric relationship between different patches,
we proposed a new fusion based approach which combines
aggregated patch level predictions (local information, lack-
ing in global awareness) with the prediction made directly
on the whole slide (global information, lacking in detailed
information), down-sampled for the sake of computational
tractability. This approach was shown to be successful too,
improving performance yet further and indeed achieving
perfect recall.

Our results should have both effects on the immediate
practice in machine learning in digital pathology as well as
on future work. As regards the former, the presented ex-
periments suggest that researchers should adopt, or at the
very least investigate the use of, more sophisticated meth-
ods for making slide level predictions from patches. For fu-
ture work, the promising results of our approach for the uti-
lization of both local information, in the form of patches,
and global information, in the form of down-sampled slides,
calls for more research effort into how local and global in-
formation may be combined. Our immediate plan is to apply
more sophisticated decision level fusion approaches (Arand-
jelovic 2016).

References
Arandjelovic, O. 2016. Weighted linear fusion of multi-
modal data: a reasonable baseline? In Proceedings of the
ACM International Conference on Multimedia, 851–857.
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