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Abstract

A core objective of physical design is to minimize wirelength
(WL) when placing chip components on a canvas. Comput-
ing the minimal wirelength (WL) of a placement requires
finding rectilinear Steiner minimum trees (RSMTs), an NP-
hard problem typically infeasible for modern chips compris-
ing millions of circuit components. We propose NeuroSteiner,
a neural model that distills GeoSteiner, an optimal RSMT
solver, to navigate the cost–accuracy frontier of WL estima-
tion. NeuroSteiner is trained on synthesized nets labeled by
GeoSteiner, alleviating the need to train on real chip designs.
Moreover, NeuroSteiner’s differentiability allows to place by
minimizing WL through gradient descent. On ISPD 2005 and
2019, NeuroSteiner can obtain 0.3% WL error while being
60% faster than GeoSteiner, or 0.2% and 30%.

1 Introduction
Optimizing the placement of circuit elements, e.g., standard
cells, in integrated circuits is a critical step in early phases
of Electronic Design Automation (EDA) (Chu 2004; Sha-
hookar and Mazumder 1991; Kahng et al. 2011). Typically,
the design pipeline starts with a set of nets, each of which
are a logical description of the connectivity between circuit
elements. Each net describes a different connectivity hyper-
graph and in combination they form a netlist, which encap-
sulates the overall connectivity of different elements on the
chip. A placer optimizes the location of circuit elements
based on power, performance, and area (PPA) objectives.
One crucial objective is wirelength (WL), which is a com-
mon proxy for power consumption (Mirhoseini et al. 2021;
Shahookar and Mazumder 1991; Caldwell et al. 1998). In
principle, a WL function estimates the expected total length
of wires needed to connect all nets in a routed netlist. Due to
the iterative nature of (gradient-based) placement optimiza-
tion, any desirable WL function needs to be fast to evaluate,
accurate, and differentiable.

Among popular WL estimation methods (Shahookar and
Mazumder 1991; Kahng et al. 2011), the Rectilinear Steiner
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Minimum Tree (RSMT) (Kahng et al. 2011) is known to
be an accurate estimator of the true routed WL (Roy and
Markov 2007). Specifically, solving for an RSMT consists
of adding nodes—the Steiner points—to a graph such that
the length of its spanning tree is minimal with respect to the
L1 (Manhattan) metric. While GeoSteiner (Juhl et al. 2018),
an algorithm that enumerates Steiner trees, is optimal, its
runtime is exponential in the size of the problem (i.e., the net
degree) since finding the optimal set of Steiner points for an
arbitrary point set in a plane is NP-hard (Zhang 2016).

Several works have used efficient and heuristic approxi-
mations to the RSMT with desirable empirical performance.
The Minimum Spanning Tree (MST) can be viewed as
the simplest approximation because it assumes no Steiner
points and incurs a runtime cost of order O(d log d) for a
net of degree d1. However, it overestimates WL by 4% on
average (Wong and Chu 2008). Similarly, FLUTE (Wong
and Chu 2008) uses a look-up table to quickly approxi-
mate WL without solving for any Steiner points, but is non-
differentiable with respect to pin locations. Bi1S (Kahng and
Robins 1992) proposes a batched-iterative approach to solv-
ing the RSMT problem. However, its performance is sub-
par on low-degree nets which constitute the majority of real-
world netlists (Chu 2004). Another method SFP (Fallin et al.
2022) leverages CPU/GPU parallelization to accelerate the
RSMT construction. Despite its high throughput, its solution
quality rapidly degrades with net degree.

While these algorithms were hand-engineered to trade off
accuracy for runtime, machine learning (ML) offers an auto-
matic way to navigate this trade-off through the distillation
of an optimal algorithm. Moreover, fine-tuning the neural
model allows for tailoring it to the real data distribution (not
the worst case). Accordingly, there has been a surge in de-
veloping ML approximations to combinatorial optimization
problems on graphs (Kool, Van Hoof, and Welling 2018;
Khalil et al. 2017; Bengio, Lodi, and Prouvost 2021; Gasse
et al. 2019). Finally, while progress in hardware benefits all
workloads, the current emphasis on ML accelerates these
workloads faster: GPUs are being optimized for calculations
used by neural models.

To our knowledge, REST (Liu, Chen, and Young 2021) is
the only method that approached the RSMT problem with

1The number of pins in a net is called the degree of a net.
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Figure 1: NeuroSteiner. Rectilinear Steiner Minimum Trees (RSMTs), hence wirelength (WL), are predicted in two steps: (1)
determine Steiner points, then (2) find its Minimum Spanning Tree (MST). Our neural model predicts the probability that each
node on the Hanan grid is a Steiner point. The model is trained by distilling an oracle: synthesized nets (or real designs) are
labelled by GeoSteiner, an optimal RSMT solver.

ML. REST uses a reinforcement learning (RL) approach,
proposing an auto-regressive model that sequentially adds
edges to a tree to predict an RSMT. However, REST learns
multiple models that are specialized for nets of particular de-
grees (number of pins in a net) instead of a single model for
all input sizes. Furthermore, due to its auto-regressive na-
ture, it generates solutions in a step-by-step sequential fash-
ion which can increase runtime. Overall, this can lead to long
runtime when predicting the wirelength of a whole netlist,
consisting of a large variety of net degrees.

1.1 Contributions
To tackle the above limitations, we propose NeuroSteiner.
NeuroSteiner is built on the following novel contributions:

One-shot supervised binary node classification task.
We formulate the prediction of Steiner points as a super-
vised binary node-classification task where each intersect-
ing point in the Hanan grid (see Figure 1) is considered as
a node in a graph. NeuroSteiner leverages a Graph Trans-
former (Rampášek et al. 2022) through training on labeled
data from GeoSteiner (Juhl et al. 2018). The transformer
mechanism enables capturing pairwise interactions between
points in the Hanan Grid effectively. The Steiner point pre-
diction is done in a one-shot fashion which facilitates the
utilization of GPU parallelization. In contrast to REST (Liu,
Chen, and Young 2021), we only predict Steiner points and
not a tree. Thus, we propose a hybrid method, where the
neural network focuses on approximating the NP-hard prob-
lem of finding Steiner point(s), while the MST calculation
can be done in polynomial time. Additionally, NeuroSteiner
uses a single trained model for inference and has the ability

to batch nets of different sizes. This is an advantage over ex-
isting neural model REST, which relies on specialized model
checkpoints for each size(degree) net and also lacks the ca-
pability to batch nets with different number of pins which
hinders parallelizability.

Training on infinitely available synthetic nets. Most chip
design data is proprietary, which makes learning general-
izable models for chip design challenging (Kahng 2022).
To tackle this, we train NeuroSteiner on a synthetically-
generated labelled dataset that is cheap to obtain and in-
finitely large in theory. We demonstrate NeuroSteiner’s ca-
pability in achieving high-quality results on real-data when it
was solely trained on synthetic data. Subsequently, we illus-
trate that the performance of NeuroSteiner can be enhanced
through fine-tuning on available real industrial datasets to
adapt to real data distributions.

Evaluation on real-world benchmarks. Through ex-
tensive experiments on chip design benchmarks from
ISPD2005 and ISPD2019, we establish that NEU-
ROSTEINER (1) constructs an RSMT estimate with an
error of about 0.3% when compared to the optimal solu-
tion and (2) predicts RSMTs for the benchmarks at 0.3
milliseconds per net on average.

2 Methodology
Formally, our goal is to solve the following problem:

Problem 1 (Rectilinear Steiner Minimum Tree) Given a
set of points VP ∈ R2, construct a rectilinear minimum
spanning tree connecting a set of points V ∈ R2, with
V ⊇ VP .



In the above definition, the newly introduced points V \
VP are called Steiner points. Constructing the Rectilinear
Steiner Mimimum Tree (RSMT) for a set of points is known
to be NP-complete (Hanan 1966; Chu 2004). However, one
can show that for any set VP , there always exists a set of op-
timal Steiner points on the Hanan grid (Hanan 1966), which
is the union of nodes resulting from intersecting all horizon-
tal and vertical lines passing through each point v ∈ VP . For
example, Fig. 1 shows green nodes which depict the set of
pins on the 2D plane and the lines crossing the green points
represent the Hanan grid. Let VH denote Hanan points, i.e.,
the set of intersecting points apart from the pins. We model
the RSMT problem as a binary classification problem of the
points in VH .

Problem 2 Given a set of pins VP ⊆ R2 and corresponding
Hanan points VH ⊆ R2, learn the parameters of a neural
model for predicting Steiner points in VH .

Fig. 1 shows the prediction and training flow of Neu-
roSteiner.

2.1 Hanan grid graph
Given a set of pin points VP , we first identify its Hanan
points VH . To represent relationships among various points
in a Hanan grid, we represent the grid using a graph. Let
the graph G = (V, E) be the graph consisting of the node
set V = VH

⋃
VP and the set of edges E consisting of the

Hanan grid. Formally, let E = {euv = (u, v) | v ∈ N (u)}
be defined as the set of neighboring edges, where neighbors
are defined as follows:

Definition 1 (Neighborhood of a node) In a graph G, a
node v is said to be a neighbor of node u, i.e., v ∈ N (u),
if and only if one of the following conditions hold ∀w ∈
V \ {u, v} and ∀α, β ∈ [0, 1]:

vx = ux and wx ̸= α · vx + (1− α) · ux, (1)
vy = uy and wy ̸= β · vy + (1− β) · uy, (2)

where vx refers to the x coordinate of node v and vy refers
to its y coordinate.

In simple terms, eq. 1 holds if two nodes u and v lie on the
same horizontal line and no other node lies horizontally be-
tween them. Eq.2 can be viewed analogously for the vertical
dimension.

2.2 Node and edge features
Apart from G, we define a set of node and edge features con-
taining task-relevant information to be used as input to our
neural network. As node features, we make use of positional
information and a node pin indicator variable. Formally, the
input features of a node v are defined as

h0
v = [vx, vy, I(v)]. (3)

In the above equation, vx and vy denote the x and y coor-
dinates of a node v, and I(v) is an indicator function that
returns 1 if v ∈ VP and 0 otherwise. The coordinates vx
and vy serve as positional information, which assists our
model to recognize spatial dependencies between different

nodes (Rampášek et al. 2022). Since our Graph Transformer
model employs message-passing between different nodes
to construct node embeddings, we employ the pin indica-
tor I(v) as a mechanism for messages to differentiate pin
nodes v ∈ VP from candidate Steiner nodes v ∈ VH . Let
X0 =

[
h0
v

]
v∈V ∈ R|V|×3 denote the input feature matrix of

nodes belonging to the graph G.
For the edge features of an edge euv ∈ E , we define

euv = [ux − vx, uy − vy] (4)

to capture the displacement between two neighboring nodes
on the Hanan grid.

2.3 Message-passing and Graph Transformers
From the input node features, we aim to generate a richer
representation that encodes local and global structural infor-
mation. Since classification of a node as a Steiner point is in-
fluenced by nodes beyond its local neighborhood, we need a
model that can capture long-range dependencies. While, the-
oretically, message passing neural networks (MPNNs) (Ying
et al. 2021; Rampášek et al. 2022) are able to learn global
interactions, they require several rounds of message-passing
at the risk of oversquashing and oversmoothing (Oono and
Suzuki 2020; Morris et al. 2019; Ying et al. 2021). Instead,
we opt for Graph Transformers, combining MPNNs with a
global attention mechanism (Vaswani et al. 2017). This fa-
cilitates capturing interactions at both local and global levels
(Rampášek et al. 2022).

More precisely, we use the GraphGPS (Rampášek et al.
2022) Graph Transformer. In GraphGPS, one can use any
type of MPNN to aggregate information from the local
neighborhood of a target node. Here, we use GINE (Xu et al.
2018), updating the node embeddings h(l)

v at layer l by

h(l+1)
v = MLP(l)

h(l)
v +

∑
u∈N (v)

ϕ
(
h(l)
v + evu

) , (5)

where ϕ : R → R is an activation function, in our case
chosen to be the ReLU activation ϕ(z) = max{0, z}. The
edge features euv are projected to the same dimension as
hv using an MLP layer. At a given layer l, the above equa-
tion aggregates features of neighboring nodes and features
of their associated edges. This information is used to gener-
ate local embeddings of nodes at layer l + 1 represented by
X

(l+1)
loc =

[
h
(l+1)
v

]
v∈V

.

For the global attention scheme, we process the node em-
beddings at layer l as follows

Q=X(l)WQ, K=X(l)WK, V=X(l)WV,
(6)

X
(l+1)
glob = softmax(A)V where A=

QKT

√
d

. (7)

The input features X(l) at layer l are projected by three
learnable matrices Wl

Q ∈ Rd×d, Wl
K ∈ Rd×d, and Wl

V ∈
Rd×d to the corresponding representations Q,K,V and the
attention matrix A ∈ R|V|×|V| captures the attention weight
between all pairs of nodes.



From the local and global node representations at layer l,
their representation at the next layer are given by

X(l+1) = MLP
(
X

(l+1)
loc +X

(l+1)
glob

)
. (8)

With GraphGPS, we perform L rounds of local message-
passing and global attention to obtain the final representa-
tion X(L) of all nodes in G. The more the layers, the more
complex relationships GraphGPS can capture. Finally, em-
beddings pass through an MLP to obtain the logits

Ŷ = MLPout

(
X(L)

)
∈ R|V|. (9)

These logits represent the probability that a node is a Steiner
point.

2.4 Training
The parameters of the model are learned by minimizing an
objective that encourages the GraphGPS neural model to
predict the true labels Y. The binary cross-entropy objec-
tive is calculated as

− 1

N

N∑
i=1

Yi · log Ŷi + (1−Yi) · log(1− Ŷi), (10)

Y ∈ {0, 1}N are the true labels, Ŷ ∈ RN are the pre-
dicted logits, and N is the number of Steiner candidates in
the Hanan grid. We note that this loss models each node as
an independent Bernoulli random variable.

2.5 Inference
After training, for an unseen problem instance we (1) predict
the probability of each node in the Hanan grid to be a Steiner
point with our Graph Transformer, (2) classify Steiner points
by thresholding2, and (3) obtain the RSMT by finding the
Minimum Spanning Tree (MST) from the original pins and
predicted Steiner points. Wirelength is computed by the sum
length of edges in the RSMT.

2.6 Train and inference pipelines
• Training: Train NeuroSteiner on synthetic data as out-

lined in Sec. 3.1.
• Fine-tuning (optional): When possible, fine-tuning on

a dataset of chip designs can improve performance as
shown in Tab. 5.

• Inference: Given an unseen netlist, predict the Steiner
Points on the Hanan grid of each net. To obtain the
RSMT per net, use the MST algorithm on the set of ter-
minals and predicted Steiner points.

3 Experiments
In this section, we benchmark the performance of Neu-
roSteiner against several existing methods on real chip de-
signs. We aim to answer the following questions:

2Nodes whose score Ŷi are greater than the threshold are clas-
sified as Steiner points.

Sec. 3.2 How does NeuroSteiner perform in terms of wire-
length (WL) estimation error (accuracy) and runtime
(cost)?

Sec. 3.3 What is the impact of training on synthetic or real
nets?

Sec. 3.4 How to explore the cost–accuracy frontier with
model capacity?

3.1 Setup
To get a sense of the cost–accuracy frontier, we evaluate
NeuroSteiner at two capacities: small with L = 10 layers
and large with L = 20. At both capacities, our GraphGPS
model features hidden representations of size d = 64 and
one attention head. On our setup, our large model is trained
with a batch size of 12 while the small model can afford
16. We train it with the Adam optimizer (Kingma and Ba
2014) with a learning rate of 10−4 and an L2 decay of
10−5. We use a prediction threshold of 0.3 which was de-
cided based upon a held out synthetically generated dataset.
All experiments are run on a Linux-based workstation made
of an Intel Xeon W-2225 with 32 GB of memory and an
NVIDIA GeForce RTX 3080 with 10 GB of memory. We
implemented our neural network in PyTorch and used a C++
implementation of MST (shininglion 2015).

Synthetic nets The synthetic nets used for training are
generated by sampling N points (as pins) uniformly at ran-
dom in the 2D plane, where N ∼ Uniform(5, 30). We
trained our model on 50 million such nets. Labels, i.e., the
optimal set of Steiner points for these samples, were ob-
tained using GeoSteiner (Juhl et al. 2018).

Table 1: Netlists used for evaluation. This comprises of nets
that have degree greater than 2 and less than or equal to 64.

dataset netlist #nets degree(# pins)

mean median

ISPD2019 (isp 2019) test1 1,199 10.93 4
test2 30,471 7.31 4
test3 3,498 5.49 4
test4 60,104 3.86 3
test5 5,467 5.89 4
test6 76,169 7.32 4
test7 152,171 7.33 4
test8 228,146 7.33 4
test9 380,151 7.34 4
test10 380,151 7.34 4

ISPD2005 (Nam et al. 2005) adaptec1 101,003 6.75 4
adaptec2 98,138 7.19 4
adaptec3 177,997 7.04 4
adaptec4 179,689 6.70 4
bigblue1 114,750 6.83 4
bigblue2 203,712 6.15 4
bigblue3 292,528 7.17 4

.

Real nets We evaluate performance on real netlists from
the ISPD 2005 (Nam et al. 2005) and 2019 (isp 2019) bench-
marks. These netlists are made from about 1,000 to 400,000



nets. After filtering for nets with degree larger than 2 and
smaller than or equal to 64, the median net degree is 4 and
the mean degree is about 7. Statistics about these netlists are
shown in Table 1.

Baselines. We benchmark NeuroSteiner against several
methods which are neural as well as non-neural.
• Non-neural: We compare with an optimal RSMT solver

GeoSteiner (GST) (Juhl et al. 2018), the plain Mini-
mum Spanning Tree (MST) as the simplest approxima-
tion, and Bi1S (Kahng and Robins 1992) as a represen-
tative heuristic method. GeoSteiner gives a lower-bound
on WL estimation—MST an upper-bound.

• Neural: We compare with REST (Liu, Chen, and Young
2021) as a neural alternative. It is a deep reinforcement
learning method that comes in two variants: T = 1 and
T = 8, where T is the number of performed augmenta-
tions (i.e., T = 8 applies rotations and flips to all nets),
a hyper-parameter to be set at inference time. T trades
off accuracy with cost: setting T = 1 results in faster but
less accurate predictions.

We use the source-code released by the authors of
REST in PyTorch, and standard implementations of Bi1S,
GeoSteiner, and MST (shininglion 2015) in C++.

Evaluation Metric. To evaluate the quality of a method,
we report the percentage wire length estimation error (%)
obtained by each method against the optimal result obtained
by GeoSteiner. This is a standard practice followed by exist-
ing works (Liu, Chen, and Young 2021; Kahng and Robins
1992).

3.2 Results
In this section, we report the results when NeuroSteiner was
trained only on synthetic nets.

WL estimation error. Table 2 shows the WL estimation er-
ror obtained by different methods against the minimal WL
(given by GeoSteiner). While NeuroSteiner doesn’t reach
the performance of well-engineered heuristic methods, it
improves upon the faster variant of REST (T = 1), the
only neural alternative. While REST with augmentations
(T = 8) achieves significantly better performance than our
large model, it targets a corner of the cost–accuracy frontier
because this variant performs 8 independent forward passes
each with an augmented version of the input and chooses the
best (lowest WL) one post-inference.

When it comes to WL estimation in chip placement op-
timization, we expect errors within the 1% range to be suf-
ficiently low. Hence we focused on achieving a fast model
below the 1% error mark. From the estimation error % ob-
served in Table 2, it is evident that NeuroSteiner, which is a
one-shot model trained on different degree nets, achieves a
high-quality wire length estimation. This can be attributed to
its attention mechanism which captures pair-wise relation-
ships between all possible points on the Hanan grid. Further,
we highlight that NeuroSteiner was able to achieve high-
quality performance without being exposed to any real chip
designs, thereby demonstrating the strengths of training only
on synthetic data which is available in abundance.

Table 2: Wirelength (WL) estimation error (%) against the
optimal (GST). The reported error is the average across all
nets, per netlist and overall. Lower is better. The training
of NeuroSteiner for this experiment was performed on syn-
thetic nets only.

Non-neural Neural

model→
netlist↓

MST Bi1S REST NeuroSteiner

T = 1 T = 8 small large

test1 7.298 0.067 0.423 0.108 0.715 0.503
test2 7.760 0.045 0.224 0.044 0.324 0.237
test3 7.940 0.047 0.298 0.026 0.237 0.132
test4 4.033 0.015 0.073 0.007 0.387 0.289
test5 5.913 0.028 0.247 0.027 0.777 0.557
test6 8.167 0.046 0.218 0.044 0.333 0.243
test7 7.937 0.050 0.224 0.044 0.330 0.239
test8 7.875 0.047 0.216 0.041 0.317 0.229
test9 7.942 0.048 0.223 0.044 0.328 0.237
test10 7.832 0.047 0.220 0.042 0.322 0.230

adaptec1 7.271 0.060 0.330 0.046 0.298 0.206
adaptec2 7.133 0.064 0.385 0.065 0.349 0.250
adaptec3 6.921 0.054 0.412 0.068 0.318 0.252
adaptec4 7.097 0.051 0.396 0.067 0.289 0.238
bigblue1 7.195 0.063 0.443 0.053 0.291 0.190
bigblue2 6.676 0.054 0.261 0.040 0.264 0.176
bigblue3 7.451 0.063 0.440 0.068 0.319 0.247

overall 7.430 0.052 0.294 0.050 0.317 0.232

In Table 2 we observe variations in NeuroSteiner’s per-
formance between the two evaluation datasets ISPD 2019
(test1-10) and ISPD 2015 (adaptec1-4 and bigblue1-3). The
most prominent outliers are test1 and test5. We attribute the
higher errors to a shift in net degree distributions. As ob-
served in Table 1, netlists test1, test3 and test5 have con-
siderably fewer nets than other netlists as well as different
mean and median statistics. This is significant because the
WL error of our models increases with net degree as shown
in Table 3. We believe this is why NeuroSteiner exhibits
higher error on test1 (which has more high-degree nets than
average) than test4 (which has fewer high-degree nets than
average). While test5 has a lower mean degree than test1, it
has few nets overall and therefore the WL error is dominated
by its higher-degree nets.

We also study the estimation error per net degree in Ta-
ble 3. We observe that the error grows with net degree for all
methods. Both NeuroSteiner and REST with T = 8 match
Bi1S on nets of small degree, which dominate real netlists
(as shown in Table 1).

Runtime. Previously, we examined the quality of differ-
ent methods on wire length estimation task. In order to un-
derstand their computational efficiency, we now investigate
their running time. Table 4 shows the time required by dif-
ferent methods to estimate WL. The duration of initial data
processing is not included as it is shared amongst all meth-
ods. For NeuroSteiner, we report the total runtime: the for-



Table 3: Wirelength estimation error (%), averaged over
adaptec3 nets, grouped by degree. NeuroSteiner was trained
only on synthetic data for this experiment.

Non-neural Neural
model→
degree↓ MST Bi1S REST NeuroSteiner

T = 1 T = 8 small large

3–9 6.79 0.03 0.25 0.02 0.07 0.03
10–19 7.38 0.17 0.58 0.07 0.83 0.57
20–29 8.26 0.25 1.22 0.30 1.94 1.59
30–39 8.42 0.26 1.82 0.54 2.79 2.46
40–49 7.32 0.20 3.47 1.11 3.72 4.21
50–59 7.12 0.18 4.74 1.75 4.50 5.14
60–64 7.21 0.19 5.36 2.12 4.40 5.65

Table 4: Total runtime per netlist in seconds, and the mean
per net in microseconds. Lower is better.

Non-neural Neural

model→
netlist↓

GST MST Bi1S REST NeuroSteiner

T = 1 T = 8 small large

test1 0.93 0.02 2.05 98.01 111.59 0.55 1.00
test2 15.38 0.41 14.20 112.61 133.72 9.50 16.61
test3 0.37 0.03 1.43 83.71 94.66 0.47 0.81
test4 2.10 0.75 8.14 50.91 60.45 2.73 3.84
test5 0.41 0.05 1.71 81.30 92.09 0.57 0.93
test6 81.30 1.29 72.04 115.22 144.70 21.45 38.54
test7 162.16 3.16 150.72 117.99 158.01 44.74 77.18
test8 115.93 4.43 155.37 117.09 171.28 69.91 123.97
test9 415.69 7.50 324.28 116.06 189.92 111.91 207.50
test10 412.05 6.00 329.49 116.09 190.06 110.67 196.39

adaptec1 54.73 1.80 44.15 109.32 139.14 25.35 47.30
adaptec2 75.10 1.88 97.23 111.92 143.32 40.13 72.44
adaptec3 133.63 2.46 148.02 113.30 154.88 67.31 124.73
adaptec4 133.84 2.36 137.12 114.16 157.15 67.77 122.22
bigblue1 61.60 2.03 47.87 111.55 143.39 29.07 51.81
bigblue2 99.50 3.59 135.59 114.17 155.60 48.20 88.56
bigblue3 196.52 5.42 232.36 115.69 174.56 91.84 169.87

per net 770 17 790 720 970 300 540

ward pass of the neural model followed by the MST algo-
rithm. We note that the difference between the runtimes of
REST that we report and the ones the authors report (Liu,
Chen, and Young 2021) is due to potential differences in
model loading and batching. Namely, since REST uses dif-
ferent model checkpoints for different degrees, we evaluate
different degree nets on different checkpoints, which have
been provided for every 5 degrees by the authors. We then
report the inference runtime of REST for sequentially pro-
cessing batches of same-degree nets on the corresponding
checkpoint for the closest multiple of 5. This emphasizes
a drawback of REST; it lacks the capability to effectively
leverage batching for data points of varying sizes(degrees).
On the contrary, NeuroSteiner does not face such limitation
and can batch nets of different sizes.

In Table 4, we observe that in most cases NeuroSteiner
is faster than REST, Bi1S and GST. We also observe a con-
stant runtime overhead for REST, which we attribute to the
sequential nature of degree-based batching and prediction.
On the other hand, for NeuroSteiner, we divide nets into
5 groups of similar degrees. For each group, we use an
optimized batch size, fitting as many nets as possible into
a single forward pass. Further, from Table 4, we observe
that MST has the lowest running time. However this result
should be observed in conjunction with Table 2, which in-
dicates that its estimation quality is significantly inferior by
orders of magnitude compared to all other methods across
all datasets.

3.3 Fine-tuning on real nets

Table 5: NeuroSteiner’s performance when training on
synthetic data, real data, or both: Wire length error (%)
when training only on real data (adaptec4), training only on
synthetic data, or training on synthetic nets and fine-tuning
on adaptec4 which is referred to as both in the table. Lower
is better.

model test netlist training netlists

adaptec4 synthetic both

NeuroSteiner (large) adaptec1 0.351 0.194 0.159
NeuroSteiner (small) adaptec3 0.533 0.318 0.290

In section 3.2, we showed that by training on syn-
thetic nets, NeuroSteiner achieves good results on real-world
benchmarks without further fine-tuning on real-data, allevi-
ating the need to train on scarce real designs. When such
data is available then fine-tuning on them can improve accu-
racy (Yue et al. 2022) as pins on real-world nets are rarely
distributed uniformly on the 2D canvas as our synthetic data
generator assumes. Real-world chip designs are scarce in
the public domain (Kahng 2022, 2023) even though some
datasets exist (Nam et al. 2005; isp 2019).

Table 5 shows the WL estimation error for different train-
ing datasets3. Training on synthetic nets is better than train-
ing on a limited set of real nets. Large neural networks such
as ours can easily overfit on small training sets. This em-
phasizes the strength of training on synthetic nets which can
be generated at will (see also Figure 2b). However, training
on synthetic and fine-tuning on real nets shows significant
improvements on test netlists. This suggests that while syn-
thetic data is sufficient for learning the fundamentals, it is
fine-tuning that tailors to the real data distribution without
overfitting. As a result, we expect training on cheap synthetic
nets then fine-tuning on scarce real nets to further improve
on the performance reported in Table 2.

3.4 Scaling properties
In this section, we examine how various hyper-parameters,
such as model capacity, increased training data, and the

3These are not comparable to the errors reported in Table 2.
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Figure 2: Scaling properties.

availability of GPU memory, influence the performance of
NeuroSteiner.

Cost–accuracy trade-off. Figure 2a shows the runtime
and WL estimation error obtained by NeuroSteiner for dif-
ferent numbers of trainable parameters. As this number in-
crease, the error decreases and the runtime increases. Since
NeuroSteiner is a one-shot model capable of handling all net
degrees, tuning the number of trainable parameters allows
the user to trade-off cost and accuracy in a simple way.

More synthetic training data. In Figure 2b we observe
how training on more synthetic nets reduces the WL error
on unseen real nets till convergence.

Parallelism. As NeuroSteiner, unlike REST, can process
nets of different degree simultaneously, increasing GPU
memory allows for more nets to be processed simultane-
ously, irrespective of a netlist’s degree distribution. Figure 2c
shows that the runtime of NeuroSteiner indeed decreases lin-
early as GPU memory increases.

4 Conclusion
We introduced NeuroSteiner, a Graph Transformer neural
model, to predict the Steiner points on a Hanan grid graph
in one shot. Wirelength (WL) is then estimated through
the construction of Rectilinear Steiner Minimum Trees
(RSMTs).

Discussion Although NeuroSteiner achieves high perfor-
mance at faster runtime when compared to GeoSteiner, we
acknowledge that heuristics, such as SFP, for computing the
RSMT can achieve competitive performance and prediction
speed through efficient implementations. This is common
in the ML for combinatorial optimizaiton literature (Joshi
et al. 2020). However, algorithms, such as GeoSteiner, Bi1S,
or SFP make discrete choices in order to generate Steiner
points, impairing differentiability and often fixing a sin-
gle tradeoff in terms of speed and accuracy. In this work,
we aim to advance the frontier of ML-based methods for
approximating the RSMT. We show that, compared to the
state-of-the-art neural baseline REST, NeuroSteiner is able
to achieve a competitive solution quality while requiring

only a single neural model. This has potential advantages
in terms of inference speed and memory requirements. Fur-
thermore, we show that NeuroSteiner can be fine-tuned to
a task-specific data distribution (Section 3.3), allowing for
further performance improvements when iterating through
netlist revisions.

Future Work To simplify modeling, we treated each
Steiner point independently during training and inference.
Since the Steiner point problem is inherently combinato-
rial, future work could explore joint or conditional Steiner
point models to further enhance the quality of predictions.
Furthermore, our proposed method first predicts the Steiner
points and then computes MST to obtain wirelength. An al-
ternative to this approach is to use a neural network to di-
rectly predict the wirelength of RSMT by treating it as a
regression task. This alternative promises faster execution
time and an end-to-end differentiable path from wirelength
to the input points.
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